CPSC 421: Introduction to Theory of Computing Assignment #4, due Friday October 14th by 12pm (noon), via Gradescope

[10] 1. Imagine you are working for a company that has implemented a program. Let's call that program P_1 . You are hired as a summer intern to design a new program that is equivalent but runs even faster. Let's call your new program P_2 .

Your boss says that before you get paid, you must design a program to demonstrate P_1 and P_2 are equivalent. More formally, you are to design a new program Q which takes two arbitrary programs (i.e., Turing machines) M_1 and M_2 as input. Q must decide if, for all inputs x, the output of M_1 on input x equals the output of M_2 on input x.

Explain why this internship will not be successful!

[12] 2. [6] (a) Let $\mathbb{Z}_+ = \{0, 1, ...\}$. Describe a **nondeterministic** Turing machine to decide the following language:

$$L_1 = \left\{ x_1 \# x_2 \# \dots \# x_n : n \in \mathbb{Z}_+ \text{ and } \exists \varepsilon_1, \dots, \varepsilon_n \in \{-1, +1\} \text{ such that } \sum_{i=1}^n \varepsilon_i x_i = 0 \right\}.$$

You may assume that the x_i 's are integers.

[6] (b) Describe a **nondeterministic** Turing machine to recognize the following language:

 $L_2 = \{ \langle M \rangle : M \text{ is a TM and } M \text{ halts on some input } \}.$

[10] 3. Let M' be a TM that always halts and $L(M') \neq \Sigma^*$. Let

$$L_{M'} = \{ \langle M \rangle : M \text{ is a TM and } L(M) \nsubseteq L(M') \}.$$

Show that $L_{M'}$ is undecidable.

- [10] 4. Let A and B be two disjoint languages over the alphabet Σ . Say that language C separates A and B if $A \subseteq C$ and $B \subseteq \overline{C}$. Show that any two disjoint co-recognizable languages are separable by some decidable language. (A language A is said to be **co-recognizable** if its complement, namely \overline{A} , is recognizable.)
- [15] 5. **OPTIONAL BONUS QUESTION**: In class, we said that "A is reducible to B" (written $A \leq_T B$) if there is a Turing machine that can decide A if it is also given as input a Turing machine that decides B. This sort of reduction is called a *Turing reduction*.

There is a more restrictive type of reduction called a *mapping reduction*; see Sipser's Definition 5.20. This type of reduction is written $A \leq_m B$. Roughly speaking, it means that there is a function $f: \Sigma^* \to \Sigma^*$ that can be computed by a Turing machine such that

$$x \in A \quad \Leftrightarrow \quad f(x) \in B.$$

It is easy to see that if $A \leq_m B$ (or if $A \leq_m \overline{B}$) then $A \leq_T B$. So Turing reductions are at least as powerful as mapping reductions.

In this question, we will establish that Turing reductions are strictly more powerful. Show that there exist languages A and B such that $A \leq_T B$ but $A \not\leq_m B$ and $A \not\leq_m \overline{B}$.