
Machine Learning Theory

Lecture 15

Nicholas Harvey

October 29, 2018

1 Setup

There is an agent who must make a sequence of online decisions. There are a sequence of discrete
time steps; in each time step, the agent must make a decision and incur the cost of that decision.
The agent has limited or no forehand knowledge of what that cost will be. Of course, the goal is to
incur as little cost as possible. Usually, at the end of each time step, the agent is told the cost of
each choice he could have made. (However, in “bandits” scenarios, the agent is only told the cost
of the choice he actually made.)

A typical setup is that there are n experts. At each time step i, each expert gives some “advice”
(which may or may not be captured mathematically). The costs at time i are specified by a vector
ci = (ci,1, ..., ci,n) ∈ Rn, where ci,j is the cost of following expert j at time i. The agent must
(without knowing ci) pick an expert j whose advice to follow, then incur the cost ci,j . The vector
ci is then revealed to the agent.

2 Finding a perfect expert: the halving algorithm

Suppose that decision at time step i the goal is for the agent to “predict” the value of a variable
vi ∈ {0, 1}. Each expert j provides a “prediction” pi,j ∈ {0, 1}, which is his prediction for vi. After
the agent makes his decision, the true value of vi ∈ {0, 1} is revealed. Expert j has cost 1 if his
prediction was wrong, otherwise cost 0 (i.e., ci,j = 1pi,j 6=vi).

Theorem 2.1. Suppose that there is some expert that is always correct. Then Algorithm 1 has
total cost at most lg n.

Note. The costs here can be adversarially chosen. The costs ci can even depend on the expert j
chosen by the algorithm in round i. In fact, since the algorithm is deterministic, the adversary can
completely determine the experts chosen by the algorithm.

Proof. Every time the algorithm makes a mistake, the majority vote over S was incorrect, so the
size of S shrinks by a factor of at least 2. Since we assume that some expert is always correct, the
set S never becomes empty. �

1

Algorithm 1 The halving algorithm.

1: procedure HalvingAlgorithm
2: Let S = [n] (the set of experts predicting correctly so far)
3: for i← 1, 2, ... do

. Receive predictions pi
4: Let m be the majority prediction of experts in S. Let j be an expert that predicted m.
5: Follow the advice of expert j, incurring cost ci,j

. Receive cost vector ci (i.e., receive the value vi)
6: Remove all j from S whose predictions were incorrect

3 No perfect expert: the weighted majority algorithm

Now let us consider the more difficult case in which there is no guarantee of a perfect expert. So,
rather than discarding experts that make a mistake, the agent will associate a “weight” with each
expert. The weight serves as the “credibility” of the expert, i.e., the agent’s confidence in that
expert’s predictions. The main idea of the multiplicative-weight update method is to decrease an
agent’s weight multiplicatively whenever he makes a mistake.

The weight associated with expert j at time i is yi,j . Initially all weights are y1,j = 1. In
iteration i, if expert j is correct he incurs a cost ci,j = 0. Otherwise, if expert j is incorrect he
incurs a cost of ci,j = 1, and his weight is multiplied by e−η. His total cost incurred by the start of
time t is

∑t−1
i=1 ci,j , and his weight is yt,j = exp(−η

∑t−1
i=1 ci,j).

Algorithm 2 The weighted majority algorithm.

1: procedure WeightedMajority
2: Let y1 = (1, ..., 1).
3: for i← 1, 2, ... do

. Receive predictions pi
4: If

∑
expert j predicting 1 yi,j ≥

1
2

∑
j yi,j , let m = 1; otherwise m = 0.

5: Let j be an expert that predicted m.
6: Follow the advice of expert j, incurring cost ci,j ∈ {0, 1}

. Receive cost vector ci ∈ {0, 1}n (i.e., receive the value vi)
7: for j ← 1, ..., n do

8: yi+1,j =

{
yi,j (weight is unchanged if expert j predicted correctly)

yi,je
−η (weight is decreased if expert j made a mistake)

Theorem 3.1. Let ε = 1 − e−η ≈ η − η2/2 (so η = ln 1
1−ε ≈ ε + ε2/2). Assume that ε ≤ 1/2.

Consider any time step t. Let A be the total cost (number of mistakes) of the algorithm. Let j∗

be the expert with minimum total cost (number of mistakes). Then

A ≤ 2(1 + ε)
t∑
i=1

ci,j∗ +
2 lnn

ε
.

References. [1, Lemma 1.3].

2

Note. The costs here can be completely adversarially chosen. Specifically, the costs ci can depend
on the expert j chosen by the algorithm in all rounds 1, ..., i. (Specifically, in round i, the adversary
is allowed to choose the costs ci after the algorithm has already chosen the expert j to follow.)
In fact, since the algorithm is deterministic, the adversary can completely determine the entire
sequence of experts chosen by the algorithm.

Remark. Even as η → 0, the algorithm’s cost does not get arbitrarily close to the cost of the
best expert: the theorem cannot prove A < 2

∑t
i=1 ci,j∗ . To trace this factor 2’s origin, the relevant

occurrences of 2 are highlighted in the proof. See Section 4 for further discussion.

Remark. Many expositions of the multiplicative weights algorithm scale the weights by (1− εci,j)
or (1− ε)ci,j instead of exp(−ηci,j). The proof can be easily modified to use those scalings instead.
If the weights are scaled by (1− εci,j), then note that setting ε = 1 gives the Halving Algorithm.

Proof Idea. The proof has two main ideas.

(a) The cost incurred by the algorithm in iteration i can be related to the total change in the
weights during iteration i.

(b) The total weight in iteration t provides a useful upper bound on the total cost that any expert
has incurred up to iteration t.

Proof.

Step (a): We wish to analyze the cost of the algorithm in iteration i. The main fact that we
know is: whenever the algorithm makes a mistake, the weighted majority vote was incorrect, i.e.,∑

mistaken j yi,j ≥
1

2

∑
j yi,j . Since the mistaken experts’ weights are decreased by a factor e−η,

the main consequence is that∑
j

yi+1,j =
∑

mistaken j

yi,je
−η +

∑
correct j

yi,j

=
∑
j

yi,j − (1− e−η)
∑

mistaken j

yi,j︸ ︷︷ ︸
≥
∑

j yi,j/ 2

≤
(

1− 1− e−η

2

)∑
j

yi,j

=
(

1− ε

2

)
·
∑
j

yi,j .

Since the sum of the y values decreases by 1− ε

2
every time the algorithm makes a mistake,

∑
j

yt+1,j ≤
(

1− ε

2

)A
·
∑
j

y1,j ≤ exp
(
− ε

2
A
)
· n. (3.1)

That is, if the algorithm has made many mistakes, the sum of the weights must be small.

3

Step (b): The next idea is that the sum of the weights is actually a useful proxy for the largest
weight, which corresponds to the expert with lowest cost. Indeed, it is not hard to see that
yt,j∗ = maxj yt,j ∈ [1/n, 1] ·

∑
j yt,j . Since the number of mistakes by expert j∗ relates to the

logarithm of this quantity, this multiplicative factor 1/n only leads to an additive error of O(log n)
in estimating the cost of expert j∗. The inequality that we will use is:

exp
(
− η

t∑
i=1

ci,j∗︸ ︷︷ ︸
total cost of
expert j∗

)
= yt+1,j∗ ≤

∑
j

yt+1,j . (3.2)

Combining (a) and (b): To relate the cost of expert j∗ and the cost of the algorithm, we combine
(3.1) and (3.2) to obtain

exp
(
− η

t∑
i=1

ci,j∗
)
≤
∑
j

yt+1,j ≤ exp
(
− ε

2
A
)
· n.

Taking the log and rearranging,

A ≤
2 η

ε

t∑
i=1

ci,j∗ +
2 lnn

ε
=

2

ε
ln
(1

1− ε

) t∑
i=1

ci,j∗ +
2 lnn

ε
.

Applying Claim 3.2 concludes the proof. �

Claim 3.2.

log
1

1− x
≤ x+ x2 ∀x ∈ [0, 1/2]

Remark. In this analysis, the current total weight of the experts, namely
∑

j yi,j = ‖yi‖1, plays
an important role. One may view this quantity as a “potential function” that captures the state
of the algorithm. Step (a) relates this potential to the cost of the algorithm. Step (b) relates this
potential to the cost of the best expert.

4 Lower Bound

Suppose that ci is allowed to depend on the expert j chosen by the algorithm; the algorithm
may be either deterministic or randomized. (Equivalently, we may consider an adaptive offline
adversary. In this scenario, the cost ci only depends on the expert j chosen by the algorithm
in rounds 1 through i − 1; however, the adversary knows the algorithm and all random bits used
by the algorithm. In this case, the adversary can predict the expert j chosen by the algorithm in
round i.)

Claim 4.1. Consider the case of two experts (i.e., n = 2). For any algorithm A, the adversary
can ensure after t rounds A ≥ t and

∑t
i=1 ci,j∗ ≤ t/2.

We may conclude that the constant factor 2 is necessary in Theorem 3.1.

Proof. The experts are defined so that expert 0 always predicts pi,0 = 0 and expert 1 always
predicts pi,1 = 1. After the algorithm chooses which expert to follow, the adversary chooses the

4

value vi so that the algorithm is incorrect. Thus the algorithm’s total cost will be t. However, at
each time step, one expert always predicts correctly. Thus, the better of the two experts has total
cost at most t/2. �

References

[1] Elad Hazan. Introduction to online convex optimization. Foundations and Trends in Optimiza-
tion, 2(3–4), 2015.

5

	Setup
	Finding a perfect expert: the halving algorithm
	No perfect expert: the weighted majority algorithm
	Lower Bound

