
Machine Learning Theory

Lecture 4

Nicholas Harvey

April 28, 2020

1 Basic Probability

One of the first concentration bounds that you learn in probability theory is Markov’s inequality.
It bounds the right-tail of a random variable, using very few assumptions.

Theorem 1.1 (Markov’s Inequality). Let Y be a real-valued random variable that assumes only
nonnegative values. Then, for all a > 0,

Pr [Y ≥ a ] ≤ E [Y ]

a
.

References. Wikipedia, [1, Equation B.3], Grimmett-Stirzaker Lemma 7.2.7, Durrett Theorem 1.6.4.

1.1 Unions and Intersections

Another useful tool is the “union bound”. We typically use this to show that no “bad events”
should happen.

Fact 1.2 (Union Bound). Let E1 and E2 be arbitrary events, not necessarily independent. Then
Pr [ E1 ∪ E2 ] ≤ Pr [ E1 ] + Pr [ E2 ].

Often we use it in the reverse direction, to show all “good events” should happen.

Fact 1.3 (Reverse Union Bound). Let F1 and F2 be arbitrary events, not necessarily independent.
Suppose that Pr [F1 ] ≥ 1− p1 and Pr [F2 ] ≥ 1− p2. Then Pr [F1 ∩ F2 ] ≥ 1− (p1 + p2).

Proof. Let Ei = Fi. Then Pr [ Ei ] ≤ pi. Then

Pr [F1 ∩ F2 ] = 1− Pr
[
F1 ∩ F2

]
(complementary event)

= 1− Pr
[
F1 ∪ F2

]
(De Morgan’s law)

= 1− Pr [ E1 ∪ E2 ] (definition of Ei)
≥ 1− (p1 + p2) (union bound).
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Another useful trick concerns the union of independent events. If F1 and F2 are each likely to
happen, and independent, then their union is even more likely to happen.

Fact 1.4. Let F1 and F2 be independent events. Suppose that Pr [F1 ] ≥ 1 − p1 and Pr [F2 ] ≥
1− p2. Then Pr [F1 ∪ F2 ] ≥ 1− p1p2.

Proof. Observe that Pr
[
Fi
]
≤ pi. So

Pr [F1 ∪ F2 ] = 1− Pr
[
F1 ∩ F2

]
(De Morgan’s law)

= 1− Pr
[
F1

]
Pr
[
F2

]
(independence)

≥ 1− p1p2.

2 Hoeffding’s Inequality

Theorem 2.1. Let X1, ..., Xn be independent random variables such that Xi always lies in the
interval [0, 1]. Define X =

∑n
i=1Xi. Then

Pr [ |X − E [X ]| ≥ t ] ≤ 2 exp(−2t2/n) ∀t ≥ 0.

References. Wikipedia, [1, Lemma B.6].

We will prove a weaker result where exponent is decreased from 2 to 1/2.

Simplifications. First of all, we will “center” the random variables, which cleans up the in-
equality by eliminating the expectation. Define X̂i = Xi − E [Xi ] and X̂ =

∑n
i=1 X̂i. Note that1

X̂i ∈ [−1, 1]. Our main argument is to prove that

Pr
[
X̂ ≥ t

]
≤ exp(−t2/2n). (2.1)

The same argument also applies to −X̂, so we get that

Pr
[
−X̂ ≥ t

]
= Pr

[
X̂ ≤ −t

]
≤ exp(−t2/2n).

Combining them with a union bound, we get

Pr [ |X − E [X ]| ≥ t ] = Pr
[
|X̂| ≥ t

]
≤ Pr

[
X̂ ≥ t

]
+ Pr

[
−X̂ ≥ t

]
≤ 2 exp(−t2/2n).

This proves the theorem (with the weaker exponent).

1This step is where the argument is not careful enough to obtain the optimal exponent: X̂i is actually supported
on an interval of length 1, although our argument only assumes that it is supported on an interval of length 2.
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Proof (of (2.1)). The Hoeffding inequality crucially relies on mutual independence of the X̂i ran-
dom variables. How can we exploit independence in the proof? What special properties to inde-
pendent random variables have? One basic property is that

E [A ·B ] = E [A ] · E [B ] (2.2)

for any independent random variables A and B.

Key Idea #1: The Hoeffding inequality has nothing to do with products of random variables,
it is about sums of random variables. So one trick we could try is to convert sums into products
using the exponential function. Fix some parameter λ > 0 whose value we will choose later. Define

Yi = exp(λX̂i)

Y = exp(λX̂) = exp
(
λ

n∑
i=1

X̂i

)
=

n∏
i=1

exp(λX̂i) =

n∏
i=1

Yi.

It is easy to check that, since {X1, ..., Xn} is mutually independent, so is
{
X̂1, ..., X̂n

}
and {Y1, ..., Yn}.

Therefore, by (2.2),

E [Y ] =

n∏
i=1

E [Yi ] . (2.3)

So far this all seems quite good. We want to prove that X̂ is small, which is equivalent to
proving Y is small. Using (2.3), we can do this by showing that the E [Yi ] terms are small. Doing
so involves an extremely useful tool.

Key Idea #2: The second main idea is a clever trick to bound terms of the form E [ exp(λA) ],
where A is a mean-zero random variable. We discuss this idea in more detail in the next subsection.
We will use2 Claim 2.2 to show

E [Yi ] = E
[

exp(λX̂i)
]
≤ exp(λ2/2). (2.4)

Thus, combining this with (2.3),

E [Y ] ≤
n∏
i=1

exp(λ2/2) = exp(λ2n/2). (2.5)

Now we are ready to prove Hoeffding’s inequality:

Pr
[
X̂ ≥ t

]
= Pr

[
exp(λX̂) ≥ exp

(
λt
) ]

(by monotonicity of ex)

≤
E
[

exp(λX̂)
]

exp(λt)
(by Markov’s inequality (Theorem 1.1))

= E [Y ] · exp(−λt)
≤ exp(λ2n/2− λt) (by (2.5))

= exp(−t2/2n),

by optimizing to get λ = t/n.
2If we were more careful here and instead used Lemma 2.4, we could improve the constant in the exponent in

(2.4) from 1/2 to 1/8. This would improve the constant in the exponent in (2.1) from 1/2 to 2.
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2.1 Exponentiated Mean-Zero RVs

The second main idea of Hoeffding’s inequality is the following claim.

Claim 2.2. Let A be a random variable such that |A| ≤ 1 with probability 1 and E [A ] = 0.
Then for any λ > 0, we have E [ exp(λA) ] ≤ exp(λ2/2).

Intuitively, the expectation should be maximized by the random variable A that is uniform on
{−1,+1}. In this case,

E [ exp(λA) ] =
1

2
eλ − 1

2
e−λ ≤ eλ

2/2.

This inequality is a nice bound on the hyperbolic cosine function (Claim 2.3). The full proof of
Claim 2.2 basically reduces to the case of A ∈ {−1, 1} using convexity of ex.

Proof. Define p = (1 +A)/2 and q = (1−A)/2. Observe that p, q ≥ 0, p+ q = 1, and p− q = A.
By convexity,

exp(λA) = exp
(
λ(p− q)

)
= exp

(
λp+ (−λ)q

)
≤ p · exp(λ) + q · exp(−λ) =

eλ + e−λ

2
+
A

2
(eλ− e−λ).

Thus,

E [ exp(λA) ] ≤ E

[
eλ + e−λ

2
+
A

2
(eλ − e−λ)

]
=

eλ + e−λ

2
,

since E [A ] = 0. This last quantity is bounded by the following technical claim.

Claim 2.3 (Approximation of Cosh). For any real x, we have (ex + e−x)/2 ≤ exp(x2/2).

References. A more general result can be found in Alon & Spencer Lemma A.1.5.

Proof. First observe that the product of all the even numbers at most 2n does not exceed the
product of all numbers at most 2n. In symbols,

2n(n!) =
n∏
i=1

(2i) ≤
2n∏
i=1

i = (2n)!

Now to bound (ex + e−x)/2, we write it as a Taylor series and observe that the odd terms cancel.

ex + e−x

2
=
∑
n≥0

xn

n!
+
∑
n≥0

(−x)n

n!
=
∑
n≥0

x2n

(2n)!
≤
∑
n≥0

x2n

2n(n!)
=
∑
n≥0

(x2/2)n

n!
= exp(x2/2).

A common scenario is that A is mean-zero, but lies in an “asymmetric” interval [a, b], where
a < 0 < b. A slightly tighter version of these MGF bounds can be derived for this scenario.

Lemma 2.4 (Hoeffding’s Lemma). Let A be a random variable such that A ∈ [a, b] with probability
1 and E [A ] = 0. Then for any λ > 0, we have E [ exp(λA) ] ≤ exp

(
λ2(b− a)2/8

)
.

References. Wikipedia, [1, Lemma B.7].

The proof uses ideas similar to the proof of Claim 2.2, except we cannot use Claim 2.3 and
must instead use an ad-hoc calculus argument.
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