
Machine Learning Theory

Lecture 17

Nicholas Harvey

November 7, 2018

1 Bandits

Bandits are basically like the “experts” setup of last time, except that the algorithm only receives
partial feedback. In round i, the algorithm does not receive the entire vector ci; if it chooses
expert j, it only receives the cost ci,j .

1.1 The bandit model

There is an agent who must make a sequence of online decisions. There are a sequence of discrete
time steps; in each time step, the agent must make a decision and incur the cost of that decision.
The agent has limited or no forehand knowledge of what that cost will be. Of course, the goal is
to incur as little cost as possible. At the end of each time step, the agent is told the cost of the
choice he actually made, but not the other choices he could have made.

A typical setup is that there are n actions. The costs at time i are specified by a vector
ci = (ci,1, ..., ci,n) ∈ Rn, where ci,j is the cost of performing action j at time i. The agent must
(without knowing ci) pick an action j to perform, then incur the cost ci,j . The cost vector ci is not
revealed to the agent; only the single cost ci,j is revealed.

There are many different models of bandits. Two of the most basic are stochastic bandits,
which we will discuss next week, and adversarial bandits (or non-stochastic bandits), which
we discuss today.

“Adversarial” Bandits. This setting is most similar to the model of learning with experts,
which we discussed last week. Let us now consider the power of the adversary. As mentioned last
time, if ci depends on the action chosen at time i, the results would be uninteresting: the lower
bound discussed last week implies a regret of Ω(t) after t rounds.

So suppose we only allowed the adversary to determine ci based upon the algorithm’s decisions
in rounds 1 through i − 1. The adversary does not know any random bits used by the algorithm.
This is called an adaptive online adversary. Important results have been proven in this setting,
even in the bandit model, but there is also a sentiment1 that regret bounds against adaptive online
adversaries are “not meaningful”.

1 See Arora, Dekel, Tewari for further discussion.

1

https://arxiv.org/pdf/1206.6400

Today, we will consider adversarial bandits with an oblivious adversary : the adversary knows
the algorithm (but not its random bits), and all cost functions ci are chosen before the algorithm
begins execution. Already this is quite interesting because it is a substantial generalization of
stochastic bandits.

As before, let A(t) be the cost incurred by the algorithm up to round t. We now define

Regret(t) = max
j∈[n]

E

[
A(t)−

t∑
i=1

ci,j

]
= E [A(t)]− min

j∈[n]

t∑
i=1

ci,j .

Usually, the goal is to get Regret(t) = o(t).

2 Brainstorming

In this section we try some ideas for bandit algorithms against oblivious adversaries.

Idea 1. Since the bandit model only gives us a single cost per round, why not use n rounds to
build up a “simulated” cost function, then run RWM on those simulated cost functions.

For example, we could use build the simulated cost function ĉp during rounds n(p−1)+1, ..., np.
Simply do action j during round n(p− 1) + j, and set

ĉp,j = cn(p−1)+j, j .

Then we can run RWM on the cost functions ĉ1, ĉ2,

Bad Example 1. The trouble is that the adversary, though oblivious, knows our algorithm so it
can just ensure that cn(p−1)+j, j = 1 and all other costs are zero. Then the algorithm’s total cost is
t, but every action’s total cost is t/n, so the regret is (1− 1/n)t.

Idea 2. The natural way to defeat the adversary is to randomize our decisions so that he cannot
predict which costs we will examine.

For example, we could pick random permutations π1, π2, ..., where πi : [n]→ [n]. Then we could
build the simulated cost function ĉ by setting

ĉp,j = cn(p−1)+π(j), j .

So we use the π(j)th round of phase p to learn the cost of action j.

Bad Example 2. The trouble is that, even if most of actions are completely useless, we will spend
most our time repeatedly learning that they are completely useless. For example, suppose that the
first action always has cost 0, and the other actions always have cost 1. Then the algorithm’s total
cost is (1− 1/n)t, so the regret is again (1− 1/n)t.

2

Idea 3. The trouble with the previous algorithm is that we spent all our time learning the
actions’ costs, and not enough time using what we had learned. Too much exploration, not enough
exploitation.

Perhaps instead we could alternate phases of exploring and exploiting?

• Explore. Spend the first n rounds building ĉ1. Then run one iteration of RWM, obtaining
a random action X1 as its output.

• Exploit. For the next m iterations, just perform the same action X1.

• Explore. Spend the next n rounds building ĉ2. Then run another iteration of RWM, obtain-
ing a random action X2 as its output.

• Exploit. For the next m iterations, just perform the same action X2.

• ...

Bad Example 3. The adversary can just modify the bad example for Idea 2 by negating the
costs during the Exploit rounds. Then the algorithm’s cost is n− 1 +m = t− 1, the first action’s
total cost is m, the second action’s total cost is n, so the regret is (t− 1)−minm,n ≥ t/2− 1.

Idea 4. The trouble with the previous algorithm is that the adversary knew in advance when we
were Exploring and when we were Exploiting.

Perhaps we could randomly mix the exploration and exploitation phases?

• Pick a good action. Arbitrarily pick some action X1.

• Phase 1. Randomly partition the first n + m rounds into n rounds of Exploration and m
rounds of Exploitation. Build ĉ1 by querying each action exactly once during a randomly
chosen Exploration round.

During each Exploitation round, we don’t yet have enough information to do anything useful,
so we just query the action X1.

• Pick a good action. Now that Phase 1 has finished, we have built the cost function ĉ1. We
run one iteration of RWM, and it gives us a (random) action X2 that it believes to be good.

• Phase 1. Randomly partition the next n + m rounds into n rounds of Exploration and m
rounds of Exploitation. Build ĉ2 by querying each action exactly once during a randomly
chosen Exploration round. During each Exploitation round, we query the action X2.

• ...

Now there doesn’t seem to be a bad example. Indeed, the algorithm we have developed is
exactly the PSim algorithm.

3

3 PSim: Phased Simulation

In this section we develop a fairly simple algorithm that achieves regret O
(
t2/3(n log n)1/3

)
against

oblivious adversaries. I am not sure from where this algorithm originates; I learned it from here
http://www.cs.cornell.edu/courses/cs683/2007sp/.

3.1 Overview of PSim

Main ideas of PSim

• Simulate Randomized Weighted Majority (RWM)

• Each bandit round only gives us cost of a single action, so we will use multiple rounds (a
“phase”) to learn the cost of all the action.

• Since it takes us multiple rounds to learn these different values, we will learn the actions’
values on different cost functions.

• This is not a big problem because we will randomize things, and the costs that we learn will
be close to their average values. (This strategy relies on our assumption that the costs are
determined by an oblivious adversary.)

More formally:

• Phases. Partition the t rounds into k contiguous phases, where each phase has length L > n.
(So t = kL.) The time steps in phase p are:

Πp = {(p− 1) · L+ 1, ..., p · L} .

In each phase we will use n of the rounds to “learn” the cost functions (exploring) and use
the remaining rounds to repeatedly perform the good actions (exploiting). (Hence the need
that L > n.)

• Exploring. In each phase, we will learn each action’s cost exactly once in a randomly chosen
round. (Randomly chosen so that the adversary cannot give that action a garbage cost in
that round.) These rounds must all be distinct, because the bandit model only allows us
to learn a single action’s cost per round. (Hence L > n.) Formally, we let τp be a random
one-to-one (i.e., injective) map from [n] to Πj , and use τp(j) as the round in phase p during
which we learn action j’s cost. In most rounds we will not be learning costs (recall L > n),
so τp is not onto (i.e., not surjective).

The input to the RWM algorithm at the end of phase p is the “simulated” cost functions
learned during phase p’s exploration rounds. Formally, the simulated cost function learned
during phase p is ĉ : [n]→ [0, 1] defined by

ĉp,j = cτp(j),j .

4

http://www.cs.cornell.edu/courses/cs683/2007sp/

• Exploiting. The choice of action to be used during exploitation rounds is determined by
the output of the RWM algorithm. At the start of phase p, we have already learned the
simulated cost functions ĉ1, ..., ĉp−1. We then run RWM on those cost functions, giving us
the distribution xp−1 on actions to be used for exploitation during phase p. Randomly draw
a “good action” Xp−1 from the distribution xp−1; this is the action we will use repeatedly for
exploitation in round p.

• Formally, define

– EXPLOREj = { τp(j) : p ≥ 1 } to be the set of all rounds in which learn the j’th action’s
cost,

– EXPLORE =
⋃n
j=1 EXPLOREj to be the set of all rounds in which we learn some action’s

cost, and

– EXPLOIT = [t] \ EXPLORE to be all other rounds.

The action to be used in round i is:

a(i) =

{
j (if i ∈ EXPLOREj)

Xp−1 (if i ∈ EXPLOIT ∩Πp)
.

That is, we set a(i) = j if we are supposed to learn action j’s cost in round i; otherwise, we
are exploiting in round i, so we set a(i) = Xp−1, the (randomly chosen) “good action” that
we learned during phase p− 1.

Algorithm 1 The PSim algorithm.

1: procedure PSim(n, t)
2: Let ε = (n ln(n)/t)1/3

3: Let k = ln(n)/ε2

. Assume t is a multiple of k
4: Let L = t/k
5: Let X0 = 0
6: for p← 1, ..., k do
7: Pick the random injective map τp : [n]→ Πp

8: Initialize ĉp to be the zero vector
9: for i ∈ Πp do

10: Perform the action a(i), receiving its cost γ
11: If i ∈ EXPLOREj , record the simulated cost ĉp,j = γ

12: Continue running the Randomized Weighted Majority algorithm, now using the simu-
lated cost vector ĉp, and receiving the distribution xp.

13: Randomly sample the good action Xp according to the distribution xp.

Analysis idea. Recall that the simulated costs are determined from the actual costs in randomly
sampled rounds (i.e., ĉp,j = cτp(j),j). So the average of the simulated costs should be close to the

5

average of the actual costs. That is, the cost vectors satisfy

1

k

k∑
p=1

ĉp︸ ︷︷ ︸
average simulated cost

≈ 1

t

t∑
i=1

ci︸ ︷︷ ︸
average real cost

. (3.1)

Since RWM gives us a strategy that is nearly-optimal with respect to the ĉ simulated costs, it
should also be nearly-optimal with respect to the real costs. All that remains is to make those
ideas precise.

Review of RWM’s regret. Recall from our analysis last week that the expected total cost of
Randomized Weighted Majority at time t is

A(t) ≤ (1 + ε)
t∑
i=1

ci,j∗ +
lnn

ε
≤

t∑
i=1

ci,j∗ + εt+
lnn

ε
,

using that the costs are in [0, 1], and where j∗ is the action of minimum total cost. Thus,

Regret(t) ≤ εt+
lnn

ε
. (3.2)

3.2 Formal analysis

Theorem 3.1. With appropriately chosen parameters, the PSim algorithm achieves regret
3t2/3(n log n)1/3 after t iterations.

To start, we will aim to show something more refined than (3.1). The average cost during phase
p will be denoted

c̄p =
1

L

∑
i∈Πp

ci.

Since ĉp is obtained by random sampling from Πp, clearly ĉp equals c̄p in expectation (over τp).

We can write that statement more formally as follows. Let Fp−1 be the sigma-field generated by
all random variables up to the end of phase p− 1, namely X1, ..., Xp−1 and τ1, ..., τp−1. Recall that
τp is independent of the past, i.e., generated with fresh randomness. Formally, τp is independent of
Fp−1. Thus, we have

E [ĉp | Fp−1] = c̄p. (3.3)

This says that, no matter what happened in earlier phases, ĉp is an unbiased estimate of c̄p.

Remark. We started this section saying that the adversary should be oblivious. Now we can point
out how the analysis uses this assumption. Suppose that the adversary could adaptively change
the costs based on past actions. Then, for i ∈ Πp, the cost vector ci would not be Fp−1-measurable
(except for the first round of phase p). Consequently c̄p would not be Fp−1-measurable and (3.3)
would make no sense.

6

It turns out that we must make a slightly more precise statement than (3.3). Ultimately, we will
want to compare ĉp and c̄p at the random index Xp−1, because that is the “good action” used in
phase p. That would be problematic if Xp−1 depended on τp, but fortunately it does not. Formally
we say that Xp−1 is Fp−1-measureable.

Lemma 3.2. Then E [ĉp,J − c̄p,J | Fp−1] = 0 for any index J that is Fp−1-measurable.

Proof.

E [ĉp,J | Fp−1] =
∑
i∈Πp

Pr [τp(J) = i | Fp−1] · ci,J

=
∑
i∈Πp

1

L
· ci,J (since τp is independent of Fp−1 and J is Fp−1-measureable)

= c̄p,J .

Subtracting yields the statement of the lemma. �

The next lemma directly bounds PSim’s expected regret.

Lemma 3.3. For all j ∈ [n],

E

[
t∑
i=1

(ci,a(i) − ci,j)

]
≤ εt+

L lnn

ε
+ nk.

Proof. The first step is to relate the regret with respect to the real costs ci to the regret with
respect to the simulated costs ĉp.

t∑
i=1

E
[
ci,a(i) − ci,j

]
=

k∑
p=1

∑
i∈Πp

E
[
ci,a(i) − ci,j

]
(partitioning the sum into phases)

=
k∑
p=1

(∑
i∈Πp

E
[
ci,Xp−1 − ci,j

]
−
∑
i∈Πp

E
[
ci,Xp−1 − ci,a(i)

])
(adding and subtracting ci,Xp−1)

=

k∑
p=1

(∑
i∈Πp

E
[
ci,Xp−1 − ci,j

]
−

∑
i∈Πp∩EXPLORE

E
[
ci,Xp−1 − ci,a(i)

])
(Xp−1 = a(i) for i ∈ Πp ∩ EXPLOIT)

=
k∑
p=1

(
L · E

[
c̄p,Xp−1 − c̄p,j

]
−

∑
i∈Πp∩EXPLORE

E
[
ci,Xp−1 − ci,a(i)

])
(since c̄p =

∑
i∈Πp

ci/L)

≤ L

k∑
p=1

E
[
c̄p,Xp−1 − c̄p,j

]
+

k∑
p=1

∑
i∈Πp∩EXPLORE

1 (since ci ∈ [0, 1]n)

= L
k∑
p=1

E
[
c̄p,Xp−1 − c̄p,j

]
+ nk (each phase has n exploration rounds)

7

= L

k∑
p=1

E
[
ĉp,Xp−1 − ĉp,j

]
+ nk, (3.4)

applying Lemma 3.2 with J = Xp−1 and again with J = j, then taking the (unconditional)
expectation.

Next, the regret with respect to the simulated costs is easy to control using our RWM analysis.
Recall that we ran RWM for p = 1, ..., k on inputs ĉp, during which it randomly chose the action
Xp. So, by our regret bound on RWM (see (3.2)), we obtain the upper bound

k∑
p=1

E
[
ĉp,Xp−1 − ĉp,j

]
≤ εk +

lnn

ε
.

Multiplying by L, then combining with (3.4) completes the proof. �

Proof (of Theorem 3.1). All that remains is to plug the appropriate ε and k into Lemma 3.3.

Setting ε =
(n logn

t

)1/3
and k = lnn

ε2
, we obtain the regret bound

εt+
L lnn

ε
+ nk =

(
ε+

lnn

εk
+
n lnn

tε2

)
t = (ε+ ε+ ε)t.

�

4 Exp3

The previous section presented the PSim algorithm for the bandits problem, which explicitly “ex-
plores” the cost of each action at random times, then uses RWM to choose an good action to
“exploit” for most other times. This algorithm achieves regret bound O

(
t2/3(n log n)1/3

)
, which is

at least o(T), but it is not optimal.

In this section we consider the following idea: is the randomness inherent in RWM already
enough to achieve a good exploration/exploitation tradeoff? For example, initially all actions have
equal weight, so RWM will explore all the actions in some random order. Eventually, some actions
will be determined to have high cost, but they will be given small weight, so won’t be explored
very often. The remaining actions of small cost will all have large weights, and so will be exploited
most of the time.

This idea is realized by the Exp3 algorithm, which achieves regret bound O(
√
tn log n). That

bound is nearly optimal in the adversarial bandits setting. The algorithm’s name stands for
“Exponential-weight algorithm for Exploration and Exploitation”. It was original presented by
Auer, Cesa-Bianchi, Freund and Schapire in the FOCS 1995 conference [2, 1].

Overview of ideas. In more modern terminology, Exp3 can be explained as follows:

Gradient Descent is to Random Coordinate Descent
as

Randomized Weighted Majority is to Exp3

8

The main idea is extremely simple. Recall that we generalized gradient descent to stochastic
gradient descent by introducing a randomized gradient oracle; in expectation, the analysis did not
change at all. Then, on assignment 3, we saw random coordinate descent, in which each random
subgradient has only a single non-zero coordinate. Roughly, Exp3 is what results from applying
the same idea to Randomized Weighted Majority.

Here’s a bit more detail: the stochastic gradient descent analysis applies to any oracle returning
a random vector that, in expectation, is a subgradient. The analogous idea for Exp3 is to construct
a random vector of “simulated costs” that, in expectation, equal the true costs. Actually, there is
an additional key requirement on the simulated costs: since the bandit model only reveals the cost
of a single action, simulated cost vector will only have a single non-zero coordinate.

Algorithm 2 The Exp3 algorithm.

1: procedure Exp3(η)
2: Let y1 = (1, ..., 1)
3: for i← 1, 2, ... do
4: Let xi = yi/ ‖yi‖1 (normalize the weights).
5: Use fresh randomness to pick action Xi ∈ [n] according to distribution xi.
6: Perform the action Xi

. Expected cost incurred is
∑n

j=1 ci,jxi,j = cTi xi
. Receive cost ci,Xi

7: Construct the simulated cost vector ĉi ∈ Rn with

ĉi,j =

{
ci,j/xi,j (for j = Xi)

0 (otherwise)

8: for j ← 1, ..., n do
9: yi+1,j = yi,j exp(−ηĉi,j) (decrease weight according to action j’s simulated cost)

Let ci ∈ [0, 1]n denote the true cost of the actions in round i. Let Fi denote the sigma-field
generated by ĉ1, ..., ĉi.

The following claim says that, no matter what the algorithm has learned so far, in round i the
simulated costs equal the actual costs in expectation. (This is quite similar to Lemma 3.2.)

Claim 4.1. Fix i ∈ [T]. For any index J that is Fi−1-measurable, E [ĉi,J | Fi−1] = ci,J .

Proof.

E [ĉi,J | Fi−1] = Pr [Xi = J | Fi−1] ·
ci,J
xi,J

+ Pr [Xi 6= J | Fi−1] · 0

= xi,J ·
ci,j
xi,j

(since J is Fi−1-measurable)

= ci,j .

�

We will apply the Randomized Weighted Majority analysis of Theorem 2.1 in Lecture 16, with
the simulated cost ĉi rather than the actual costs ci. That will introduce a quadratic term in the
costs, which we first show how to deal with.

9

Claim 4.2. Fix i ∈ [T]. E
[∑n

j=1 xi,j ĉ
2
i,j | Fi−1

]
≤ n.

Proof.

E

 n∑
j=1

xi,j ĉ
2
i,j | Fi−1

 =

n∑
`=1

Pr [Xi = ` | Fi−1]xi,`

(ci,`
xi,`

)2

=
n∑
`=1

c2
i,` ≤ n

The first equality is explained as follows: recall that, on the event Xi = `, we have ĉi,` = ci,`/xi,`
and ĉi,j = 0 for all j 6= `. Thus, after expanding the expectation, there is no longer any need to
sum over j. The second equality holds because Pr [Xi = ` | Fi−1] = xi,`. The inequality holds
because every real cost ci,j is at most 1. �

Theorem 4.3. Let j∗ be the action of minimum total cost. The expected cost of the algorithm
satisfies

E

[
t∑
i=1

cTi xi

]
−

t∑
i=1

ci,j∗ ≤
√

2tn lnn.

References. See [3, Lemma 6.2].

Proof. We will apply Theorem 2.1 in Lecture 16 to the simulated cost vectors ĉi with z = ej∗ .
These cost vectors ĉi are randomly chosen, but that irrelevant because RWM works for all cost
vectors, even if they are adversarially chosen. Thus, (with probability 1)

t∑
i=1

(ĉTi xi − ĉTi z) ≤
lnn

η
+
η

2

t∑
i=1

n∑
j=1

xi,j ĉ
2
i,j . (4.1)

Consider the ith term on the left-hand side. Observe that z is non-random and xi is Fi−1-
measurable. So, by Claim 4.1,

cTi xi − cTi z = E
[
ĉTi xi − ĉTi z | Fi−1

]
.

Now take the unconditional expectation of (4.1). The left-hand side becomes:

E

[
t∑
i=1

cTi xi −
t∑
i=1

cTi z

]
= E

[
t∑
i=1

cTi xi

]
−

t∑
i=1

ci,j∗ . (4.2)

Regarding the ith term on the right-hand side of (4.1), Claim 4.2 gives the the bound

E

 n∑
j=1

xi,j ĉ
2
i,j | Fi−1

 ≤ n.
Thus, taking the unconditional expectation, the right-hand side of (4.1) is at most

lnn

η
+
ηtn

2
. (4.3)

Combining (4.2) and (4.3) and setting η =
√

2 ln(n)/tn proves the theorem. �

10

References

[1] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert Schapire. The nonstochastic mul-
tiarmed bandit problem. SIAM Journal on Computing, 32(1):48–77, 2002.

[2] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. Gambling in a rigged
casino: The adversarial multi-arm bandit problem. In 36th Annual Symposium on Foundations
of Computer Science, pages 322–331, 1995.

[3] Elad Hazan. Introduction to online convex optimization. Foundations and Trends in Optimiza-
tion, 2(3–4), 2015.

11

	Bandits
	The bandit model

	Brainstorming
	PSim: Phased Simulation
	Overview of PSim
	Formal analysis

	Exp3

