Assignment \#3, due Tuesday September 27th by 11:59pm, via GradeScope.ca
[4] 1. [2] a. Prove that if L_{1} and L_{2} are regular, then so is

$$
L_{1} \backslash L_{2}=\left\{x \in \Sigma^{*}: x \in L_{1} \text { and } x \notin L_{2}\right\}
$$

You may wish to use results from the textbook (e.g., pages 46 and 85). (My solution is one sentence long.)
[2] b. Let k be a fixed positive integer. Define $L_{k}=\left\{0^{k n} 1^{k m}: n, m \geq 0\right\}$. Is L_{k} regular? Briefly explain why or why not.
[6] 2. Let R be the regular expression $\left(\left(1^{*} 01\right) \cup(00)\right)^{*} 10^{*}\left(\left(0^{*} 01\right) \cup \epsilon\right)$. Let $L(R)$ be the language that it generates.

The following are true/false questions, and you do not need to justify your answers.
[2] a. Is $010 \in L(R)$?
[2] b. Is $10100 \in L(R)$?
[2] c. Is $001001 \in L(R)$?
[8] 3. Let $\Sigma=\{a, b\}$ and $L=\left\{w \in \Sigma^{*}: w\right.$ is a palindrome $\}$. (Recall that a palindrome is any string x that equals the reverse of itself.) In this question we will prove that L is non-regular using the Pumping Lemma.
[1] a. State the negation of the pumping condition.
[3] b. For every integer p, define a string w (of length at least p) that is a palindrome over Σ and for which the first p characters are identical. (But w should not be of the form a^{*} or b^{*}).
[3] c. Show that for any decomposition of your palindrome w into $x y z$ where $|y|>0$ and $|x y| \leq p$, that $x y^{2} z$ is no longer a palindrome.
[1] d. Conclude that L is not regular.
[8] 4. Let $\Sigma=\{a, b, c, d\}$ and $L=\left\{a^{7} b^{n} c^{3} d^{5 n}: n \geq 0\right\}$. Prove that L is non-regular using the Pumping Lemma.
[15] 5. Let $\Sigma=\{0,1,2\}$. Consider the language

$$
F=\left\{01^{n} 2^{n}: n \geq 1\right\} \cup\left\{0^{k} w: k \neq 1, w \in\{1,2\}^{*}\right\} .
$$

The purpose of this question is to prove that F is non-regular, but it satisfies the pumping condition. In other words, the situation looks like this figure:

[7] a. Show that F is not regular. You may use the pumping lemma and the fact that the class of regular languages is closed under unions, concatenations and complements. You may assume that

$$
\left\{01^{n} 2^{n}: n \geq 0\right\}
$$

is non-regular since we have shown something very similar in class.
[7] b. Show that F satisfies the pumping condition. In other words, find an appropriate integer p and demonstrate that for all strings $w \in F$ with $|w| \geq p$, we can decompose $w=x y z$ (where $x, y, z \in\{0,1,2\}^{*}$) such that

- $|y|>0$,
- $|x y| \leq p$, and
- $x y^{n} z \in F$ for all $n \geq 0$.
[1] c. Explain why this does not contradict the pumping lemma.
[10] 6. Let $\Sigma=\{a, b\}$. Let

$$
L=\left\{x \in \Sigma^{*}: x \text { is a palindrome and }|x| \text { is a multiple of } 3\right\} .
$$

[5] a. Give a PDA that recognizes L.
[5] b. Give a CFG that generates L.

[2] 7. OPTIONAL BONUS QUESTION

Professor Dumas thinks he understands the pumping lemma. His interpretation is that "a finite automaton has a limited amount of complexity, so if it accepts a very long string, that string must have some repeated structure inside". To formalize his interpretation, he proposes the following conjecture.

Conjecture 1. Let L be regular language. Suppose there is a DFA with p states that accepts L. Then for every string $w \in L$ with $|w| \geq p$,

$$
\begin{equation*}
\exists x, y, z \in \Sigma^{*} \text { and } i \geq 2 \quad \text { such that } \quad w=x y^{i} z \text { and } y \neq \epsilon . \tag{1}
\end{equation*}
$$

Professor Dumas' conjecture is false. Let's try to understand why.
Let $\Sigma=\{a, b, c\}$. Find a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ and a string w that is accepted by M, and has $|w|>20|Q|$, but does not satisfy (1).

