CPSC 421: Introduction to Theory of Computing Practice Problem Set #0, Not to be handed in

- 1. Let $A=\{0,2,3\},\ B=\{2,3\},$ and $C=\{1,5,9\}$ be subsets of some universal set $U=\{0,1,2,...,9\}.$ Determine:
 - (a) $A \cap B$
 - (b) $A \cup B$
 - (c) $A \cup C$
 - (d) $A \cap C$
 - (e) A B
 - (f) B-A
 - (g) \overline{A}
 - (h) \overline{C}
- 2. Let $A = \{1, 2, 3\}, B = \{2, 3\}, C = \{1, 4\},$ and let the universal set be $U = \{0, 1, 2, 3, 4\}.$ List the elements in:
 - (a) $A \times B$
 - (b) $B \times A$
 - (c) $A \times B \times C$
 - (d) $A \times \overline{A}$
 - (e) 2^{A}
 - (f) $A \times \emptyset$
 - (g) $B \times 2^B$
- 3. Let A, B, and C be as in question 1. and let $D = \{3, 2\}$ and $E = \{2, 3, 2\}$. Determine which of the following are true. Give reasons for your decisions.
 - (a) A = B
 - (b) B = D
 - (c) B = E
 - (d) A B = B A
- 4. For sets A, B and C, prove the following:
 - (a) If $A \subseteq B$ then $A \cap B = A$
 - (b) If $A \subseteq B$ then $A \cup B = B$
 - (c) $(A \cup B) \times C = (A \times C) \cup (B \times C)$.
- 5. Prove that if $A \subseteq B$ and $C \subseteq D$, then $A \times C \subseteq B \times D$
- 6. Given that U = all university students, D = day students, M = mathematics majors, and G = graduate students. Draw Venn diagrams illustrating this situation and shade in the following sets.

- (a) evening (i.e. non-day) students
- (b) undergraduate mathematics majors
- (c) non-math graduate students
- (d) non-math undergraduate students
- (e) graduate students or math majors who take day classes
- 7. Let A be a set with |A| = n. How many distinct two-element subsets are there in the set 2^A ?
- 8. Let $A = \{1, 2, 3, 4, 5\}$, $B = \{a, b, c, d, e, f\}$, and $C = \{+, -\}$. Define the functions $f : A \to B$ such that f(k) = the k^{th} letter in the alphabet, and $g : B \to C$ such that $g(\alpha) = +$ if α is a vowel and $g(\alpha) = -$ if α is a consonant.
 - (a) Find $g \circ f$
 - (b) Does it make sense to discuss $f \circ g$? If not ,why not?
 - (c) Does f^{-1} exist? Why or why not?
 - (d) Does g^{-1} exist? Why or why not?
- 9. (*) For each of the following pairs of sets X and Y, give a function $f: X \to Y$ that is:
 - (i) Injective but not surjective
 - (ii) Surjective but not injective
 - (iii) Bijective

Or else explain why this is not possible.

- (a) $X = \{a, b\}, Y = \{1, 2, 3\}$
- (b) $X = \{a, b, c\}, Y = \{1, 2\}$
- (c) $X = \{a, b, c\}, Y = \{1, 2, 3\}$
- 10. (*) There is a theorem stating that two sets have the same cardinality (i.e., number of elements) if and only if there exists a bijection between them. This is rather trivial if the sets are finite, but can be a powerful tool for analyzing the sizes of infinite sets. Show that there exists a bijection from \mathbb{N} , the set of natural numbers ($\{0,1,2,\ldots\}$), to \mathbb{Z} , the set of integers ($\{\ldots-2,-1,0,1,2,\ldots\}$). Conclude that these two sets in fact have the same number of elements.
- 11. Let A be an arbitrary set, and let $B = \{x \in A : x \notin x\}$. That is, B contains all sets in A that do not contain themselves: For all y,
 - (*) $y \in B$ if and only if $(y \in A \text{ and } y \notin y)$.

Can it be that $B \in A$?

12. Let \mathcal{A} be a family of sets. The union of the sets in \mathcal{A} is

$$\bigcup_{A \in A} A = \{a : a \in A \text{ for some } A \in A\},\$$

and the intersection of the sets in A is

$$\bigcap_{A \in A} A = \{a : a \in A \text{ for all } A \in A\}.$$

- (a) What is $\bigcup_{A \in \emptyset} A$?
- (b) What is $\bigcap_{A\in\emptyset}A$? (Which as do not satisfy the definition of intersection ?)
- (c) Show that $(\bigcup_{a\in\mathcal{A}}A)^c=\bigcap_{A\in\mathcal{A}}A^c$. Note that \mathcal{A} needn't be countable; it is arbitrary.
- 13. Show that for any sets A and B,

$$A = (A \cap B) \cup (A \cap B^c) = ((A \cup B) \cap B^c) \cup (A \cap B).$$