
Machine Learning Theory

Lecture 23: Boosting

Nicholas Harvey

November 29, 2018

“None of these things is any good on its own” my grandmother said. “It’s only when
you put them all together that they begin to make a little sense.”

“The Witches”, Roald Dahl

1 Motivation

Recall the definition of PAC-learnability.

Definition 1.1. H is PAC-learnable if there exists an algorithm A and a function m(ε, δ) such
that, for every distribution D, for every ε > 0, and for every δ > 0, if A is given m(ε, δ) i.i.d. samples
S from D, then it outputs a hypothesis hS such that

PrS [LD(hS) ≤ ε] ≥ 1− δ.

This condition involves three universal quantifiers, so may be quite difficult to satisfy!

Interestingly, the ∀D quantifier turns out to be the most important one. We have shown in
Assignment 2, Question 4, that the ∀δ quantifier can be satisfied for free: as long as Definition 1.1
holds with δ fixed at 1/2, it is possible to “amplify” the probability of success using validation.

The ∀ε quantifier can (in some sense) be satisfied “for free”, using the technique of Boosting.
That is, if Definition 1.1 holds for ε bounded away from 1/2, then Boosting shows that a “majority
vote” of several classifiers from H can achieve arbitrarily small ε. However H is not necessarily
closed under taking majority votes, so the hypothesis produced by Boosting might not belong to
H.

Weak vs Strong Learnability. Let us now introduce some definitions to more precise the goal
of Boosting.

• A γ-weak learner with sample complexity m(δ) is an efficient algorithm A that, given δ
and any distribution D over X , draws m(δ) samples from D then returns a hypothesis h ∈ H
satisfying `01D (h) ≤ 1/2− γ with probability at least 1− δ.

1

• A strong learner with sample complexity m(ε, δ) is an efficient algorithm A∗ that, given ε,
δ and any distribution D over X , draws m(ε, δ) samples from D then returns a hypothesis
h ∈ H satisfying `01D (h) ≤ ε with probability at least 1− δ.

Let H(T) be set of hypotheses that are the majority vote of T classifiers in H. We will show
that, given oracle access to a weak learner A, Boosting can:

• Produce a hypothesis h∗ ∈ H(T) with training error that tends to 0 as T increases.

• Produce a hypothesis h∗ ∈ H(T) with test error that tends to 0 as T increases, and if the
number of samples is sufficiently large as a function of T . Thus, Boosting gives a strong learner
for
⋃
T>0H(T). (This argument is a bit convoluted as it requires bounding the VC-dimension

of H(T) — see Section 2.1.)

The Boosting Idea. First draw a sufficiently large sample sequence

S =
(
(X1, Y1), ..., (Xn, Yn)

)
i.i.d. from D. Recall that the training error is defined as the expected loss of the uniform distribution
over S.

The main idea of boosting is to repeatedly apply the weak learner to many different distributions
over the sample S, generating many hypotheses h1, ..., hT . The final classifier h∗ will be the majority
vote over these hypotheses. The conclusion will be that h∗ has low error with respect to (the
uniform distribution over) the sample, i.e., for any desired ε̂ > 0, we can achieve `01S (h∗) ≤ ε̂ if T is
sufficiently large as a function of ε̂.

The non-obvious idea is how to create these distributions. Somewhat counterintuitively, Boost-
ing will

• decrease the probability for samples that are classified correctly, because the existing hypoth-
esis already does a good job.

• increase the probability for samples that are classified incorrectly, in order to incentivize the
next hypothesis to classify it correctly.

This perhaps makes sense at an informal level, but implementing it formally seems technically
daunting. Fortunately, we do not need to reinvent the wheel: we have already seen a power-
ful framework for reweighting objects based on past performance, namely Randomized Weighted
Majority.

RWM for Optimization. Our discussion of RWM was motivated by the scenario of prediction
with expert advice. The RWM machinery is actually very powerful, and can be used to solve all
sorts of constrained optimization problems. To do so, there are two main tasks:

• Determine the experts. Intuitively, the “experts” correspond to some “constraints” that
we wish to satisfy. In the Boosting context, the experts are the samples, each of which imposes
a contraint of being correctly classified. RWM will maintain a distribution over the samples
indicating the “importance” of future hypotheses correctly classifying each sample.

2

• Determine the adversarial costs. Implement an “oracle” that knows the current distri-
bution and behaves in an adversarial way to maximize the algorithm’s cost.

In the Boosting context, we wish to decrease the probability for samples that are correctly
classified by the current hypothesis hi. In the RWM framework, an expert’s probability is
decreased if it has large cost. So a sample should have large cost if it is classified correctly.
The adversary’s goal is to maximize the algorithm’s expected cost, so the adversary should
choose hi to classify many samples correctly (according to distribution xi). This can be
accomplished by the weak learner.

2 Formal discussion

Each “expert” corresponds to a sample in S. (There are n experts and n samples.) RWM maintains
a distribution xi over the experts, which is corresponds to a distribution over the samples. Given
such a distribution xi, the “oracle” will use the weak learner to produce a hypothesis hi satisfying
`01xi (hi) ≤ 1/2− γ. This hypothesis determines the costs incurred by each expert.

Recall that RWM increases the weight of each expert that had low cost. We want to increase
the probability (in the distribution xi+1) for samples incorrectly classified by hi, so we (counterin-
tuitively)

• give cost 0 to the samples that are classified incorrectly.

• give cost 1 to the samples that are classified correctly.

In other words, we will define the cost vector ci ∈ {0, 1}n by

ci,j = 1hi(Xj)=Yj = 1− `01(hi, (Xj , Yj))

=⇒ cTi xi =
n∑
i=1

xi,j
(
1− `01(hi, (Xj , Yj))

)
= 1− `01xi (hi) ≥ 1/2 + γ,

since the weak learner guarantees `01xi (hi) ≤ 1/2− γ. Thus the total cost of the RWM algorithm is

A :=
T∑
i=1

cTi xi ≥ (1/2 + γ)T.

Number of misclassified samples. Now our main goal is to analyze the number of misclassified
samples. Observe that the jth sample is misclassified by h∗ if it is misclassified by a majority of
h1, ..., hT (due to the definition of h∗). In notation,

h∗(Xj) 6= Yj =⇒ |{ i : hi(Xj) = Yj }| ≤ T/2.

However, by the definition of the costs, we have

T∑
i=1

ci,j = |{ i : hi(Xj) = Yj }|. (2.1)

3

So we would like to bound the number of experts j whose total cost
∑T

i=1 ci,j ≤ T/2. This can be
done using the result of Assignment 4, Question 1.

Lemma 2.1. Suppose the RWM algorithm is executed with parameters η and ε, where ε =
1− e−η ≤ 1/2. At time T , the number of experts with total cost at most C is at most

n exp
(
(ε+ ε2)C − εA

)
.

Applying Lemma 2.1 with C = T/2 and ε = γ, the number of experts with total cost at most
T/2 is at most

n exp
(
(ε+ ε2)C − εA

)
= n exp

(
(γ + γ2)T/2− γ(1/2 + γ)T

)
= n exp

(
− γ2T/2

)
= nε̂,

if we choose the number of iterations to be T := 2 ln(1/ε̂)/γ2.

To conclude, the number of misclassified samples is at most the number of experts of cost at
most T/2, which is at most nε̂. Thus

`01S (h∗) =
1

n
· (# samples incorrectly classified by h∗) ≤ 1

n
(nε̂) = ε̂.

Success probability. Note that this argument required T calls to the weak learner. Our assump-
tion on the weak learner only guarantees that it will succeed with probability at most δ. Let us
choose δ = δ̂/T . Thus, by a union bound, the overall failure probability of the Boosting algorithm
is at most δT = δ̂.

Summary. We have shown that, with black-box access to a γ-weak learner with success prob-
ability δ̂/T , running the Boosting algorithm for 2 ln(1/ε̂)/γ2 iterations produces a hypothesis h∗

with training error `01S (h∗) ≤ ε̂ with probability at least 1 − δ̂. This hypothesis h∗ does not lie in
H, but is a (weighted) majority vote of T hypotheses from H, so h∗ ∈ H(T)

2.1 Test error

So far we have only shown that h∗ has low training error (i.e., error with respect to the uniform
distribution on the sample S). We can also show that h∗ has low test error by a uniform convergence
argument for H(T), the class of hypotheses that are a (weighted) majority vote of hypotheses in H.

Suppose that H(T) satisfies the uniform convergence property with sample complexity m(ε, δ).
We draw a sample S = (X1, Y1), ..., (Xn, Yn) from D with n = m(ε/2, δ). With probability at least
1− δ, we have

|`01S (h)− `01D (h)| ≤ ε ∀h ∈ H(T).

It follows that `01D (h∗) ≤ `01S (h) + ε ≤ 2ε.

To show that H(T) has the uniform convergence property, it suffices to bound its VC-dimension.
It is shown in [1, Lemma 10.3] that VCdim(H(T)) = Õ(T ·VCdim(H)).

4

References

[1] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to
Algorithms. Cambridge University Press, 2014.

5

	Motivation
	Formal discussion
	Test error

