CPSC 421: Introduction to Theory of Computing Assignment #5, due Wednesday October 26th by 12pm (noon), via Gradescope

- [10] 1. True/false questions. Give a brief justification for your solution.
 - [5] a. In class we claimed that, if a polynomial-time algorithm is discovered for some problem, it is usually possible to discover a reasonably efficient algorithm, say one running in $O(n^5)$ time. We could try to formalize this by saying that $P \subseteq TIME(n^5)$. Is this a true

statement? [5] b. Another standard complexity class is $E = \bigcup_{c>0} TIME(2^{cn})$. Is it true that E =

[10] 2. In class we claimed that P is a nice complexity class because polynomial-time computations are closed under composition. Let's check whether polynomial-time computations are closed under a polynomial number of compositions.

Let M be a program with two inputs: $i \in \mathbb{N}$ and $w \in \Sigma^*$. Let c > 0 be a fixed constant (which depends on M but not on i or w) and let n = |w|. Suppose that

- On any inputs, M makes $\Theta(n^c)$ basic computational steps (each of which takes constant time).
- M(i, w) makes $\Theta(n^c)$ calls to M(i+1, w) when i < n.
- M(n, w) only does basic computational steps, and does not calls M again as a subroutine.

Does M(0, w) run in time polynomial in n?

EXP?

- [20] 3. [3] a. Give an example of an infinite, decidable language L (with, say, $\Sigma = \{0, 1\}$) satisfying the following property. For every Turing Machine M that decides L, and every $x \in L$, the machine M performs at least 100 steps before accepting x.
 - [10] b. Suppose there is a language L and a TM M such that, for every string x, M halts on input x after at most $\sqrt{|x|}$ steps. Prove that M must actually halt on input x after a *constant* number of steps.

(Here |x| denotes the length of string x. To avoid pedantic issues, let's ignore the case $x = \epsilon$.)

- [7] c. Let t(n) be any increasing function that grows asymptotically slower than n, i.e., $t(n) \leq t(n+1)$ for all n, and t(n) = o(n). (For example, $t(n) = \sqrt{n}$ or $t(n) = \log n$.) Prove that TIME(t(n)) = TIME(1). (Pedantic detail: We assume that $t(n) \geq 1$ for all n.)
- [15] 4. Let us consider a decision problem about a generalized form of Sudoku. (The case n = 3 corresponds to ordinary Sudoku.) A problem instance consists of an integer $n \ge 3$ and a two-dimensional grid of cells, with n^2 rows and n^2 columns. In the initial problem instance, each cell is either blank or contains a number in $\{1, \ldots, n^2\}$.

The goal is to place a number into every blank cell such that:

- (1) Each column contain every number in $\{1, \ldots, n^2\}$ exactly once.
- (2) Each row contain every number in $\{1, \ldots, n^2\}$ exactly once.

- (3) For every $i, j \in \{0, ..., n-1\}$, the square at the intersection of rows $\{ni+1, ..., n(i+1)\}$ and columns $\{nj+1, ..., n(j+1)\}$ contains every number in $\{1, ..., n^2\}$ exactly once.
- [6] a. The decision problem SUDOKU is: given an initial problem instance (in which each cell could be blank or contain a number), decide whether the blanks can be filled in such that conditions (1)-(3) are satisfied. Show that SUDOKU is in NP.
- [9] b. Suppose that someone proves that SUDOKU (the decision problem) is in P. Give a polynomial-time algorithm with the following behavior: given an initial problem instance (in which each cell could be blank or contain a number), output either:
 - A value for each cell such that conditions (1)-(3) are satisfied, or
 - "Reject" if there is no way to satisfy conditions (1)-(3).
- [2] 5. **OPTIONAL BONUS QUESTION:** This question relates to section 6.1 of the textbook, which discusses the Recursion Theorem (Theorem 6.3).

In class we used a reduction from A_{TM} to prove that $REGULAR_{TM}$ is undecidable (see Theorem 5.3 in the text).

In this question, you must use the Recursion Theorem to prove to prove that $REGULAR_{TM}$ is undecidable.