
CPSC 421: Introduction to Theory of Computing
Assignment #1, due Wednesday September 19th by 3pm, via GradeScope

Notes.

• It is optional that homework solutions be typeset in Latex. Those who do so will receive 1
bonus mark.

[1] 1. LATEX BONUS! You get 1 bonus mark if the homework is typeset using Latex.

[6] 2. [1] a. What is the definition of the language accepted by a finite automaton. You
do not need to explain the definition of whether a finite automaton accepts a string.
(My answer is one sentence long.)

[1] b. Using the 5-tuple definition of a finite automaton, write down the definition of a
finite automaton Mevery that accepts every string. (My answer is one sentence long.)

[4] c. Let L be an arbitrary language. For every string x ∈ L, the string x is accepted by
Mevery. Does this imply that L is regular? Explain why or why not.

[8] 3. For each of the following languages, provide a DFA that accepts it. You should define each
DFA by drawing it as a directed graph with accepting states marked by double concentric
circles. You do not need to justify your answers.

Your DFA can have undefined transitions that implicitly go to a rejection state.

Your solution does not need to give the smallest possible DFA, but marks may be deducted
if your solution is unnecessarily complicated. For each of the questions there is a DFA with
less than 10 states.

[4] a. The language L2 = { x ∈ {0, 1}∗ : x is nonempty and begins and ends with the same symbol }.
(The language L2 includes both strings of length 1.)

[4] b. The language L3 = { x ∈ {0, 1}∗ : the 3rd from last symbol in x is 1 }.

[5] 4. In Lecture 4 we discussed a construction that converts an NFA M = (Q,Σ, δ, q0, F) into an
equivalent DFAM ′ = (2Q,Σ, δ′, E(q0), { S : S ∩ F 6= ∅ }) where δ′(S, a) = E

(⋃
s∈E(S) δ(s, a)

)
and E(S) contains all states reachable from S by following any number of ε-transitions.

[1] a. For the following example (the same as given in lecture), how many states does the
resulting DFA have?

1

[4] b. For the same example, draw the DFA resulting from the construction, but only draw
the states that are connected to its start state.

[10] 5. For each claim below, state whether it is true or false, and prove your answer. (A and B
can be arbitrary languages, not just regular languages.)

[5] a. Is it true that, for all languages A and B, we have (A∗ ∩B∗)∗ = (A ∩B)∗?

[5] b. Is it true that, for all languages A and B, we have (A∗ ∪B∗)∗ = (A ∪B)∗?

[10] 6. Efficiency of Regular Expression Software

This question is about the performance for standard software for matching regular expres-
sions. You can choose if you want to do it with Python, Perl, or Java. Consider this Python
program, Perl program, or Java program.

The program contains a string text and a regular expression pattern. Both the text and
the pattern are strings containing 77 characters. The program tests if the text matches the
pattern; if so, it outputs “Match”.

Measure how much time it takes for Python (or Perl, or Java) to perform this regular
expression match. (Don’t use your watch — what Unix/Python/Perl/Java tools can do this
for you?) By modifying the code and trying similar strings of different lengths, formulate a
hypothesis of the following form:

Perl/Python/Java’s regular expression matching code requires time at least Ω(· · ·)
to match a text and pattern, each of which has length exactly n.

[1] a. What are the strings that you used?

[8] b. What is your hypothesis? How did you derive it? Provide data supporting it.

[1] c. Speculate as to why the regular expression software has that sort of efficiency. (You
may wish to refer to question 3.)

[3] 7. OPTIONAL BONUS QUESTION: Let Σ = {0, 1}. Let

SSk = { ss : s ∈ Σ∗ and s is of length k } .

(Here ss means s concatenated with itself, so all strings in SSk have length 2k not k.)

[1] a. Show that, for each k, any DFA that recognizes SSk must have at least 2k states.

[2] b. Describe a much smaller NFA for SSk, the complement of SSk. (The number of
states should at most a polynomial in k.)

Let
Lk = { xy : x, y ∈ Σ∗ and |x| = |y| = k and x 6= y } .

If you’d prefer to solve the problem for Lk instead of SSk, that is ok too.

2

http://www.cs.ubc.ca/~nickhar/F18-421/PythonTest.py
http://www.cs.ubc.ca/~nickhar/F18-421/PythonTest.py
http://www.cs.ubc.ca/~nickhar/F18-421/PerlTest.pl
http://www.cs.ubc.ca/~nickhar/F18-421/JavaTest.java

