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1 The Fundamental Theorem of Statistical Learning

Theorem 1.1. Let H be a hypothesis class that can be infinite, but has VCdim(H) = d. Suppose
m is sufficiently large as a function of d, ε and δ. If the training data S consists of m i.i.d. samples
from D, then

PrS [ |LS(h)− LD(h)| ≤ ε ∀h ∈ H ] ≥ 1− δ.

This is probably the most difficult theorem that we will do, at least in terms of probability
theory. It uses several tricks. For people who work in high-dimensional probability, many of these
tricks are standard. But many of you may be seeing them for the first time. A great place at UBC
to learn these and other techniques is Yaniv Plan’s graduate probability class (MATH 608D).

Tricks:

1. LetA1, A2 be random variables (not independent). Then max {E [A1 ] ,E [A2 ]} ≤ E [ max {A1, A2} ].
More generally, max {E [A1 ] , ...,E [An ]} ≤ E [ max {A1, ..., An} ].

This is a special case of Jensen’s inequality: f(E [X ]) ≤ E [ f(X) ] for any random vector
X ∈ Rn and any convex function f : Rn → R.

2. Switching back and forth between probability and expectation as convenient. Some things
are more convenient with probabilities (Hoeffding). Other things are more convenient with
expectations (like the previous trick). Specifically:

Fact 1.2. Suppose Z is a non-negative random variable. If E [Z ] ≤ εδ then Pr [Z ≥ ε ] ≤ δ.

Fact 1.3. Suppose Z is a random variable that never exceeds 1. If Pr [Z ≥ α ] ≤ α then
E [Z ] ≤ 2α.

3. Symmetrization. This a bit hard to explain up front, but you will see it in action below.

Proof. To keep things simple, let’s drop the absolute value. We want to show that:

PrS

[
max
h∈H

(
LS(h)− LD(h)

)
> ε

]
≤ δ.
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Using a notational trick, let’s rewrite that maximum as

max
h∈H

Ex∼D
[
LS(h)− L{x}(h)

]
.

All we have done here is rewrite the true loss LD(h) as Ex∼D
[
L{x}(h)

]
, where x is the test point

(independent from S). Now we can employ Trick 1: for any fixed S,

max
h∈H

Ex∼D
[
LS(h)− L{x}(h)

]
≤ Ex∼D

[
max
h∈H

(
LS(h)− L{x}(h)

) ]
.

Thus, reintroducing the probability with respect to S:

PrS

[
max
h∈H

Ex∼D
[
LS(h)− L{x}(h)

]
> ε

]
≤ PrS

Ex

[
max
h∈H

(
LS(h)− L{x}(h)

) ]
︸ ︷︷ ︸

Z

> ε

 .
Here comes Trick 2. If we took expectation over S rather than probability over S, then we

would have a joint expectation with respect to S and x, which seems convenient. Fact 1.2 allows
us to accomplish this. So our new goal is to prove

ES,x

[
max
h∈H

(
LS(h)− L{x}(h)

) ]
≤ εδ.

How to analyze maxh

(
LS(h)− L{x}(h)

)
? In an earlier lecture we have seen how this can be done

with a Hoeffding bound and union bound.

Trouble #1. In order to carry out that plan, we want to prove an exponentially small tail bound
on LS(h) − L{x}(h) using Hoeffding’s inequality. Fortunately LS(h) is very concentrated because
it’s an average of m independent samples. Unfortunately L{x}(h) is not concentrated because x is
just a single sample. For example, it could be 0 or 1 each with probability 1/2.

Fix #1. An easy way to make L{x}(h) more concentrated is to use more test points. Simply
replace x with another set S′ of m i.i.d. samples, and replace L{x}(h) with LS′(h). So now our goal
is to show

ES,S′

[
max
h∈H

(
LS(h)− LS′(h)

) ]
≤ εδ. (1.1)

Main Idea of Proof. Here is where we can use the VC-dimension of H. Notice that h is only
going to be evaluated on the points S ∪ S′. So instead of taking the max over all hypotheses in H,
it seems we can just consider all labelings in HS∪S′ . This is a good idea, but actually carrying it
out requires some care.

For example, when doing a union bound, the index set of the union bound is typically not
random! One could condition on an event so that the index set becomes fixed, but then one must
ensure that the conditional distribution still allows the Hoeffding bound to be used.

A natural thing to try would be to condition on the event S ∪ S′ = C, for an arbitrary set C,
because then we only need to consider hypotheses in HC . So it would suffice to show

ES,S′

[
max
h∈HC

(
LS(h)− LS′(h)

)
| S ∪ S′ = C

]
≤ εδ.
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Trouble #2. Unfortunately, after conditioning on S∪S′ = C, the distribution on S and S′ is quite
messy: the samples are no longer i.i.d., so Hoeffding cannot be applied. (For example, if you drew
S and S′ by sampling independently from C, then they would be unlikely to satisfy S ∪ S′ = C.)
We need a new approach: how can we condition on an event so that S∪S′ = C but the conditional
distribution involves independent samples.

Fix #2. (This is basically Trick 3, symmetrization.) Here is a clever idea: suppose that the
event ensures that each point in C belongs to one of S or S′ but does not reveal which it came
from. Formally, suppose that the training points in S are (x1, ..., xm), and the test points in S′ are
(x′1, ..., x

′
m). Then we can condition on the event

EC :=
m∧
i=1

{
xi, x

′
i

}
=
{
ci, c

′
i

}
for any points C = {c1, c′1} , ..., {cm, c′m}. This event has some nice properties. Importantly, it
does not determine whether xi = ci or xi = c′i (assuming ci 6= c′i). Furthermore, since S and S′

are independent, the (conditional) probability that xi = ci is 1/2. Lastly, the events xi = ci and
xj = cj are independent for i 6= j. Thus, we are in a good position to apply a Hoeffding bound.

Using the definition of training error, we have

LS(h)− LS′(h) =
1

m

m∑
i=1

(
1h(xi) 6=f(xi) −

m∑
i=1

1h(x′
i)6=f(x′

i)

)
. (1.2)

Then determining whether

[
xi
x′i

]
=

[
ci
c′i

]
or

[
xi
x′i

]
=

[
c′i
ci

]
just determines the sign of the ith summand

in (1.2). More specifically let σi = +1 if xi = ci, and otherwise σi = −1. Let

Xi = σi

(
1h(ci)6=f(ci) − 1h(c′i)6=f(c′i)

)
X =

m∑
i=1

Xi/m.

The main consequence of this definition is that

X = LS(h)− LS′(h)

Furthermore, the Xi are independent (conditional on EC), and have zero mean (again, conditional
on EC). Thus, by a Hoeffding bound,

PrS,S′ [LS(h)− LS′(h) > α | EC ] = Pr [X > α | EC ] ≤ exp(−α2m/2).

If the number of samples m is at least ln(|HC |/α)/α2 and α = εδ/2, a union bound gives that

PrS,S′

[
max
h∈HC

(
LS(h)− LS′(h)

)
> α | EC

]
≤

∑
h∈HC

PrS,S′ [LS(h)− LS′(h) > α | EC ] ≤ α.
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Thus,

ES,S′

[
max
h∈H

(
LS(h)− LS′(h)

) ]
=
∑
C

Pr [ EC ] · ES,S′

[
max
h∈H

(
LS(h)− LS′(h)

)
| EC

]
=
∑
C

Pr [ EC ] · ES,S′

[
max
h∈HC

(
LS(h)− LS′(h)

)
| EC

]
≤
∑
C

Pr [ EC ] · (2α) (by Fact 1.3)

= εδ,

by definition of α. This proves (1.1).

One remaining detail is that we haven’t fully determined the number of samples. Observe that
|C| ≤ 2m. By the Sauer-Shelah lemma, |HC | ≤ cmd for some constant c. Thus it suffices to have
m ≥ d ln(cm/α)/α2. This is satisfied by m ≥ cd log(d/α)/α2, for some constant c. �
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