
CPSC 421: Introduction to Theory of Computing
Assignment #5, due Wednesday October 26th by 12pm (noon), via Gradescope

[10] 1. True/false questions. Give a brief justification for your solution.

[5] a. In class we claimed that, if a polynomial-time algorithm is discovered for some prob-
lem, it is usually possible to discover a reasonably efficient algorithm, say one running
in O(n5) time.

We could try to formalize this by saying that P ⊆ TIME(n5). Is this a true
statement?

[5] b. Another standard complexity class is E =
⋃

c>0 TIME(2cn). Is it true that E =
EXP?

[10] 2. In class we claimed that P is a nice complexity class because polynomial-time computations
are closed under composition. Let’s check whether polynomial-time computations are closed
under a polynomial number of compositions.

Let M be a program with two inputs: i ∈ N and w ∈ Σ∗. Let c > 0 be a fixed constant
(which depends on M but not on i or w) and let n = |w|. Suppose that

• On any inputs, M makes Θ(nc) basic computational steps (each of which takes constant
time).

• M(i, w) makes Θ(nc) calls to M(i + 1, w) when i < n.

• M(n,w) only does basic computational steps, and does not calls M again as a subrou-
tine.

Does M(0, w) run in time polynomial in n?

[20] 3. [3] a. Give an example of an infinite, decidable language L (with, say, Σ = {0, 1}) satisfying
the following property. For every Turing Machine M that decides L, and every x ∈ L,
the machine M performs at least 100 steps before accepting x.

[10] b. Suppose there is a language L and a TM M such that, for every string x, M halts
on input x after at most

√
|x| steps. Prove that M must actually halt on input x

after a constant number of steps.

(Here |x| denotes the length of string x. To avoid pedantic issues, let’s ignore the case x = ε.)

[7] c. Let t(n) be any increasing function that grows asymptotically slower than n, i.e.,
t(n) ≤ t(n+ 1) for all n, and t(n) = o(n). (For example, t(n) =

√
n or t(n) = logn.)

Prove that TIME(t(n)) = TIME(1).

(Pedantic detail: We assume that t(n) ≥ 1 for all n.)

[15] 4. Let us consider a decision problem about a generalized form of Sudoku. (The case n = 3
corresponds to ordinary Sudoku.) A problem instance consists of an integer n ≥ 3 and a
two-dimensional grid of cells, with n2 rows and n2 columns. In the initial problem instance,
each cell is either blank or contains a number in

{
1, . . . , n2

}
.

The goal is to place a number into every blank cell such that:

(1) Each column contain every number in
{

1, . . . , n2
}

exactly once.

(2) Each row contain every number in
{

1, . . . , n2
}

exactly once.

1

(3) For every i, j ∈ {0, . . . , n− 1}, the square at the intersection of rows {ni + 1, . . . , n(i + 1)}
and columns {nj + 1, . . . , n(j + 1)} contains every number in

{
1, . . . , n2

}
exactly once.

[6] a. The decision problem SUDOKU is: given an initial problem instance (in which each
cell could be blank or contain a number), decide whether the blanks can be filled in
such that conditions (1)-(3) are satisfied. Show that SUDOKU is in NP.

[9] b. Suppose that someone proves that SUDOKU (the decision problem) is in P . Give
a polynomial-time algorithm with the following behavior: given an initial problem
instance (in which each cell could be blank or contain a number), output either:

• A value for each cell such that conditions (1)-(3) are satisfied, or

• “Reject” if there is no way to satisfy conditions (1)-(3).

[2] 5. OPTIONAL BONUS QUESTION: This question relates to section 6.1 of the textbook,
which discusses the Recursion Theorem (Theorem 6.3).

In class we used a reduction from ATM to prove that REGULARTM is undecidable (see
Theorem 5.3 in the text).

In this question, you must use the Recursion Theorem to prove to prove that REGULARTM

is undecidable.

2

