CPSC 531H: Machine Learning Theory Assignment #2, due Wednesday October 10th, email to Chris

- [5] 1. SSBD Exercise 4.1.
- [10] 2. Modifying the No-Free-Lunch Theorem. Suppose that $m \leq |\mathcal{X}|/k$. Fix any learning algorithm. Let h_S be the hypothesis output by the algorithm on input S. Prove that

$$\Pr_S\left[L_{\mathcal{D},f}(h_S) \ge \frac{1}{2}\left(1 - \frac{3}{k}\right)\right] \ge \frac{1}{2k}.$$

[10] 3. VC-dimension practice.

- [4] a. SSBD Exercise 6.2 part 1 only.
- [6] b. SSBD Exercise 6.5.
- [8] 4. Improving the Fundamental Theorem. The proof of the Fundamental Theorem (either SSBD Theorem 6.7, or the in-class version) proves that

$$m_{\mathcal{H}}(\epsilon, \delta) \leq c \frac{d \log(d/\delta \epsilon)}{(\delta \epsilon)^2}$$

for some constant c, where $d = \text{VCdim}(\mathcal{H})$. This sample complexity bound is quite poor, in that it depends polynomially on $1/\delta$. Chapter 28 of the textbook improves this to

$$m_{\mathcal{H}}(\epsilon, \delta) \leq O\Big(\frac{d\log(d/\epsilon) + \log(1/\delta)}{\epsilon^2}\Big),$$

but this analysis uses more sophisticated machinery (Rademacher complexity). In this question, we will use more basic ideas to prove a bound of intermediate quality

$$m_{\mathcal{H}}(\epsilon, \delta) \leq O\Big(\frac{d\log(d/\epsilon)\log(1/\delta)}{\epsilon^2}\Big).$$
 (1)

[2] a. Define $m_{\rm FT}$ by plugging $\delta = 1/2$ to the Fundamental Theorem to get

$$m_{\rm FT} := 4cd \log(2d/\epsilon)/\epsilon^2$$

Define $k = \lg(1/\alpha)$. Draw independent training sequences S_1, \ldots, S_k , each of which consists of $m_{\rm FT}$ i.i.d. samples. Let \mathcal{E} be the event that at least one of the training sequences is an ϵ -representative sample. Prove that $\Pr[\mathcal{E}] \ge 1 - \alpha$.

[2] b. Let h_i be the output of ERM on training sequence S_i . Draw a validation sequence V which consists of m_v i.i.d. samples. Let $L_V(h_i)$ denote the error of h_i on the validation sequence. Let \mathcal{F} be the event that

$$|L_V(h_i) - L_{\mathcal{D}}(h_i)| \leq \epsilon \qquad \forall i \leq k.$$

Choose the number m_v of validation samples to ensure that $\Pr[\mathcal{F}] \ge 1 - \alpha$.

[3] c. Our learning algorithm will pick the hypothesis with minimum validation error, i.e., $\hat{i} = \operatorname{argmin}_{1 \le i \le k} L_V(h_i)$. Let $h^* \in \operatorname{argmin}_{h \in \mathcal{H}} L_{\mathcal{D}}(h)$. Prove that

$$\Pr\left[L_{\mathcal{D}}(h_{\hat{i}}) \leq L_{\mathcal{D}}(h^*) + 4\epsilon\right] \geq 1 - 2\alpha.$$

- [1] d. Conclude that the sample complexity bound (1) holds.
- [6] 5. Small-step Perceptron. SSBD Exercise 9.5.
- [3] 6. OPTIONAL BONUS! VC-dimension of unions. SSBD Exercise 6.11 (parts 1 & 2). Remarks.
 - I'm not sure that the constant in part 1 are completely correct. So let's just make the goal of part 1 to prove the bound $O(d \log d + \log r)$.
 - After solving part 2, can you see how to improve the bound of part 1 to $O(d + \log r)$?