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1 Basic Perceptron

Algorithm 1 Perceptron algorithm.

1: procedure Perceptron((x1, y1), ..., (xm, ym))
2: Initialize w0 = 0 and t = 0
3: repeat
4: if there exists i with yi 6= sign(〈 wt, xi 〉) then
5: wt+1 ← wt + yixi
6: t← t+ 1
7: end if
8: until no such i exists
9: return wt

Let’s define margin(w) to be mini|〈 w, xi 〉|/ ‖w‖. Note that 〈 w, xi 〉 is the length of the
orthogonal projection of xi onto the subspace { x : 〈 w, x 〉 = 0 }. Alternatively, it is the cosine of
the angle between w and xi.

Theorem 1.1. Let w∗ be a consistent linear classifier with ‖w∗‖ = 1 such that γ := margin(w∗)
is maximized. Then Algorithm 1 terminates after at most 1/γ2 iterations.

This is a nice result because it doesn’t depend on the dimensionality of the data, just on the
geometric margin properties of the data.

Why are the Perceptron updates a good idea? Suppose yi = 1 but 〈 wt, xi 〉 < 0. Then

〈 wt+1, xi 〉 = 〈 wt + xi, xi 〉 = 〈 wt, xi 〉+ 〈 xi, xi 〉︸ ︷︷ ︸
=1

So the inner product between the solution and this example improves by 1, which seems good.

The formal analysis of the algorithm argues that wt gets “closer” to w∗.

Claim 1.2. 〈 wt+1, w
∗ 〉 ≥ 〈 wt, w∗ 〉+ γ.
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Proof. Suppose yi = 1 but 〈 wt, xi 〉 < 0. Then

〈 wt+1, w
∗ 〉 = 〈 wt + xi, w

∗ 〉 = 〈 wt, w∗ 〉+ 〈 xi, w∗ 〉︸ ︷︷ ︸
≥γ

.

The argument is similar if yi = −1. �

But this does not really show that wt+1 gets closer to w∗. wt+1 could be “cheating” by just
increasing its norm. The next claim rules out excessive cheating.

Claim 1.3. ‖wt+1‖2 ≤ ‖wt‖2 + 1.

Proof. Again, suppose yi = 1 but 〈 wt, xi 〉 < 0. Then

〈 wt+1, wt+1 〉 = 〈 wt + xi, wt + xi 〉 = 〈 wt, wt 〉+ 2 〈 wt, xi 〉︸ ︷︷ ︸
<0

+ 〈 xi, xi 〉︸ ︷︷ ︸
=1

≤ 〈 wt, wt 〉+ 1.

�

Proof (of Theorem 1.1). By induction, Claim 1.2 gives that 〈 wt, w∗ 〉 ≥ t · γ. By induction,
Claim 1.3 gives that ‖wt‖ ≤

√
t. How can we combine these two? How can we relate inner

products and norms? Cauchy-Schwarz of course.

t · γ ≤ 〈 wt, w∗ 〉 ≤ ‖wt‖ ‖w∗‖ ≤
√
t

=⇒
√
t ≤ 1/γ

=⇒ t ≤ 1/γ2.

�

2 Margin Perceptron

The analysis of Algorithm 1 is elegant, but unsatisfying in one way. The hypothesis of the theorem is
that there is a hypothesis with large margin. The hypothesis output by the algorithm is guaranteed
to correctly classify all points, but there are no guarantees about its margin.

It turns out that we can modify the algorithm in a simple way so that we can analyze the
margin too. See Algorithm 2. Roughly, any point that has small margin with respect to the
current hypothesis is treated the same as a misclassified point.

Theorem 2.1. Suppose there is a hypothesis w∗ with margin at least γ. Then Algorithm 2
outputs a classifier with margin at least γ/3 after at most 3/γ2 iterations.

As before, we may assume that ‖w∗‖ = 1.

Claim 2.2. ‖wt+1‖2 ≤ ‖wt‖2 + 3.

Proof. Again assume yi = 1. As before,

‖wt+1‖2 = ‖wt‖2 + 2〈 wt, xi 〉+ ‖xi‖2

Now, either xi was a misclassification, in which case 〈wt, xi 〉 < 0, or it had poor margin, in which
case 〈 wt, xi 〉 ≤ 1. In either case, we have ‖wt+1‖2 ≤ ‖wt‖2 + 3. �
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Algorithm 2 The Margin-Perceptron algorithm.

1: procedure MarginPerceptron((x1, y1), ..., (xm, ym))
2: Initialize w1 = 0 and t = 1
3: repeat
4: Find any i with

(Misclassification) yi 6= sign(〈 wt, xi 〉)
(Poor margin) |〈 wt, xi 〉| ≤ 1

5: if such an i exists then
6: wt+1 ← wt + yixi
7: t← t+ 1
8: end if
9: until no such i exists

10: return wt

Thus, by induction, the cumulative increase in the norm of wt is

‖wt‖2 ≤ 3t =⇒ ‖wt‖ ≤
√

3t.

Proof (of Theorem 2.1).

Number of iterations. Claim 1.2 holds without change so we have 〈 wt, w∗ 〉 ≥ t · γ, as in
Theorem 1.1. The bound on the number of iterations is similar:

t · γ ≤ 〈 wt, w∗ 〉 ≤ ‖wt‖ ‖w∗‖ ≤
√

3t

=⇒
√
t ≤

√
3/γ

=⇒ t ≤ 3/γ2.

Margin. The output classifier w has |〈 w, xi 〉| > 1 for each i. So

margin(w) = min
i

|〈 w, xi 〉|
‖w‖

>
1

‖w‖
≥ 1√

3t
≥ 1√

3 · (3/γ2)
= γ/3.

�
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