
Machine Learning Theory

Lecture 16

Nicholas Harvey

November 2, 2018

1 The randomized weighted majority algorithm

Today we will show that the unwanted factor of 2 can be removed from the Weighted Majority
algorithm, through the use of randomization. Or rather, we weaken the adversary that decides the
costs from being an adaptive offline adversary (who knows the algorithm’s random bits) to being
an adaptive online adversary (who knows the algorithm but not its random bits).

We will show that the algorithm’s expected cost can be made arbitrarily close to Cj∗ as η → 0
and T →∞. Moreover, the algorithm can achieve this guarantee without receiving any predictions!
In the present scenario, expert j incurs an arbitrary cost ci,j ∈ [0, 1] in each time step i, and the
algorithm must randomly choose an expert to follow without any indication of what the expert’s
cost will be.

Algorithm 1 The randomized weighted majority algorithm.

1: procedure RandomizedWeightedMajority(η)
2: Let y1 = (1, ..., 1)
3: for i← 1, 2, ... do
4: Let xi = yi/ ‖yi‖1 (normalize the weights).
5: Follow expert j with probability xi,j .

. Expected cost incurred is
∑n

j=1 ci,jxi,j = cTi xi
. Receive cost vector ci

6: for j ← 1, ..., n do
7: yi+1,j = yi,j exp(−ηci,j) (decrease weight according to expert j’s cost)

Theorem 1.1. Assume that the costs satisfy ci,j ∈ [0, 1] for all i, j. Let ε = 1 − e−η ≈ η − η2/2
(so η = ln 1

1−ε ≈ ε + ε2/2). Assume that ε ≤ 1/2. Consider any time step t. Let A be the total
expected cost of the algorithm at time t. Let j∗ be the expert with minimum total cost. Then

A ≤ (1 + ε)
t∑
i=1

ci,j∗ +
lnn

ε
.

References. [5, Lemma 1.4], [6, Theorem 21.11].

1



Note. The costs ci are determined by an adaptive online adversary : they can depend on the
algorithm’s choice of experts in rounds 1, ..., i − 1 (and therefore also can depend on the previous
costs c1, ..., ci−1). However, they cannot depend on the expert j chosen by the algorithm in round
i, as j is determined using the algorithm’s private randomness. Note that ci can depend on the
distribution xi, which is completely determined by the previous costs c1, ..., ci−1.

Remark. Note that the bound gives a multiplicative guarantee with respect to the cost of the
best expert, and a small O(log n) additive term.

Proof Idea. As in the proof last time of Weighted Majority, it is useful to use ‖yi‖1 as a potential
function. Step (b) is unchanged: the total cost of expert j∗ is bounded using the potential. Step (a)
is a bit different: we will relate the change in potential ‖yi+1‖1 / ‖yi‖1 to the expected cost incurred
by the algorithm at time step i. In doing so, we will avoid the unwanted factor 2 that arose with
Weighted Majority.

Proof.

Step (a):

‖yi+1‖1
‖yi‖1

=
n∑
j=1

yi,j exp(−ηci,j)
‖yi‖1

≤
n∑
j=1

xi,j(1− εci,j) = 1− ε
n∑
j=1

xi,jci,j ≤ exp(−εxTi ci).

The first inequality uses Claim 3.2 with α = e−η and the definition ε = 1 − e−η. The second
inequality is Claim 3.1. Thus, taking the product for i = 1, ..., t, we see that the total weight at
step t+ 1 is related to the total cost incurred by the algorithm:

‖yt+1‖1 ≤ ‖y1‖1︸ ︷︷ ︸
=n

· exp
(
− ε

t∑
i=1

xTi ci︸ ︷︷ ︸
total expected

cost of algorithm

)
= n exp(−εA). (1.1)

Step (b): As before,

y1,j∗︸︷︷︸
=1

· exp
(
− η

t∑
i=1

ci,j∗︸ ︷︷ ︸
total cost of

expert j∗

)
= yt+1,j∗ ≤ ‖yt+1‖1 . (1.2)

Combining (a) and (b): To relate the cost of expert j∗ and the cost of the algorithm, we combine
(1.1) and (1.2) to obtain

exp
(
− η

t∑
i=1

ci,j∗
)
≤ ‖yt+1‖1 ≤ n · exp(−εA).

Taking the log and rearranging

A ≤ η

ε

t∑
i=1

ci,j∗ +
lnn

ε
.

As η = ln 1
1−ε , applying Claim 3.5 concludes the proof. �

2



1.1 Extensions

1.1.1 Regret bounds

The regret is defined to be the difference between the algorithm’s cost and the cost of the best
expert. Let A(t) be the total cost of the algorithm at time step t. Then the regret at time step t is

Regret(t) = A(t)−min
j

t∑
i=1

ci,j .

Remark. If the adversaries are oblivious, the regret compares the algorithm’s cost to the total
cost of the best fixed expert. However, if the adversary is adaptive, the cost functions are chosen
based on the algorithm’s behavior, and so fixing an expert may result in completely different cost
functions. So, with adaptive adversaries, it’s not clear if regret has any useful interpretation.

If one wishes to achieve low regret at (or slightly before) time step t, one may optimize ε as a
function of t and obtain the following result.

Corollary 1.2. Set ε =
√

ln(n)/t. Then, for any t′ ≤ t we have Regret(t′) ≤ 2
√
t lnn.

Proof.

Regret(t′) = A−
t′∑
i=1

ci,j∗

≤ ε

t′∑
i=1

ci,j∗ +
lnn

ε
(by Theorem 1.1)

≤ εt+
lnn

ε
(since ci,j ∈ [0, 1])

= 2
√
t lnn,

by choice of ε. �

Remark. The constant factor 2 can be improved to 2−1/2, which is optimal. See [2, Section 2.2].

2 RWM using KL divergences

Now let us consider a slight variant of Algorithm 1 and a fairly different analysis. Instead of
maintaining non-increasing weights y ∈ Rn>0, the algorithm will instead maintain normalized weights
x ∈ Rn>0 with

∑
j xj = 1. Thus, the weights always constitute a probability distribution and can

be used to determine the expected cost. The modified algorithm appears in Algorithm 3.

3



Algorithm 2 A slight variant of the randomized weighted majority algorithm.

1: procedure RandomizedWeightedMajorityVariant(η)
2: Let x1 = (1/n, ..., 1/n)
3: for i← 1, 2, ... do
4: Follow expert j with probability xi,j .

. Expected cost incurred is
∑n

j=1 ci,jxi,j = cTi xi
. Receive cost vector ci

5: for j ← 1, ..., n do
6: yi+1,j = xi,j exp(−ηci,j) (decrease weight according to expert j’s cost)

7: xi+1 = yi+1/ ‖yi+1‖1 (normalize the weights)

For our present purposes, Algorithm 3 is more convenient, as our new analysis will not rely
on the unnormalized weights, and will instead work primarily with distributions. (Actually the
analysis below can be adapted to Algorithm 1 too. In some contexts it is useful to keep track of
the unnormalized weights, e.g., Theorem 1.5 above.)

Theorem 2.1. Assume that every cost vector ci is non-negative. For any t and any distribution
z ∈ [0, 1]n,

t∑
i=1

(cTi xi − cTi z) ≤
lnn

η
+
η

2

t∑
i=1

∑
j

xi,jc
2
i,j . (2.1)

Remark. This bound, which does not assume ci,j ∈ [0, 1] is (slightly better than) the bound
stated in [5, Theorem 1.5] for the Hedge algorithm.

2.1 Preliminaries on KL-divergence

The Kullback-Leibler divergence is a measure of how two probability distributions differ. It is
also called KL divergence and relative entropy.

Definition 2.2 (Discrete KL divergence). Let P and Q be discrete distributions on a countable
set Ω. Suppose that Q(x) = 0 implies P (x) = 0. Then the KL-divergence is

DKL(P ‖ Q) =
∑
x∈Ω

P (x) ln
P (x)

Q(x)
.

Note. This definition of the KL divergence uses the natural logarithm. It is said that this
corresponds to using “nats” as the unit of the KL divergence.

Note. KL divergence fails to be a metric because (a) it is not symmetric, and (b) it does not
satisfy the triangle inequality.

Lemma 2.3. DKL(P ‖ Q) ≥ 0. Furthermore equality holds iff P = Q.

References. [3, Theorem 2.6.3].

Proof. Without loss of generality, P (i) > 0 for all i ∈ Ω. Define xi = Q(i)/P (i) and f(x) = − lnx,

4



which is convex. By Jensen’s inequality,

DKL(P ‖ Q) = −
∑
i∈Ω

P (i) ln
Q(i)

P (i)
=
∑
i∈Ω

P (i)f(xi) ≥ f

(∑
i∈Ω

P (i)xi

)
= f

(∑
i∈Ω

Q(i)

)
= 0.

Since f is strictly convex, equality holds only when there exists c such that c = xi = Q(i)/P (i) for
all i. In that case 1 =

∑
iQ(i) = c

∑
i P (i) = c, so P = Q. �

Claim 2.4. Suppose that P is supported on [n], and let Q be the uniform distribution on [n].
Then DKL(P ‖ Q) = lnn−H(P ).

Proof.

DKL(P ‖ Q) =
n∑
i=1

pi ln(pi/qi) =
n∑
i=1

pi ln(n) +
n∑
i=1

pi ln pi = ln(n)−H(P ).

�

Now we generalize the definition to non-negative vectors that are not necessarily distributions.

Definition 2.5 (Generalized KL divergence). Let p, q ∈ Rn≥0. Suppose that qi = 0 implies pi = 0.
Then the generalized KL-divergence is

DKL(p ‖ q) =
n∑
i=1

(
pi ln

pi
qi
− pi + qi

)
.

Claim 2.6. Let w, p ∈ Rn≥0 and suppose that ‖w‖1 = 1. Let π = p/ ‖p‖1. Then DKL(w ‖ p) ≥
DKL(w ‖ π).

Proof.

DKL(w ‖ p)−DKL(w ‖ π) =
∑
j

(
wj ln

wj
pj �

��−wj + pj − wj ln
wj
πj �

��+wj − πj
)

=
∑
j

(
wj ln

πj
pj

+ pj − πj
)

= ln
1

‖p‖1
+ ‖p‖1 − 1

This is non-negative by Claim 3.4. �

2.2 Proof of Theorem 2.1

Proof. The main idea with this proof is to analyze, at each iteration i, the difference between
the algorithm’s cost and the cost of some other strategy (denoted by the distribution z). For any
distribution z,

cTi xi − cTi z = cTi (xi − z)

5



For notational convenience, let lnxi and ln yi+1 be the vectors obtained by taking entry-wise loga-
rithm. Since yi+1,j = xi,j exp(−ηci,j), we have ci,j = (lnxi,j − ln yi+1,j)/η, so

=
1

η
(lnxi − ln yi+1)T(xi − z)

=
1

η

n∑
j=1

(
xi,j ln

xi,j
yi+1,j

− zj ln
xi,j
yi+1,j

)
=

1

η

n∑
j=1

(
xi,j ln

xi,j
yi+1,j

− zj ln
zj

yi+1,j
+ zj ln

zj
xi,j

)
=

1

η

(
DKL(xi ‖ yi+1)−DKL(z ‖ yi+1) +DKL(z ‖ xi)

)
≤ 1

η

(
DKL(xi ‖ yi+1)−DKL(z ‖ xi+1) +DKL(z ‖ xi)

)
(by Claim 2.6).

(Note that these are generalized KL divergences as yi+1 is not necessarily a distribution.) Summing
this over i, the last two terms telescope:

t∑
i=1

(cTi xi − cTi z) ≤
1

η

(
DKL(z ‖ x1) +

t∑
i=1

DKL(xi ‖ yi+1)
)

(2.2)

The summands on the right-hand side are bounded by direct expansion:

DKL(xi ‖ yi+1) =
∑
j

(
xi,j ln

xi,j
yi+1,j

− xi,j + yi+1,j

)
=
∑
j

xi,j ·
(
ηci,j − 1 + exp(−ηci,j)

)
≤
∑
j

xi,j · η2c2
i,j/2, (2.3)

by Claim 3.3. Combining this with (2.2) and applying Claim 2.4 yields

t∑
i=1

(cTi xi − cTi z) ≤
lnn

η
+
η

2

t∑
i=1

∑
j

xi,jc
2
i,j .

�

Corollary 2.7. Assume that the costs satisfy ci,j ∈ [0, 1] for all i, j. Let ε = η− η2/2 and assume
that ε ≤

√
2 − 1 ≈ 0.414. Consider any time step t. Let A be the total expected cost of the

algorithm. Let j∗ be the expert with minimum total cost. Then

A ≤ (1 + ε)
t∑
i=1

ci,j∗ +
lnn

ε
. (2.4)

Remark. The bound (2.4) is the same as Corollary 2.7, with a slightly different relationship
between ε and η.

6



Proof. Apply Theorem 2.1 with z = ej∗ , obtaining

t∑
i=1

cTi xi ≤
t∑
i=1

ci,j∗ +
η

2

t∑
i=1

∑
j

xi,jc
2
i,j +

lnn

η
.

Since ci ∈ [0, 1]n we have c2
i,j ≤ ci,j . So, rearranging, we obtain

t∑
i=1

cTi xi ≤
1

1− η/2

t∑
i=1

ci,j∗ +
lnn

(1− η/2)η
.

Recall that (1− η/2)η = ε. Since ε ≤
√

2− 1, we have 1
1−η/2 ≤ 1 + ε. This proves (2.4). �

Corollary 2.8. Assume that the costs satisfy ci,j ∈ [0, 1] for all i, j. Let ε =
√

ln(n)/t. Consider
any time step t. Let A be the total expected cost of the algorithm. Let j∗ be the expert with
minimum total cost. Then

Regret(t) = A−
t∑
i=1

ci,j∗ ≤ 2
√
t lnn. (2.5)

3 Basic Facts

Claim 3.1. 1 + x ≤ ex for all x ∈ R.

Claim 3.2. For any α > 0,

αx ≤ 1 + (α− 1)x ∀x ∈ [0, 1].

Claim 3.3. e−x ≤ 1− x+ x2

2 for x ≥ 0.

Proof. Observe that both sides equal 0 when x = 0. The derivative of 1−x+ x2

2 −e
−x is e−x−1+x.

This is non-negative by Claim 3.1. Integrating proves the result. �

Claim 3.4.
log(1 + x) ≤ x ∀x > −1.

Claim 3.5.

log
1

1− x
≤ x+ x2 ∀x ∈ [0, 1/2]

References

[1] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert Schapire. The nonstochastic mul-
tiarmed bandit problem. SIAM Journal on Computing, 32(1):48–77, 2002.

[2] Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, Learning and Games. Cambridge University
Press, 2006.

[3] Thomas Cover and Joy A. Thomas. Elements of Information Theory. Wiley & Sons, 1991.

7



[4] Yoav Freund and Robert E. Schapire. Adaptive game playing using multiplicative weights.
Games and Economic Behavior, 29:79–103, 1999.

[5] Elad Hazan. Introduction to online convex optimization. Foundations and Trends in Optimiza-
tion, 2(3–4), 2015.

[6] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to
Algorithms. Cambridge University Press, 2014.

8


	The randomized weighted majority algorithm
	Extensions
	Regret bounds
	Doubling trick
	The number of small experts


	RWM using KL divergences
	Preliminaries on KL-divergence
	Proof of Theorem 2.1

	Basic Facts

