
Machine Learning Theory

Lecture 20: Mirror Descent

Nicholas Harvey

November 21, 2018

In this lecture we will present the Mirror Descent algorithm, which is a common generalization
of Gradient Descent and Randomized Weighted Majority. This will require some preliminary results
in convex analysis.

1 Conjugate Duality

A good reference for the material in this section is [5, Part E].

Definition 1.1. Let f : Rn → R ∪ {∞} be a function. Define f∗ : Rn → R ∪ {∞} by

f∗(y) = sup
x∈Rn

(
yTx− f(x)

)
.

This is the convex conjugate or Legendre-Fenchel transform or Fenchel dual of f .

For each linear functional y, the convex conjugate f∗(y) gives the the greatest amount by which
y exceeds the function f . Alternatively, we can think of f∗(y) as the downward shift needed for
the linear function y to just touch or “support” epi f .

1.1 Examples

Let us consider some simple one-dimensional examples.

Example 1.2. Let f(x) = cx for some c ∈ R. We claim that f∗ = δ{c}, i.e.,

f∗(x) =

{
0 (if x = c)

+∞ (otherwise)
.

This is called the indicator function of {c}.
Note that f is itself a linear functional that obviously supports epi f ; so f∗(c) = 0. Any other

linear functional x 7→ yx− r cannot support epi f for any r (we have supx(yx− cx) =∞ if y 6= c),
so f∗(y) =∞ if y 6= c. Note here that a line (f) is getting mapped to a single point (f∗). �

1

Example 1.3. Let f(x) = |x|. We claim that f∗ = δ[−1,1] (the indicator function of [−1, 1]).

For any y ∈ [−1, 1], the linear functional x 7→ yx supports epi f at the point (0, 0); so f∗(y) = 0.
On the other hand, if y > 1 then the linear functional x 7→ yx − r cannot support epi f for any r
(we have supx(yx− |x|) =∞ for y > 1), so f∗(y) =∞. Similarly for y < −1. �

Example 1.4. Let f(x) = 1
2x

Tx. We claim that f∗ = f .

We have

f∗(y) = sup
x∈Rn

(
yTx− 1

2x
Tx
)
≤ sup

x∈Rn

(
‖y‖2 ‖x‖2 −

1
2 ‖x‖

2
2

)
.

This upper bound is maximized when ‖x‖2 = ‖y‖2, and the inequality is achieved when x = y.
Thus f∗(y) = 1

2y
Ty = f(y), so f = f∗. �

Example 1.5 (Negative entropy). Define f : Rn>0 → R by f(x) =
∑n

i=1 xi lnxi. We saw in our
earlier lectures on convexity that f is convex. We claim that f∗(y) =

∑n
i=1 e

yi−1. By Claim 1.9,
proving the result for n = 1 also establishes the general result.

By definition f∗(y) = supz>0(yz−z ln z). The derivative of yz−z ln z is y− ln z−1. The unique
critical point satisfies z = ey−1 and it is a maximizer. Thus f∗(y) = yey−1− ey−1(y− 1) = ey−1. �

Example 1.6. Let ‖·‖ be a norm on Rn and let Let f(x) = 1
2 ‖x‖

2. Then f∗ = 1
2 ‖x‖

2
∗. �

References. [3, Example 3.27].

1.2 Properties

Claim 1.7 (Young-Fenchel Inequality). For any x, y ∈ Rn,

yTx ≤ f(x) + f∗(y).

Proof.

f∗(y) + f(x) = sup
x′∈Rn

(
yTx′ − f(x′)

)
+ f(x) ≥

(
yTx− f(x)

)
+ f(x) = yTx.

Claim 1.8. f∗ is closed and convex (regardless of whether f is).

Proof. For each x, define gx(y) = yTx − f(x). Note that gx is an affine function of y, so gx is
closed and convex. As f∗ = supx∈Rn gx, Lemma 5.8 implies that f∗ is closed and convex.

Claim 1.9 (Conjugate of Separable Function). Let f : Ra × Rb → R be defined by f(x1, x2) =
f1(x1) + f2(x2). Then f∗(x1, x2) = f∗1 (x1) + f∗2 (x2).

2

Proof. Straight from the definitions, we have

f∗(y1, y2) = sup
(z1,z2)∈Ra×Rb

(
(y1, y2)T(z1, z2)− f(z1, z2)

)
= sup

(z1,z2)∈Ra×Rb

(
yT1 z1 + yT2 z2 − f1(z1)− f2(z2)

)
= sup

z1∈Ra

(
yT1 z1 − f1(z1)

)
+ sup

z2∈Rb

(
yT2 z2 − f2(z2)

)
= f∗1 (y1) + f∗2 (y2).

Claim 1.10. Suppose f is a closed, convex function. Then f∗∗ = f .

References. [2, Proposition 7.1.1], [3, Exercise 3.39].

The following claim shows that vectors x and y achieving inequality in Claim 1.7 are rather
special.

Claim 1.11. Suppose that f is closed and convex. The following are equivalent:

y ∈ ∂f(x) (1.1a)

x ∈ ∂f∗(y) (1.1b)

〈 y, x 〉 = f(x) + f∗(y) (1.1c)

References. See [7, Slide 7-15], [5, Part E, Corollary 1.4.4]. In the differentiable setting, (1.1a)⇐⇒ (1.1c) appears

in [3, pp. 95].

Proof.

(1.1a)⇒(1.1c): Suppose y ∈ ∂f(x). Then f∗(y) = supu
(
〈 y, u 〉 − f(u)

)
= 〈 y, x 〉 − f(x), by the

subgradient inequality.

(1.1c)⇒(1.1b): For any v ∈ Rn, we have

f∗(v) = sup
u

(
〈 v, u 〉 − f(u)

)
≥ 〈 v, x 〉 − f(x)

= 〈 v − y, x 〉 − f(x) + 〈 x, y 〉
= 〈 v − y, x 〉+ f∗(y),

by (1.1c). This shows that x ∈ ∂f∗(y).

(1.1b)⇒(1.1a): Let g = f∗. Then g is closed and convex by Claim 1.8. If x ∈ ∂g(y) then
y ∈ ∂g∗(x), by the implication (1.1a)⇒(1.1c). But g∗ = f by Claim 1.10, so this establishes the
desired result.

3

2 Bregman Divergence

A good reference for the material in this section is [8].

Let X be a closed convex set. Let f : X → R be a continuously-differentiable and convex
function. The first-order approximation of f at x is

f(x) ≈ f(y) + 〈 ∇f(y), x− y 〉.

Since f is convex, the subgradient inequality implies that the left-hand side is at least the right-
hand side. The amount by which the left-hand side exceeds the right-hand side is the Bregman
divergence.

Definition 2.1. The Bregman divergence is defined to be

Df (x, y) = f(x)− f(y)− 〈 ∇f(y), x− y 〉.

2.1 Examples

Example 2.2. Define f : Rn → R by f(x) = ‖x‖22. Then

Df (x, y) = f(x)− f(y)− 〈 ∇f(y), x− y 〉
= ‖x‖22 − ‖y‖

2
2 − 2〈 y, x− y 〉

= ‖x‖22 + ‖y‖22 − 2〈 y, x 〉
= ‖x− y‖22 .

�

Example 2.3 (Negative entropy). Recall that the negative entropy function is f : Rn>0 → R
defined by f(x) =

∑n
i=1 xi lnxi. Then

Df (x, y) = f(x)− f(y)−∇f(y)T(x− y)

=
n∑
i=1

xi lnxi −
n∑
i=1

yi ln yi −
n∑
i=1

(ln yi + 1)(xi − yi)

=
n∑
i=1

xi lnxi −
n∑
i=1

xi ln yi −
n∑
i=1

xi +
n∑
i=1

yi

=
n∑
i=1

xi ln(xi/yi)−
n∑
i=1

xi +
n∑
i=1

yi

= DKL(x ‖ y), (2.1)

the generalized KL-divergence between x and y, which we introduced in Lecture 16. In the case
that

∑n
i=1 xi =

∑n
i=1 yi = 1, this is the ordinary KL divergence (or “relative entropy”) between x

and y. �

Negative entropy will be particularly important to us, so we prove one property of it now.

4

Claim 2.4. Negative entropy is 1-strongly convex with respect to the `1 norm.

To prove this, we require the following theorem.

Theorem 2.5 (Pinsker’s Inequality). For any distributions p, q, we have DKL(p ‖ q) ≥ 1
2 ‖p− q‖

2
1.

References. Wikipedia, Lecture notes of Sanjeev Khudanpur.

Proof (of Claim 2.4). As in Example 2.3, let f(x) =
∑n

i=1 xi lnxi. Then,

f(y) ≥ f(x) + 〈 ∇f(x), y − x 〉+DKL(y ‖ x) (by (2.1))

= f(x) + 〈 ∇f(x), y − x 〉+ 1
2 ‖x− y‖

2
1 (by Theorem 2.5).

There are also some interesting examples involving matrices.

Example 2.6. Let f(X) = tr(X logX). Then Df (X, y) = tr(X logX −X log Y −X + Y). This
is called the von Neumann divergence, or quantum relative entropy. �

Example 2.7. Let f(X) = − log detX. Then Df (X,Y) = tr(XY −1 − I)− log det(XY −1). This
is called the log-det divergence. �

2.2 Properties

Claim 2.8. Df (x, y) is convex in x.

Proof. This is immediate from the definition since f(x) is convex in x and −〈 ∇f(y), x − y 〉 is
linear in x.

Note. Df (x, y) is not generally convex in y. Consider the case f(x) = exp(x) and x = 4. Then

Df (4, 0) = e4 − 5 < 50

Df (4, 1) = e4 − 4e > 43

Df (4, 2) = e4 − 3e2 < 33

As Df (4, 1) >
(
Df (4, 0) +Df (4, 2)

)
/2, Df (x, y) is not convex in y.

Lemma 2.9. Let f be closed, convex and differentiable. Fix any x, y ∈ X . Define x̂ = ∇f(x) and
ŷ = ∇f(y). Then

∇f∗(x̂) = x (2.2)

Df (x, y) = Df∗(ŷ, x̂) (2.3)

References. [8, Eq. (6)].

Proof. By Claim 1.11,

f∗(x̂) = 〈 x̂, x 〉 − f(x), f∗(ŷ) = 〈 ŷ, y 〉 − f(y), and ∇f∗(x̂) = x.

5

https://en.wikipedia.org/wiki/Pinsker%27s_inequality
http://www.clsp.jhu.edu/~sanjeev/520.674/notes/I-divergence-properties.pdf

This proves (2.2). Thus

Df∗(ŷ, x̂) = f∗(ŷ)− f∗(x̂)− 〈 ∇f∗(x̂), ŷ − x̂ 〉
=
(
〈 ∇f(y), y 〉 − f(y)

)
−
(
((((

((〈 ∇f(x), x 〉 − f(x)
)
− 〈 x, ∇f(y)−����∇f(x) 〉

= f(x)− f(y)− 〈 ∇f(y), x− y 〉
= Df (x, y)

This proves (2.3).

Lemma 2.10 (Generalized Pythagoras Identity).

Df (x, y) +Df (z, x)−Df (z, y) =
(
∇f(x)−∇f(y)

)T
(x− z).

Example 2.11. Consider the case of f(x) = ‖x‖22. Applying (5.1) with a = x− z and b = x− y
(so that a− b = y − z), we obtain

‖x− y‖22 + ‖z − x‖22 − ‖z − y‖
2
2 = 2(x− y)T(x− z) =

(
∇f(x)−∇f(y)

)T
(x− z).

�

Proof (of Lemma 2.10).

Df (x, y) +Df (z, x)−Df (z, y)

=
(
��
�f(x) −HHHf(y) − 〈 ∇f(y), x− �y 〉

)
+
(
��
�HHHf(z) −���f(x) − 〈 ∇f(x), z − x 〉

)
−
(
�
��HHHf(z) −HHHf(y) − 〈 ∇f(y), z − �y 〉

)
=
(
∇f(x)−∇f(y)

)T
(x− z)

Claim 2.12. ∇xDf (x, y) = ∇f(x)−∇f(y).

Proof.

∇x
(
f(x)− f(y)− 〈 ∇f(y), x− y 〉

)
= ∇xf(x)−∇x〈 ∇f(y), x 〉 = ∇f(x)−∇f(y)

2.2.1 Projections

Let X ⊆ Rn be a closed, convex set. Assume that f : X → R is a strictly convex function, which
implies that Df (x, y) is strictly convex in x.

Definition 2.13. The projection of y onto X under the Bregman divergence is

Πf
X (y) = argmin

x∈X
Df (x, y).

The minimizer is uniquely determined since Df (x, y) is strictly convex in x.

6

The next claim gives optimality conditions for the Bregman projection, which is analogous to
results that we discussed for Euclidean projections.

Claim 2.14. Suppose that f is differentiable. Fix any y ∈ Rn and let π = Πf
X (y). Then(

∇f(y)−∇f(π)
)T

(w − π) ≤ 0 ∀w ∈ X .

Proof. Since π = argminx∈X Df (x, y), Recall the optimality conditions for minimizing a convex
function over a convex set:

∇xDf (π, y)T(π − w) ≤ 0 ∀w ∈ X .

By Claim 2.12, ∇xDf (π, y) = ∇f(π)−∇f(y), which proves the result.

The following corollary is the main optimality condition we will use for Bregman divergences.
(Compare with [6, Lemma 14.9].)

Corollary 2.15. Fix any y ∈ Rn and let π = Πf
X (y). Then

Df (w, y) ≥ Df (w, π) ∀w ∈ X .

Proof. By Lemma 2.10 and Claim 2.14,

Df (π, y) +Df (w, π)−Df (w, y) =
(
∇f(π)−∇f(y)

)T
(π − w) ≤ 0

for all w ∈ X . Since Df (π, y) ≥ 0, the result follows by rearranging.

3 The Mirror Descent Algorithm

A good reference for the material in this section is [4, Chapter 4].

Mirror descent has several motivations.

• Our preceding analyses of gradient descent assume that the function f is Lipschitz with
respect to the Euclidean norm. What if f is L-Lipschitz with respect to another norm, e.g.,
‖·‖∞? It follows that f is (

√
nL)-Lipschitz with respect to ‖·‖2, but this factor

√
n may be

undesirably large.

• Gradient descent is troubling in that it does not explicitly distinguish between the “primal”
and “dual” vector spaces. By this we mean that the iterates xi are vectors in Rn, whereas
the gradients ∇f(xi) are technically linear functionals on Rn. So, technically, ∇f(xi) lives
in the dual space. We are somewhat justified in conflating the Rn and its dual space, since
they are isomorphic (by the transpose operation). Nevertheless, gradient descent computes a
linear combination of the iterate xi and the gradient ∇f(xi), without calling attention to the
fact that these objects technically lie in different vector spaces.

7

The main idea of Mirror Descent is to explicitly distinguish between the primal and dual spaces,
and to specify a useful bijection between the two of them. The bijection is determined by a mirror
function Φ : Rn → R. A canonical example of Φ is the negative entropy function, which we have
discussed before in our lecture on convex functions.

The bijection between the primal space and the dual space is as follows: a primal point x maps
to the dual point ∇Φ(x). To map back from the dual space to the primal space, we will use the
inverse of the mapping x 7→ ∇Φ(x). (In fact, this inverse mapping is simply y 7→ ∇Φ∗(y), the
gradient of the Fenchel dual of Φ. This is proven in (2.2).)

Mirror descent really only has two main ideas:

• The main idea. Instead of taking gradient steps in the primal space, mirror descent takes
gradient steps in the dual space. The bijection ∇Φ and its inverse ∇Φ∗ are used to map back
and forth between primal points and dual points.

• Ensuring feasibility. The goal is constrained optimization over a convex set X in the primal
space, so a concern is that our gradient step may have produced a point outside of X . The
next main idea is to project that point onto X under the Bregman divergence DΦ, as discussed
in Section 2.2.1.

3.1 The mirror map Φ

In order for this scheme to work out, we need to make some formal assumptions. There is an open
set D ⊆ Rn and the mirror map Φ : D → R.

P1: Φ is strictly convex and differentiable on all of D.

P2: The dual space is all of Rn. That is, { ∇Φ(x) : x ∈ D } = Rn.

P3: The gradient of Φ diverges on the boundary of D. That is, limx→∂D ‖∇(x)‖ = +∞.

Example 3.1. Returning to our negative entropy example, we will take D = Rn>0, the positive
orthant. Recall that ∇Φ(x)j = 1 + lnxj and ∇2Φ(x) = diag(x)−1, so P1 is satisfied. P2 is satisfied
because, for any point y ∈ Rn, we have y = ∇f(x) where xj = eyj−1. (This can also be seen by
(2.2): the inverse of ∇Φ is ∇Φ∗, and Example 1.5 showed that ∇Φ∗(y)j = eyj−1.) P3 is satisfied
because |∇Φ(x)i| = |1 + lnxi| → +∞ as xi ↘ 0. �

Claim 3.2. Suppose that assumption- P1 and P2 hold. Then Φ : D → Rn is a bijection.

Proof. By P1, x 7→ ∇Φ(x) is a well-defined function on D.

By P2, Φ is a surjection.

By P2, for every y ∈ Rn, there exists x ∈ D such that y = ∇Φ(x). By Claim 1.11, x ∈ ∂Φ∗(y).
If there existed any other x′ ∈ ∂Φ∗(y), then Claim 1.11 would imply that y = ∇Φ(x′), which
contradicts Claim 5.7. Thus, Φ∗ is the inverse map of Φ, so Φ is a bijection.

8

3.1.1 The constraint set X

Typically we will optimize over a constraint set X . It must satisfy the following formal assumptions.

P4: X is closed and convex.

P5: X ⊆ D, the closure of D.

P6: X ∩ D 6= ∅.

Example. Returning to our negative entropy example, we will take X to be the simplex

∆n =

{
x ∈ Rn≥0 :

∑
i

xi = 1

}
.

Note that X ⊆ D, the non-negative orthant. Obviously X is closed, convex and intersects with D.

3.1.2 The projection

A primal point y ∈ D will be projected back onto the constraint set by computing the Bregman
projection

ΠΦ
X∩D(y) ∈ argmin

x∈X∩D
DΦ(x, y).

There is a small annoyance: X ∩ D is not closed, so the argmin is not necessarily defined.
However, I believe that since y ∈ D, this should not matter... For now, let’s sweep this under the
rug.

Let us determine the Bregman projection in our negative entropy example.

Claim 3.3. Let Φ(x) =
∑

i xi lnxi. Suppose that y ∈ D \ X , i.e., y ∈ Rn>0, but
∑

i yi 6= 1. Then
ΠΦ
X∩D(y) = y/ ‖y‖1.

Proof. As shown in Example 2.3, DΦ(x, y) is the generalized KL divergence DKL(x ‖ y) =∑
i

(
xi ln(xi/yi)− xi + yi

)
. Thus,

argmin
x∈X∩D

DΦ(x, y) = argmin
x∈X∩D

n∑
i=1

(
xi ln

xi
yi
− xi + yi

)
= argmin

x∈X∩D

n∑
i=1

xi ln
xi
yi

since
∑n

i=1 xi = 1 for all x ∈ X . Letting f(x) = x lnx, which is convex, Jensen’s inequality yields

n∑
i=1

xi ln
xi
yi

=

n∑
i=1

yif(xi/yi) ≥ f
(∑n

i=1 xi
‖y‖1

)
‖y‖1 = ln(1/ ‖y‖1),

and equality holds iff all xi/yi are equal, i.e., xi = yi/ ‖y‖1. Thus, y/ ‖y‖1 = argminx∈X∩DDΦ(x, y).

9

3.2 The algorithm

Algorithm 1 The online mirror descent algorithm. The initial point is any x1 ∈ X ∩ D.

1: procedure MirrorDescent(x1 ∈ X ∩ D, η)
2: for i← 1, 2, ... do

. Incur cost fi(xi), receive a subgradient gi ∈ ∂fi(xi)
3: x̂i ← ∇Φ(xi) (map primal point to dual)
4: ŷi+1 ← x̂i − ηgi (take gradient step in the dual)
5: yi+1 ← ∇Φ∗(ŷi+1) (map new dual point back to a primal point in D)
6: xi+1 ← ΠΦ

X∩D(yi+1) (project new point onto feasible region)

Example 3.4. In the negative entropy setting with x1 = (1/n, ..., 1/n), this algorithm is identical
to Algorithm 2 of Lecture 16. To see this, recall from our preceding discussion that ∇Φ(xi)j =
1 + lnxi,j and ∇Φ∗(ŷi+1)j = exp(ŷi+1,j − 1), so

yi+1,j = exp(ŷi+1,j − 1) = exp(x̂i,j − ηgi,j − 1) = exp(lnxi,j − ηgi,j) = xi,j exp(−ηgi,j).

Also, as mentioned above, ΠX∩D(yi+1) = yi+1/ ‖yi+1‖1. Thus, the algorithms are identical.

We may think of the dual space as the “logarithmic weight space”, in which we make additive
updates (using a subgradient of fi), and the primal space as the “normalized weight space” in which
we make multiplicative updates to the weights (and then immediately renormalize them). �

Theorem 3.5 (Online Mirror Descent). Given are any η > 0 and:

• A mirror map Φ : D → R satisfying P1, P2, P3, where D is an open subset of Rn.

• A feasible region X ⊆ Rn satisfying P4, P5, P6.

• Convex functions f1, f2, ... : X → R.

We assume that Φ is ρ-strongly convex with respect to a norm ‖·‖. Then Algorithm 1 satisfies

t∑
i=1

(
fi(xi)− fi(x∗)

)
≤ DΦ(x∗, x1)

η
+

t∑
i=1

(
〈 gi, xi − yi+1 〉 −

ρ

2η
‖xi − yi+1‖2

)
(3.1)

≤ DΦ(x∗, x1)

η
+

η

2ρ

t∑
i=1

‖gi‖2∗ . (3.2)

References. [4, Theorem 4.2].

Remark. The reason that Theorem 3.5 has two inequalities is that (3.1) allows us to prove
multiplicative error for RWM, as in Corollary 4.2 below. In contrast, the simpler inequality (3.2)
is convenient for analyzing additive error, as in Corollary 3.6

Corollary 3.6. Consider the offline setting where each fi = f , and f is L-Lipschitz with respect
to ‖·‖. Define R2 = supx∈X∩DDΦ(x, x1). Then

f

(
1

t

t∑
i=1

xi

)
− f(x∗) ≤ DΦ(x∗, x1)

ηt
+
ηL2

2ρ
≤ RL

√
2

ρt
,

10

by choosing η = R
L

√
2ρ
t .

Proof. Recall from Theorem 5.6 that f is L-Lipschitz with respect to ‖·‖ if and only if ‖g‖∗ ≤ L
for all subgradients L. Thus, from Theorem 3.5, Jensen’s inequality we have

f

(
1

t

t∑
i=1

xi

)
− f(x∗) ≤ DΦ(x∗, x1)

ηt
+
ηL2

2ρ

The hypothesis implies DΦ(x∗, x1) ≤ R2. Substituting for η yields the result.

Theorem 3.5 may be viewed as a generalization of Theorem 2.1 of Lecture 16. The differences
are highlighted below. The first half of the proof is very similar, using the Bregman divergence
DΦ(·, ·) instead of the KL divergence DKL(· ‖ ·). The second half of the proof is different, as strong
convexity is used.

Proof (of Theorem 3.5). For any z ∈ X ,

fi (xi)− fi (z) ≤ gi
T(xi − z) (since gi ∈ ∂fi(xi))

By the gradient step, gi = (x̂i − ŷi+1)/η, so

=
1

η

(
∇Φ (xi)− ∇Φ (yi+1)

)T
(xi − z)

=
1

η

(
D

Φ
(xi, yi+1) +D

Φ
(z, xi)−D Φ

(z, yi+1)
)

(by Lemma 2.10)

≤ 1

η

(
D

Φ
(xi, yi+1) +D

Φ
(z, xi)−D Φ

(z, xi+1)
)

(by Corollary 2.15).

Summing over i, the last two terms telescope:

t∑
i=1

(
fi(xi)− fi(z)

)
≤ 1

η

(
D

Φ
(z, x1) +

t∑
i=1

D
Φ

(xi, yi+1)
)
. (3.3)

The summands on the right-hand side are bounded by strong convexity:

DΦ(xi, yi+1) = Φ(xi)− Φ(yi+1)− 〈 ∇Φ(yi+1), xi − yi+1 〉 (by definition of DΦ)

= Φ(xi)− Φ(yi+1) + 〈 ∇Φ(xi), yi+1 − xi 〉︸ ︷︷ ︸
use strong convexity

+〈 ∇Φ(xi)−∇Φ(yi+1), xi − yi+1 〉

≤ − ρ

2
‖xi − yi+1‖2 + η〈 gi, xi − yi+1 〉.

by strong convexity of Φ and the gradient step. Combining this with (3.3) and setting z = x∗

proves (3.1). Next, use Claim 5.2 to obtain

DΦ(xi, yi+1) ≤ η ‖gi‖∗ ‖xi − yi+1‖ −
ρ

2
‖xi − yi+1‖2 ≤

η2 ‖gi‖2∗
2ρ

,

since maxz(az − bz2) = a2/4b. Combining this with (3.3) proves (3.2).

11

4 Mirror Descent Examples

4.1 Example: Online convex optimization over the simplex

Let us again discuss the scenario where Φ is the negative entropy function and X is the simplex
∆n. Our first corollary concerns online convex optimization over the simplex for functions that
are Lipschitz with respect to the `1-norm. In this setting, I believe that the online mirror descent
algorithm is called the Exponentiated Gradient Algorithm of Kivinen and Warmuth.

Corollary 4.1. Suppose that f1, f2, ... : X → R are convex functions, each of which is 1-Lipschitz
with respect to ‖·‖1. Run the mirror descent algorithm with Φ being the negative entropy function,
x1 = (1/n, ..., 1/n) and η =

√
2 ln(n)/t. Then

t∑
i=1

(
fi(xi)− fi(x∗)

)
≤
√

2t lnn.

References. [1, Theorem 7].

Proof. Recall from Claim 2.4 that Φ is 1-strongly convex with respect to ‖·‖1. Thus we may apply
Theorem 3.5 with ρ = 1. Then (3.2) gives that

t∑
i=1

(
fi(xi)− fi(x∗)

)
≤ DΦ(x∗, x1)

η
+
η

2

t∑
i=1

‖gi‖2∞ .

As shown in Example 2.3, DΦ(x∗, x1) = DKL(x∗ ‖ 1/n) ≤ lnn, by Claim 5.5. Since fi is 1-Lipschitz
with respect to ‖·‖1, and ‖·‖∞ is the dual norm of ‖·‖1, Theorem 5.6 implies that ‖gi‖∞ ≤ 1 for all
i ≥ 1. Thus,

t∑
i=1

(
fi(xi)− fi(x∗)

)
≤ lnn

η
+
ηt

2
.

Substituting the value of η completes the proof.

4.2 Example: Randomized weighted majority

Now let us consider the setting of learning with experts discussed in Lectures 15 & 16. As before,
the cost of expert j at time i is ci,j . Let fi be the linear function fi(x) = 〈 ci, x 〉. We now derive
a form1 of our RWM analysis as a corollary of Theorem 3.5.

Corollary 4.2. Let j∗ be the expert with minimum total cost. For any costs ci,j ∈ [0, 1], the
mirror descent algorithm achieves

t∑
i=1

〈 ci, xi 〉 ≤ (1 + 2η)

t∑
i=1

ci,j∗ +
(1 + 2η) lnn

η
. (4.1)

1 Unfortunately the parameters are slightly worse, since (3.1) is stated abstractly in terms of the norm ‖·‖ (which
requires the use of Pinsker’s inequality), and this loses some sharpness.

12

Proof. As before, we will use the fact and that DΦ(x∗, x1) ≤ lnn (see Claim 5.5). Note that

min
1≤j≤n

t∑
i=1

ci,j = min
1≤j≤n

t∑
i=1

fi(ej) = min
x∈X

t∑
i=1

fi(x)

since
∑t

i=1 fi is a linear function, so its minimum must occur at one of its vertices {e1, ..., en}. We
apply Theorem 3.5 with ρ = 0, so (3.1) gives

t∑
i=1

〈 ci, xi 〉 =

t∑
i=1

fi(xi) ≤
t∑
i=1

ci,j∗ +
lnn

η
+

t∑
i=1

〈 gi, xi − yi+1 〉

Note that
xi,j − yi+1,j = xi,j

(
1− exp(−ηci,j)

)
= xi,j

(
1− exp(−η)

)
≤ ηxi,j

by Claim 5.3 and using ci,j ∈ [0, 1]. Since fi is linear, gi = ci for all i. Thus

t∑
i=1

cTi xi ≤
t∑
i=1

ci,j∗ +
lnn

η
+ η

t∑
i=1

cTi xi.

Rearranging (as in Corollary 2.7 of Lecture 16), and using Claim 5.4 completes the proof.

5 Standard facts

Claim 5.1 (Law of cosines).

‖a− b‖22 = ‖a‖22 − 2aTb+ ‖b‖22 ∀a, b ∈ Rn. (5.1)

Claim 5.2. For w ∈ V and z ∈ V ∗, we have 〈 z, w 〉 ≤ ‖w‖ · ‖z‖∗.

Claim 5.3. 1 + x ≤ ex for all x ∈ R.

Claim 5.4.

1 + x ≤ 1

1− x
≤ 1 + 2x.

The first inequality holds for x < 1; the second holds for x ∈ [0, 1/2].

Claim 5.5. Suppose that p ∈ Rn≥0 is a distribution. Let q = (1/n, ..., 1/n) ∈ Rn≥0 be the uniform
distribution. Then DKL(p ‖ q) ≤ lnn.

Theorem 5.6. Let X be convex and open. Let f : X → R be convex. Let ‖·‖ be an arbitrary
norm. The following conditions are equivalent.

• f : X → R is L-Lipschitz with respect to ‖·‖:

|f(x)− f(y)| ≤ L ‖x− y‖ ∀x, y ∈ X . (5.2)

• f has bounded subgradients:

‖g‖∗ ≤ L ∀w ∈ X, g ∈ ∂f(w). (5.3)

13

Claim 5.7. Let f : X → R be strictly convex function. Let x, x′ ∈ X be distinct. Then
∂f(x) ∩ ∂f(x′) = ∅.

Lemma 5.8. Let X be a convex set. For each a ∈ A, let fa : X → R be a convex function. Define
f̂(x) = supa∈A fa(x). Then f̂ is convex. Furthermore, if each fa is closed then f̂ is closed.

References

[1] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: A
meta algorithm and its applications. Theory of Computing, 8(6):121–164, 2012.

[2] Dmitris Bertsekas. Convex Analysis and Optimization. Athena Scientific, 2003.

[3] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

[4] Sebastien Bubeck. Convex optimization: Algorithms and complexity. Foundations and Trends
in Machine Learning, 8(3–4), 2015.

[5] Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Fundamentals of Convex Analysis.
Springer-Verlag, 2004.

[6] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to
Algorithms. Cambridge University Press, 2014.

[7] Lieven Vandenberghe. Conjugate functions.
http://www.seas.ucla.edu/~vandenbe/236C/lectures/conj.pdf.

[8] Xinhua Zhang. Bregman divergence and mirror descent.
http://www.cs.uic.edu/~zhangx/teaching/bregman.pdf.

14

http://www.seas.ucla.edu/~vandenbe/236C/lectures/conj.pdf
http://www.cs.uic.edu/~zhangx/teaching/bregman.pdf

	Conjugate Duality
	Examples
	Properties

	Bregman Divergence
	Examples
	Properties
	Projections

	The Mirror Descent Algorithm
	The mirror map
	The constraint set X
	The projection

	The algorithm

	Mirror Descent Examples
	Example: Online convex optimization over the simplex
	Example: Randomized weighted majority

	Standard facts

