
CPSC 421: Introduction to Theory of Computing
Assignment #6, due Friday November 4th by 12pm (noon), via Gradescope

[10] 1. Suppose that

• A ⊆ Σ∗ is NP -complete,

• B ⊆ Σ∗ is in P ,

• A ∩B = ∅, and

• A ∪B 6= Σ∗

Prove that A ∪B is NP -complete.

[15] 2. Some questions about Sipser’s proof of Theorem 7.37 (the Cook-Levin theorem). (Beware:
other proofs that you might find in other books or online resources might be different. In
particular, they might not use the notion of a “configuration”.)

[7] a. Each row of the tableau is supposed to be a “configuration” (defined on Sipser, page
168). How does the formula φ ensure that each row (i) contains at least one state
qi, and (ii) does not contain two or more states qi.

[8] b. Give an upper bound on the number of “legal windows” in Sipser proof, in terms of
|Γ| and |Q|, using Big-O notation.

[15] 3. The “Interval Depth” problem is as follows. Given a set of n intervals on the real line, we
would like to determine the largest subset of these intervals that contain a common point.
(Each interval is of the form [x, y] where x, y ∈ R and x < y.)

We may write the Interval Depth problem as a language INTDEPTH, which contains
strings of the form 〈k, x1, y1, . . . , xm, ym〉, where xi < yi, and there exist k intervals contain-
ing a common point.

[7] a. Describe a polynomial-time reduction from INTDEPTH to CLIQUE.

[5] b. Describe and analyze a polynomial-time algorithm for INTDEPTH.

[3] c. Why don’t these two results imply that P = NP?

[15] 4. Recall the problem

V C = { 〈G, k〉 : G has a vertex cover of size ≤ k } .

We showed in Lecture 24 that V C is NP -complete. (See also Sipser Theorem 7.44.) So, if
P = NP then V C ∈ P .

Consider instead the problem

MINV C = { 〈G, k〉 : the smallest vertex cover in G has exactly k vertices } .

This problem is not believed to be in NP .

[8] a. Prove that MINV C is NP -hard. Hint: See notes to Lectures 23 & 24.

[7] b. Prove that if P = NP then MINV C ∈ P .
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[2] 5. OPTIONAL BONUS QUESTION:

Let us say that a boolean formula is a “four-occurrence CNF formula” if it is in conjunctive
normal form and every variable appears at most four times. Define

CNF4 = { 〈φ〉 : φ is a satisfiable, four-occurrence CNF formula } .

It is known that CNF4 is NP-complete.

Let us say that a boolean formula is a “four-occurrence 4CNF formula” if it is in conjunctive
normal form, every variable appears at most four times, and every clause contains exactly
four literals (no repetitions). Define

4CNF4 = { 〈φ〉 : φ is a satisfiable, four-occurrence 4CNF formula } .

Prove that 4CNF4 is in P.
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