
CPSC 421: Introduction to Theory of Computing
Assignment #4, due Friday October 14th by 12pm (noon), via Gradescope

[10] 1. Imagine you are working for a company that has implemented a program. Let’s call that
program P1. You are hired as a summer intern to design a new program that is equivalent
but runs even faster. Let’s call your new program P2.

Your boss says that before you get paid, you must design a program to demonstrate P1

and P2 are equivalent. More formally, you are to design a new program Q which takes two
arbitrary programs (i.e., Turing machines) M1 and M2 as input. Q must decide if, for all
inputs x, the output of M1 on input x equals the output of M2 on input x.

Explain why this internship will not be successful!

[12] 2. [6] (a) Let Z+ = {0, 1, . . . }. Describe a nondeterministic Turing machine to decide the
following language:

L1 =

{
x1#x2# . . .#xn : n ∈ Z+ and ∃ ε1, . . . , εn ∈ {−1,+1} such that

n∑
i=1

εixi = 0

}
.

You may assume that the xi’s are integers.

[6] (b) Describe a nondeterministic Turing machine to recognize the following language:

L2 = { 〈M〉 : M is a TM and M halts on some input } .

[10] 3. Let M ′ be a TM that always halts and L(M ′) 6= Σ∗. Let

LM ′ =
{
〈M〉 : M is a TM and L(M) * L(M ′)

}
.

Show that LM ′ is undecidable.

[10] 4. Let A and B be two disjoint languages over the alphabet Σ. Say that language C separates
A and B if A ⊆ C and B ⊆ C. Show that any two disjoint co-recognizable languages are
separable by some decidable language. (A language A is said to be co-recognizable if its
complement, namely A, is recognizable.)

[15] 5. OPTIONAL BONUS QUESTION: In class, we said that “A is reducible to B” (written
A ≤T B) if there is a Turing machine that can decide A if it is also given as input a Turing
machine that decides B. This sort of reduction is called a Turing reduction.

There is a more restrictive type of reduction called a mapping reduction; see Sipser’s Def-
inition 5.20. This type of reduction is written A ≤m B. Roughly speaking, it means that
there is a function f : Σ∗ → Σ∗ that can be computed by a Turing machine such that

x ∈ A ⇔ f(x) ∈ B.

It is easy to see that if A ≤m B (or if A ≤m B) then A ≤T B. So Turing reductions are at
least as powerful as mapping reductions.

In this question, we will establish that Turing reductions are strictly more powerful. Show
that there exist languages A and B such that A ≤T B but A 6≤m B and A 6≤m B.

1


