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Let f : Rn → R be a convex function. In these notes, we consider methods for solving
infx∈X f(x). In general, this infimum is not achieved, but for simplicity we will assume throughout
that it is achieved by at a point x∗. (Otherwise, one could assume that x∗ is an approximate
minimizer, since our algorithms provide only approximate solutions anyways.)

1 Lipschitz functions

1.1 The basic setting

We begin with the most basic setting, in which f is L-Lipschitz with respect to the Euclidean norm.
Since f is convex, we have ∂f(x) 6= ∅ for all x ∈ Rn. The algorithm is shown in Algorithm 1.

Algorithm 1 Gradient descent for minimizing a convex, 1-Lipschitz function over Rn.

1: procedure GradientDescent(x1 ∈ Rn, T ∈ N)
2: Let η = 1/

√
T

3: for i← 1, ..., T − 1 do
4: xi+1 ← xi − ηgi, where gi = ∇f(xi) if f is differentiable, and otherwise gi is any

subgradient in ∂f(xi).

5: return
∑T

i=1 xi/T

Theorem 1.1. Suppose that f : Rn → R is convex and 1-Lipschitz (with respect to ‖·‖2). Fix an
optimal solution x∗ ∈ argminx f(x) and a starting point x1 ∈ Rn. Define η = 1√

T
. Suppose that

‖x1 − x∗‖2 ≤ 1. Then

f

(
1

T

T∑
i=1

xi

)
− f(x∗) ≤ 1√

T
.

Proof. We bound the error on the ith iteration as follows:

f(xi)− f(x∗) ≤ 〈 gi, xi − x∗ 〉 (by the subgradient inequality (3.2))

=
1

η
〈 xi − xi+1, xi − x∗ 〉 (by the gradient step in line 4)
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=
1

2η

(
‖xi − xi+1‖22 + ‖xi − x∗‖22 − ‖xi+1 − x∗‖22

)
(by the cosine law (3.1)).

To analyze the average error, sum the previous displayed equation over i. The last two terms
telescope, yielding

T∑
i=1

(
f(xi)− f(x∗)

)
≤ 1

2η

(( T∑
i=1

‖xi − xi+1‖22
)

+ ‖x1 − x∗‖22 − ‖xT+1 − x∗‖22

)

≤ 1

2η

( T∑
i=1

‖ηgi‖22 + ‖x1 − x∗‖22
)

(by the gradient step in line 4)

≤ ηT

2
+

1

2η
(by (3.4) and assumption on x1)

Dividing by T and using Jensen’s inequality (Lemma 3.8) and the definition of η gives

f

(
T∑
i=1

xi
T

)
− f(x∗) ≤

T∑
i=1

1

T

(
f(xi)− f(x∗)

)
≤ η

2
+

1

2Tη
=

1√
T
,

as required.

Remark. Theorem 1.1 achieves the optimal rate for any algorithm that only accesses f using a
subgradient oracle [2, Theorem 3.13].

Remark. Thinking ahead to future topics, let us observe a troubling aspect of this algorithm.
We may think of Rn as an abstract vector space V. The gradient ∇f(xi) then lives in the dual
space V∗, whereas the iterates xi lie in the primal space V. Nevertheless, the algorithm performs
arithmetic between these objects lying in different spaces. If we think of gradients as row vectors,
then we are implicitly using the transpose operation to map from the dual to the primal space.

General reduction from arbitrary scale & Lipschitz value. The analysis present above
assumes that the given function f is 1-Lipschitz. How shall we handle a function that is L-
Lipschitz? It also has a certain “scale assumption” ‖x1 − x∗‖2 ≤ 1. How could we handle a general
scale, say ‖x1 − x∗‖2 ≤ R? In Section 1.7 we will discuss a general reduction that can handle such
scenarios.

Theorem 1.2. Suppose that we have a theorem giving a convergence rate guarantee c(T ) for
gradient descent assuming f is 1-Lipschitz and assuming the “scale” ‖x1 − x∗‖2 ≤ 1. Suppose h is
an L-Lipschitz function whose “scale” is bounded by R. Then there is a black-box reduction from
h to f , showing that gradient descent on h achieves convergence rate RL · c(T ).

1.2 The constrained setting

In this section we consider the problem minx∈X f(x) where X is a closed, convex set. Again, f is
assumed to be convex and 1-Lipschitz.

The ordinary gradient descent algorithm does not ensure that the iterates remain in X . In this
section we modify the algorithm to project back onto X . The algorithm now takes a gradient step
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from the iterate xi to compute a new point yi+1, then projects onto X to obtain the new iterate
xi+1.

Algorithm 2 Projected gradient descent for minimizing convex, 1-Lipschitz functions over a convex
set.
1: procedure ProjectedGradientDescent(X ⊆ Rn, x1 ∈ X , T ∈ N)

2: Let η = 1/
√
T

3: for i← 1, ..., T − 1 do
4: yi+1 ← xi − ηgi, where gi ∈ ∂f(xi).

5: xi+1 ← ΠX (yi+1)

6: return
∑T

i=1 xi/T

The algorithm, shown in Algorithm 2, is a slight modification of Algorithm 1. The theorem is
a slight modification of Theorem 1.1. The only changes are highlighted below.

Theorem 1.3. Let X ⊆ Rn be a convex set. Suppose that f : X → R is convex and 1-Lipschitz

(with respect to ‖·‖2). Fix an optimal solution x∗ ∈ argminx f(x) and a starting point x1 ∈ X .
Define η = 1√

T
. Suppose that ‖x1 − x∗‖2 ≤ 1. Then

f

(
1

T

T∑
i=1

xi

)
− f(x∗) ≤ 1√

T
.

Proof. We bound the error on the ith iteration as follows:

f(xi)− f(x∗) ≤ 〈 gi, xi − x∗ 〉 (by the subgradient inequality (3.2))

=
1

η
〈 xi − yi+1 , xi − x∗ 〉 (by the gradient step in line 4)

=
1

2η

(∥∥∥xi − yi+1

∥∥∥2
2

+ ‖xi − x∗‖22 −
∥∥∥ yi+1 − x∗

∥∥∥2
2

)
(by the cosine law (3.1))

≤ 1

2η

(∥∥∥xi − yi+1

∥∥∥2
2

+ ‖xi − x∗‖22 − ‖xi+1 − x∗‖22
)
.

The last line uses Claim 3.4: since xi+1 is the projected point ΠX (yi+1) and x∗ ∈ X , the corollary

yields that ‖xi+1 − x∗‖22 ≤ ‖yi+1 − x∗‖22. To analyze the average error, sum the previous displayed
equation over i. The last two terms telescope, yielding

T∑
i=1

(
f(xi)− f(x∗)

)
≤ 1

2η

(( T∑
i=1

∥∥∥xi − yi+1

∥∥∥2
2

)
+ ‖x1 − x∗‖22 − ‖xT+1 − x∗‖22

)

≤ 1

2η

( T∑
i=1

‖ηgi‖22 + ‖x1 − x∗‖22
)

(by the gradient step in line 4)

≤ ηT

2
+

1

2η
(by (3.4) and the assumption on x1)
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Dividing by T and using Jensen’s inequality (Lemma 3.8) and the definition of η gives

f

(
T∑
i=1

xi
T

)
− f(x∗) ≤

T∑
i=1

1

T

(
f(xi)− f(x∗)

)
≤ η

2
+

1

2Tη
=

1√
T
,

as required.

1.3 Online setting

Suppose that at time step i, the algorithm proposes a point xi, the adversary chooses a function
fi, and the algorithm receives a subgradient gi ∈ ∂fi(xi). The algorithm’s cost of this iteration is
fi(xi). The goal is to minimize the regret (or total regret), which is defined to be

Regret(T ) :=
T∑
i=1

fi(xi)− min
x∗∈X

T∑
i=1

fi(x
∗).

This is the algorithm’s cost minus the cost of the best fixed point.

The projected gradient descent algorithm (Algorithm 2) works in this setting with only trivial
changes: replacing f with fi throughout. The modified algorithm is shown in Algorithm 3. The
theorem is a slight modification of Theorem 1.3.

Algorithm 3 Online projected gradient descent for Lipschitz functions.

1: procedure OnlineProjectedGradientDescent(X ⊆ Rn, x1 ∈ X , T ∈ N)
2: Let η = 1/

√
T

3: for i← 1, ..., T − 1 do
. Incur cost fi(xi), receive a subgradient gi ∈ ∂fi(xi)

4: yi+1 ← xi − ηgi
5: xi+1 ← ΠX (yi+1)

Theorem 1.4. Let X ⊆ Rn be a convex set. Suppose that f1, f2, ... : X → R are convex and

1-Lipschitz (with respect to ‖·‖2). Fix a starting point x1 ∈ X . Define η = 1√
T

. Suppose that

‖x1 − x∗‖2 ≤ 1. Then the regret satisfies

Regret(T ) =

T∑
i=1

(
fi(xi)− fi(x∗)

)
≤
√
T .

Proof. We bound the error on the ith iteration as follows:

fi (xi)− fi (x∗) ≤ 〈 gi, xi − x∗ 〉 (by the subgradient inequality (3.2))

=
1

η
〈 xi − yi+1, xi − x∗ 〉 (by the gradient step in line 4)

=
1

2η

(
‖xi − yi+1‖22 + ‖xi − x∗‖22 − ‖yi+1 − x∗‖22

)
(by the cosine law (3.1))

≤ 1

2η

(
‖xi − yi+1‖22 + ‖xi − x∗‖22 − ‖xi+1 − x∗‖22

)
.
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The last line uses Claim 3.4: since xi+1 is the projected point ΠX (yi+1) and x∗ ∈ X , the corollary
yields that ‖xi+1 − x∗‖22 ≤ ‖yi+1 − x∗‖22. To analyze the average error, sum the previous displayed
equation over i. The last two terms telescope, yielding

T∑
i=1

(
fi (xi)− fi (x∗)

)
≤ 1

2η

(( T∑
i=1

‖xi − yi+1‖22
)

+ ‖x1 − x∗‖22 − ‖xT+1 − x∗‖22

)

≤ 1

2η

( T∑
i=1

‖ηgi‖22 + ‖x1 − x∗‖22
)

(by the gradient step in line 4)

≤ ηT

2
+

1

2η
(by (3.4) and definition of R)

Jensen’s inequality is not needed here, as we wish to bound the regret: the total error of the iterates.
Substituting η completes the proof of the regret bound.

1.4 Unknown time horizon (with diameter bound)

A disadvantage of the preceding algorithms is that they require the step size η to be chosen with
knowledge of T , the iteration at which a good approximation is desired. What if T is not known at
the time that gradient descent starts executing? It is possible to make GD oblivious to the value
of T by allowing the step size to depend on the iteration.

Let us illustrate this technique by analyzing the online, projected setting. This result requires a
slightly stronger hypothesis: a bound on the diameter of X . The proof is very similar to the proof
of Theorem 1.4.

Algorithm 4 Online projected gradient descent for Lipschitz functions, with unknown time hori-
zon.
1: procedure OnlineProjectedGradientDescent(X ⊆ Rn, x1 ∈ X )
2: Let ηi = 1/

√
i for all i ∈ N

3: i← 1
4: repeat

. Incur cost fi(xi), receive a subgradient gi ∈ ∂fi(xi)
5: yi+1 ← xi − ηigi
6: xi+1 ← ΠX (yi+1)
7: i← i+ 1
8: until solution desired in iteration T

Theorem 1.5. Let X ⊆ Rn be a convex set. Suppose that f1, f2, ... : X → R are convex
and 1-Lipschitz (with respect to ‖·‖2). Let ηi = 1√

2i
. Suppose that diam(X ) ≤ 1. Then the regret

satisfies

Regret(T ) =
T∑
i=1

(
fi(xi)− fi(x∗)

)
≤
√

2T ∀T ≥ 1.
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Consequently, in the offline setting where each fi = f ,

f

(
1

T

T∑
i=1

xi

)
− f(x∗) ≤

√
2

T
∀T ≥ 1.

References. This result is originally due to [8, Theorem 1], with slightly worse parameters. See also [3, Theorem

3.1].

Proof. We bound the error on the ith iteration as follows:

fi(xi)− fi(x∗) ≤ 〈 gi, xi − x∗ 〉 (by the subgradient inequality (3.2))

=
1

ηi
〈 xi − yi+1, xi − x∗ 〉 (by the gradient step in line 5)

=
1

2 ηi

(
‖xi − yi+1‖22 + ‖xi − x∗‖22 − ‖yi+1 − x∗‖22

)
(by the cosine law (3.1))

≤ 1

2 ηi

(
‖xi − yi+1‖22 + ‖xi − x∗‖22 − ‖xi+1 − x∗‖22

)
.

The last line uses Claim 3.4: since xi+1 is the projected point ΠX (yi+1) and x∗ ∈ X , the corollary
yields that ‖xi+1 − x∗‖22 ≤ ‖yi+1 − x∗‖22. To analyze the average error, sum the previous displayed
equation over i. The last two terms no longer telescope, but nearly do, and this is enough to get a
good upper bound:

T∑
i=1

(
fi(xi)− fi(x∗)

)
≤ 1

2

(
T∑
i=1

‖xi − yi+1‖22
ηi

+
‖x1 − x∗‖22

η1
+

T∑
i=2

( 1

ηi
− 1

ηi−1

)
‖xi − x∗‖22 −

‖xT+1 − x∗‖22
ηT+1

)

≤ 1

2

(
T∑
i=1

∥∥∥ ηi gi∥∥∥2
2

ηi
+
√

2

T∑
i=1

(√
i−
√
i− 1

) )
(by definition of ηi and the diameter bound)

=
1

2

(
T∑
i=1

1√
2i

+
√

2T

)
(by (3.4) and telescoping)

≤ 1

2

(2
√
T√
2

+
√

2T
)

(by Claim 3.2)

≤
√

2T .

This completes the proof of the regret bound.
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In the offline setting, we divide by T and use Jensen’s inequality (Lemma 3.8), obtaining

f

(
T∑
i=1

xi
T

)
− f(x∗) ≤

T∑
i=1

1

T

(
f(xi)− f(x∗)

)
≤
√

2T .

1.4.1 Removing the diameter bound

Theorem 1.5 is nice in that it allows decreasing step sizes. However, unlike our previous theorems, it
requires a diameter bound on X instead of simply bounding the distance ‖x1 − x∗‖. This additional
assumption is distasteful and, as it turns out, unnecessary. In this section we remove this assumption
by introducing a stabilization trick, in which each iterate xi is always mixed with a certain fraction
of the starting point x1.

Algorithm 5 Stabilized online projected gradient descent for Lipschitz functions.

1: procedure StabilizedGradientDescent(X ⊆ Rn, x1 ∈ X , η : N→ R, γ : N→ R)
2: repeat

. Incur cost fi(xi), receive a subgradient gi ∈ ∂fi(xi)
3: yi+1 ← xi − ηigi
4: xi+1 ← γiΠX (yi+1) + (1− γi)x1 (project yi+1 onto X then mix with x1)
5: i← i+ 1
6: until solution desired in iteration T

Theorem 1.6. Let X ⊆ Rn be a convex set. Suppose that f1, f2, ... : X → R are convex and
1-Lipschitz (with respect to ‖·‖2). Assume that ‖x1 − x∗‖2 ≤ 1. Let ηi = 1√

2i
and γi = ηi+1/ηi.

Then the regret satisfies

Regret(T ) =

T∑
i=1

(
fi(xi)− fi(x∗)

)
≤
√

2T ∀T ≥ 1.

Proof. Defining xi+1 as the mixture xi+1 = γiΠX (yi+1) + (1− γi)x1 has a useful consequence due
to convexity.

‖xi+1 − x∗‖22 ≤ γi ‖ΠX (yi+1)− x∗‖22 + (1− γi) ‖x1 − x∗‖22 (by convexity of ‖·‖22)

=⇒ ‖ΠX (yi+1)− x∗‖22 ≥
1

γi

(
‖xi+1 − x∗‖22 − (1− γi) ‖x1 − x∗‖22

)
=

ηi
ηi+1

‖xi+1 − x∗‖22 −
( ηi
ηi+1

− 1
)
‖x1 − x∗‖22 , (1.1)

by the definition of γi.
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Next, we follow the proof of Theorem 1.5. The error on the ith iteration is bounded as follows:

fi(xi)− fi(x∗)

≤ 1

2ηi

(
‖xi − yi+1‖22 + ‖xi − x∗‖22 − ‖yi+1 − x∗‖22

)
≤ 1

2ηi

(
‖xi − yi+1‖22 + ‖xi − x∗‖22 − ‖ΠX (yi+1)− x∗‖22

)
(by Claim 3.4)

≤ 1

2ηi

(
‖xi − yi+1‖22 + ‖xi − x∗‖22 −

ηi
ηi+1

‖xi+1 − x∗‖22 +
( ηi
ηi+1

− 1
)
‖x1 − x∗‖22

)
(by Eq. (1.1))

=
1

2

(
‖xi − yi+1‖22

ηi
+
‖xi − x∗‖22

ηi
−
‖xi+1 − x∗‖22

ηi+1︸ ︷︷ ︸
telescopes

+
( 1

ηi+1
− 1

ηi

)
︸ ︷︷ ︸

telescopes

‖x1 − x∗‖22

)
.

Summing this over i yields

T∑
i=1

(
fi(xi)− fi(x∗)

)
≤ 1

2

(
T∑
i=1

‖xi − yi+1‖22
ηi

+
T∑
i=1

(‖xi − x∗‖22
ηi

−
‖xi+1 − x∗‖22

ηi+1

)
+

T∑
i=1

( 1

ηi+1
− 1

ηi

)
‖x1 − x∗‖22

)

≤ 1

2

(
T∑
i=1

‖xi − yi+1‖22
ηi

+
‖x1 − x∗‖22

ηT

)
(telescoping)

=
1

2

( T∑
i=1

‖ηigi‖22
ηi

+
‖x1 − x∗‖22

ηT

)
(by the gradient step in line 3)

≤ 1

2

( T∑
i=1

ηi +
1

ηT

)
(by the assumptions ‖gi‖2 ≤ 1 and ‖x1 − x∗‖2 ≤ 1)

<
1

2

( 2√
2

√
T +
√

2T
)

(by Claim 3.2 and the definition of ηi)

1.5 Stochastic gradient setting

Now we consider the setting in which we have a stochastic gradient oracle. When executed at
a point x, it returns a vector ĝ such that the expectation of ĝ (conditioned on the past) is in
∂f(x). The stochastic gradient descent algorithm, shown in Algorithm 6, is a trivial modification
of Algorithm 2 to use this stochastic oracle.

The expected error of the stochastic gradient descent algorithm is easy to analyze. The proof
is a modification of Theorem 1.3 that just requires a bit of care with conditional expectations.

First let us introduce some notation. Let Fi denote the sigma-field generated by ĝ1, ..., ĝi. If
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Algorithm 6 Stochastic gradient descent for minimizing convex, Lipschitz functions over a convex
set.
1: procedure StochasticGradientDescent(X ⊆ Rn, x1 ∈ X , t ∈ N)
2: Let η = 1/

√
t

3: for i← 1, ..., t do
4: Let ĝi be a random vector obtained from the subgradient oracle at xi

. So E [ ĝi | Fi−1 ] ∈ ∂f(xi)

5: yi+1 ← xi − η ĝi ,

6: xi+1 ← ΠX (yi+1)

7: return
∑t

i=1 xi/t

that is an uncomfortable notion for you, just think of Fi as being the vector (ĝ1, ..., ĝi). Define

Expected subgradient: gi = E [ ĝi | Fi−1 ]

Noise in subgradient: ẑi = gi − ĝi

Theorem 1.7. Let X ⊆ Rn be a convex set. Suppose that f : X → R is convex. Assume that:

(a) gi ∈ ∂f(xi) for all i (with probability 1).

(b) E
[
‖ĝi‖22

]
≤ 1 for all i.

Fix an optimal solution x∗ ∈ argminx f(x) and a starting point x1 ∈ X . Define η = 1√
T

. Suppose

that ‖x1 − x∗‖2 ≤ 1. Then

E

[
f

(
1

T

T∑
i=1

xi

)]
− f(x∗) ≤ 1√

T
.

References. [6, Theorem 14.8], [2, Section 6.1].

Proof. Hypothesis (a) and the subgradient inequality (3.2) imply that

f(xi)− f(x∗) ≤ 〈 gi, xi − x∗ 〉 = 〈 E [ ĝi | Fi−1 ] , xi − x∗ 〉 (with probability 1).

Observe that both the left- and right-hand side are Fi−1-measurable random variables. To see this,
note that xi = x1 − η

∑i−1
j=1 ĝj , so the randomness of xi is completely determined by ĝ1, ..., ĝi−1.

Taking the (unconditional) expectation

E [ f(xi) ]− f(x∗) ≤ E [ 〈 E [ ĝi | Fi−1 ] , xi − x∗ 〉 ]

= E [ E [ 〈 ĝi, xi − x∗ 〉 | Fi−1 ] ]

= E [ 〈 ĝi, xi − x∗ 〉 ] ,

since E [ E [A | F ] ] = E [A ] for any random variable (or sigma-field) F .
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We bound the error on the ith iteration as follows:

E [ f(xi) ]− f(x∗) = E [ 〈 ĝi, xi − x∗ 〉 ]

= E

[
1

η
〈 xi − yi+1, xi − x∗ 〉

]
(by the gradient step)

= E

[
1

2η

(
‖xi − yi+1‖22 + ‖xi − x∗‖22 − ‖yi+1 − x∗‖22

)]
≤ E

[
1

2η

(
‖xi − yi+1‖22 + ‖xi − x∗‖22 − ‖xi+1 − x∗‖22

)]
.

The last line uses Claim 3.4: since xi+1 is the projected point ΠX (yi+1) and x∗ ∈ X , the corollary
yields that ‖xi+1 − x∗‖22 ≤ ‖yi+1 − x∗‖22. To analyze the average error, sum the previous displayed
equation over i. The last two terms telescope, yielding

E

[
T∑
i=1

(
f(xi)− f(x∗)

) ]
≤ E

[
1

2η

(( T∑
i=1

‖xi − yi+1‖22
)

+ ‖x1 − x∗‖22 − ‖xT+1 − x∗‖22

)]

≤ 1

2η

( T∑
i=1

E

[ ∥∥∥η ĝi ∥∥∥2
2

]
+ ‖x1 − x∗‖22

)
(by the gradient step)

≤ ηT

2
+

1

2η
(by hypothesis (b) and assumption on x1)

Dividing by T and using Jensen’s inequality (Lemma 3.8) and the definition of η gives

E

[
f

(
T∑
i=1

xi
T

)]
− f(x∗) ≤ E

[
T∑
i=1

1

T

(
f(xi)− f(x∗)

) ]
≤ η

2
+

1

2Tη
=

1√
T
,

as required.

Remark. Suppose that f is 1/2-Lipschitz and that E
[
‖ẑi‖2

]
≤ 1/4 for each i. By Theorem 3.6

we have ‖gi‖ ≤ 1/2 for all i (with probability 1). Furthermore,

E
[
‖ĝi‖2

]
= E

[
‖gi − ẑi‖2

]
≤ 2 E

[
‖gi‖2 + ‖ẑi‖2

]
≤ 2

(
1
4 + E

[
‖ẑi‖2

] )
≤ 1.

So Theorem 1.7 applies.

1.6 Analysis of the last iterate

Theorem 1.8. Let X ⊆ Rn be a convex set. Suppose that f : X → R is convex and 1-Lipschitz
(with respect to ‖·‖2). Define ηi = 1√

i
. Suppose that diam(X ) ≤ 1. Then Algorithm 7 satisfies

f(xT )− f(x∗) ≤ 3(2 + log T )

2
√
T

.

References. Shamir-Zhang [7, Theorem 2].
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Algorithm 7 Projected gradient descent for minimizing a convex, 1-Lipschitz function f with an
unknown time horizon.
1: procedure ProjectedGradientDescent(X ⊆ Rn, x1 ∈ X )
2: for i← 1, 2, ... do
3: Let ηi = 1/

√
i

4: yi+1 ← xi − ηigTi , where gi ∈ ∂f(xi).
5: xi+1 ← ΠX (yi+1)

Proof. The first step is identical to the proof of Theorem 1.5:

f(xi)− f(w) ≤ 〈 gi, xi − w 〉

=
1

ηi
〈 xi − yi+1, xi − w 〉

=
1

2ηi

(
‖xi − yi+1‖22 + ‖xi − w‖22 − ‖yi+1 − w‖22

)
≤ 1

2ηi

(
‖xi − yi+1‖22 + ‖xi − w‖22 − ‖xi+1 − w‖22

)
.

The next step is similar to the proof of Theorem 1.5, except that the sum starts at i = T − k.
Crucially, instead of substituting w = x∗, we substitute w = xT−k, which causes the quantity
‖xT−k − w‖22 to vanish.

T∑
i=T−k

(
f(xi)− f(xT−k)

)
≤

T∑
i=T−k

‖xi − yi+1‖22
2ηi

+
1

2

T∑
i=T−k+1

( 1

ηi
− 1

ηi−1

)
‖xi − xT−k‖22 −

1

ηT
‖xT+1 − xT−k‖22

≤
T∑

i=T−k

‖ηigi‖22
2ηi

+
1

2

T∑
i=T−k+1

(√
i−
√
i− 1

)
(diameter bound)

=
1

2

T∑
i=T−k

1√
i

+
1

2
(
√
T −
√
T − k) (Lipschitz assumption)

≤ 3

2
(
√
T −
√
T − k − 1),

due to the bound
b∑

i=a

1√
i
≤
∫ b−1

a−1

1√
x
dx ≤ 2(

√
b−
√
a− 1).

Thus, using Claim 3.3, we have

T∑
i=T−k

(
f(xi)− f(xT−k)

)
≤ 3

2
· k + 1√

T +
√
T − k − 1

.

Now divide this by k + 1 and define Sk = 1
k+1

∑T
i=T−k f(xi) to obtain

Sk − f(xT−k) ≤ 3

2
√
T
.
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Observe that kSk−1 = (k + 1)Sk − f(xT−k). Combining this with the previous inequality yields

kSk−1 = kSk +
(
Sk − f(xT−k)

)
≤ kSk +

3

2
√
T
.

Dividing by k, we obtain

Sk−1 ≤ Sk +
3

2k
√
T
.

Thus, by induction,

f(xT ) = S0 ≤ ST−1 +
3

2
√
T

T−1∑
k=1

1

k
≤ ST−1 +

3(1 + log T )

2
√
T

.

Finally, in the proof of Theorem 1.5, we have already shown that

ST−1 − f(x∗) =
1

T

T∑
i=1

(
f(xi)− f(x∗)

)
≤ 3

2
√
T
.

Combining the last two inequalities yields

f(xT )− f(x∗) ≤ 3

2
√
T

+
3(1 + log T )

2
√
T

,

completing the proof.

1.7 General reduction from arbitrary scale & Lipschitz value

Our analyses above make two assumptions

• Scale of codomain: the given function f is 1-Lipschitz, and

• Scale of domain: ‖x1 − x∗‖2 ≤ 1.

How can we handle a general scale, say an L-Lipschitz function with ‖x1 − x∗‖2 ≤ R? There is a
general reduction that can handle such scenarios.

Meta-theorem. Suppose that we have a theorem giving a convergence rate guarantee c(T ) for
gradient descent assuming that f : X̂ → R is 1-Lipschitz and assuming ‖x1 − x∗‖2 ≤ 1. Suppose
that h : X → R is a convex function that is L-Lipschitz, and such that ‖x1 − x∗‖ ≤ R. Then there
is a black-box reduction from h to f , showing that gradient descent on h achieves convergence rate
RL · c(T ).

Proof of meta-theorem. Let OPT = minx∈X h(x). Define X̂ = X/R and f : X̂ → R by

f(x) =
1

RL
(h(Rx)−OPT ).

Thus,

h(x) = RL · f(x/R) +OPT (1.2)

min
x∈X̂

f(x) = 0.

12



Claim 1.9. v ∈ ∂h(x) iff v/L ∈ ∂f(x/R).

Consider running gradient descent on h with step sizes ηt = R
L
√
t

from the starting point x1,

producing iterates x2, x3, .... Let gi be the subgradient used in the ith iteration. Define ĝi = gi/L.

Simulataneously, imagine running gradient descent on f with step sizes η̂t = 1√
t

= L
Rηt and

vectors ĝi = gi/L, from the starting point x̂1 = x1/R. Let x̂2, x̂3, ... be the vectors produced.

Claim 1.10. x̂i = xi/R for all i ≥ 1.

Proof. By induction, the case i = 1 true by definition. So suppose true up to i. By definition
gi ∈ ∂h(xi), so Claim 1.9 implies that ĝi ∈ ∂f(xi/R) = ∂f(x̂i). Then

ˆxi+1 = x̂i − η̂i · ĝi =
1

R
xi −

L

R
ηi ·

1

L
gi =

1

R
(xi − ηigi) =

1

R
xi+1.

To illustrate the meta-theorem, we apply it to Theorem 1.1, obtaining:

Theorem 1.11. Suppose that f : Rn → R is convex and L-Lipschitz (with respect to ‖·‖2). Fix
an optimal solution x∗ ∈ argminx f(x) and a starting point x1 ∈ Rn. Define η = L

R
√
T

. Suppose

that ‖x1 − x∗‖2 ≤ R. Then

h

(
T∑
i=1

xi
T

)
− h(x∗) = RL · f

(
T∑
i=1

xi
RT

)
(by (1.2))

= RL · f

(
T∑
i=1

x̂i
T

)
(by Claim 1.10)

≤ RL√
T

(by Theorem 1.1).
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2 Strongly convex and Lipschitz functions

In this section we consider a stronger assumption on the function f : we assume it is α-strongly
convex and L-Lipschitz.

2.1 Online setting

First of all we do the online, projected setting, with unknown time horizon. The theorem is a
modification of Theorem 1.5.

Algorithm 8 Online projected gradient descent for strongly convex, Lipschitz functions, with
unknown time horizon.
1: procedure OnlineProjectedGradientDescent(X ⊆ Rn, x1 ∈ X )

2: Let ηi = 1/i for all i ∈ N
3: i← 1
4: repeat

. Incur cost fi(xi), receive a subgradient gi ∈ ∂fi(xi)
5: yi+1 ← xi − ηigi
6: xi+1 ← ΠX (yi+1)
7: i← i+ 1
8: until solution desired in iteration T
9: return

∑T
i=1

xi
T

Theorem 2.1. Let X ⊆ Rn be a convex set. Suppose that f1, f2, ... : X → R are 1-strongly
convex and 1-Lipschitz (with respect to ‖·‖2). Set ηi = 1

i . Then

Regret(t) =
T∑
i=1

(
fi(xi)− fi(x∗)

)
≤ 1 + lnT

2
∀T ≥ 1.

Consequently, in the offline setting where each fi = f ,

f

(
1

T

T∑
i=1

xi

)
− f(x∗) ≤ 1 + lnT

2T
∀T ≥ 1.

References. In the online setting, this result originally appeared as [4, Theorem 1]. See also [3, Theorem 3.3], [1,

Theorem 2.3].

Proof. We bound the error on the ith iteration as follows:

fi(xi)− fi(x∗) ≤ 〈 gi, xi − x∗ 〉 −
1

2
‖xi − x∗‖22 (by (3.5))

=
1

ηi
〈 xi − yi+1, xi − x∗ 〉 −

1

2
‖xi − x∗‖22 (by the gradient step in line 5)

=
1

2ηi

(
‖xi − yi+1‖22 + ‖xi − x∗‖22 − ‖yi+1 − x∗‖22

)
− 1

2
‖xi − x∗‖22 (by (3.1))
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≤ 1

2ηi

(
‖xi − yi+1‖22 + ‖xi − x∗‖22 − ‖xi+1 − x∗‖22

)
− 1

2
‖xi − x∗‖22 .

The last line uses Claim 3.4: since xi+1 is the projected point ΠX (yi+1) and x∗ ∈ X , the corollary
yields that ‖xi+1 − x∗‖22 ≤ ‖yi+1 − x∗‖22. To analyze the average error, sum the previous displayed
equation over i. The parameter ηi is chosen so that the sum involving the last three terms will
telescope:

T∑
i=1

(
fi(xi)− fi(x∗)

)
≤

T∑
i=1

‖xi − yi+1‖22
2ηi

+
1

2

( 1

η1
− 1

)
‖x1 − x∗‖22 +

1

2

T∑
i=2

( 1

ηi
− 1

ηi−1
− 1

)
‖xi − x∗‖22

=

T∑
i=1

‖ηigi‖22
2ηi

+
1

2

(
1− 1

)
︸ ︷︷ ︸

=0

‖x1 − x∗‖22 +
1

2

T∑
i=2

(
i− (i− 1)− 1

)
︸ ︷︷ ︸

=0

‖xi − x∗‖22

=
1

2

T∑
i=1

‖gi‖22
i

≤ 1 + lnT

2
.

This completes the proof of the regret bound. Dividing by T and using Jensen’s inequality
(Lemma 3.8), we obtain

f

(
T∑
i=1

xi
T

)
− f(x∗) ≤

T∑
i=1

1

T

(
f(xi)− f(x∗)

)
≤ 1 + lnT

2T
,

as required.

2.2 Improved bound in the offline setting

In the offline setting, we can improve the analysis by a factor of log(T ) through the use of a
non-uniform convex combination. The algorithm, shown in Algorithm 9, is a small variant of
Algorithm 8, with non-uniform averaging. The theorem is a modification of Theorem 2.1.

Theorem 2.2. Let X ⊆ Rn be a convex set. Suppose that f : X → R is 1-strongly convex and
1-Lipschitz (with respect to ‖·‖2). Set ηi = 2

i+1 . Then, letting λi = i
T (T+1)/2 ,

f
( T∑

i=1

λi xi

)
− f(x∗) ≤ 2

T + 1
.

References. [2, Theorem 3.9], [1, Theorem 2.4], [5].

Remark. Theorem 2.2 is optimal [2, Theorem 3.13].
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Algorithm 9 Projected gradient descent for strongly convex, Lipschitz functions, with an unknown
time horizon.
1: procedure StrongGDNonUniform(X ⊆ Rn, x1 ∈ X )

2: Let ηi = 2
i+1 for all i ∈ N

3: i← 1
4: repeat
5: yi+1 ← xi − ηigi, where gi ∈ ∂f(xi)
6: xi+1 ← ΠX (yi+1)
7: i← i+ 1
8: until solution desired in iteration T
9: return

∑T
i=1

i
T (T+1)/2 xi

Proof. We bound the error on the ith iteration as follows:

f(xi)− f(x∗) ≤ 〈 gi, xi − x∗ 〉 −
1

2
‖xi − x∗‖22 (by (3.5))

=
1

ηi
〈 xi − yi+1, xi − x∗ 〉 −

1

2
‖xi − x∗‖22 (by the gradient step in line 5)

=
1

2ηi

(
‖xi − yi+1‖22 + ‖xi − x∗‖22 − ‖yi+1 − x∗‖22

)
− 1

2
‖xi − x∗‖22 (by (3.1))

≤ 1

2ηi

(
‖xi − yi+1‖22 + ‖xi − x∗‖22 − ‖xi+1 − x∗‖22

)
− 1

2
‖xi − x∗‖22 .

The last line uses Claim 3.4: since xi+1 is the projected point ΠX (yi+1) and x∗ ∈ X , the corollary
yields that ‖xi+1 − x∗‖22 ≤ ‖yi+1 − x∗‖22.

To avoid a harmonic sum arising from the first term, we first multiply this inequality by i before
summing. First, we simplify as follows:

i ·
(
f(xi)− f(x∗)

)
≤

i ‖ηigi‖22
2ηi

+ i
( 1

2ηi
− 1

2

)
‖xi − x∗‖22 −

i

2ηi
‖xi+1 − x∗‖22

=
i ‖gi‖22
i+ 1

+
( i(i+ 1)

4
− 2i

4

)
‖xi − x∗‖22 −

i(i+ 1)

4
‖xi+1 − x∗‖22

≤ 1 +
1

4
·
(
i(i− 1) ‖xi − x∗‖22 − i(i+ 1) ‖xi+1 − x∗‖22

)
.

Now, summing over i, the right-hand side telescopes and we obtain

T∑
i=1

i ·
(
f(xi)− f(x∗)

)
≤ T − 1

4
T (T + 1) ‖xT+1 − x∗‖22 ≤ T.

Dividing by T (T + 1)/2 and applying Jensen’s inequality completes the proof.
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3 Basic Facts

Claim 3.1 (Cosine Law).

‖a− b‖22 = ‖a‖22 − 2aTb+ ‖b‖22 ∀a, b ∈ Rn. (3.1)

Claim 3.2. For any n ∈ N, 2
√
n− 2 ≤

∑n
i=1

1√
i
≤ 2
√
n− 1.

Claim 3.3 (Difference of square roots).
√
a−
√
a− b = b√

a+
√
a−b .

Proof. Note that (
√
a−
√
a− b)(

√
a+
√
a− b) =

√
a
2 −
√
a− b2 = b.

Claim 3.4 (Projection decreases Euclidean distance). ‖ΠX (y)− x‖2 ≤ ‖y − x‖2 for all x ∈ X .

Definition 3.5 (Subgradient). Let f : X → Rn be a function. Recall that a subgradient of f at
x is any vector g satisfying:

f(y) ≥ f(x) + 〈 g, y − x 〉 ∀y ∈ X . (3.2)

Theorem 3.6 (Lipschitz equivalence). Let X be convex and open. Let f : X → R be convex. For
any norm ‖·‖, the following conditions are equivalent.

• f : X → R is L-Lipschitz with respect to ‖·‖:

|f(x)− f(y)| ≤ L ‖x− y‖ ∀x, y ∈ X . (3.3)

• f has bounded subgradients:

‖g‖∗ ≤ L ∀w ∈ X, g ∈ ∂f(w). (3.4)

Claim 3.7. Suppose that f is α-strongly convex and g ∈ ∂f(x). Then

f(y) ≥ f(x) + 〈 g, y − x 〉+
α

2
‖x− y‖22 ∀y ∈ X . (3.5)

Lemma 3.8 (Jensen’s inequality). Let f : X → R be a convex function. Let x1, ..., xn ∈ X . Let
λ1, ..., λn ∈ [0, 1] satisfy

∑n
i=1 λi = 1. Then f(

∑n
i=1 λixi) ≤

∑n
i=1 λif(xi).
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