CPSC 421/501 Intro to Theory of Computing (Term 1, 2013-14) Assignment 7

Due: Wednesday November 27th, in class.

Question 1: [10 marks] Let DUMBPP be the complexity class for with $L \in DUMBPP$ if and only if there is a TM for which

$$x \in L \implies \Pr[M \text{ accepts } x] < 1/3$$

 $x \notin L \implies \Pr[M \text{ rejects } x] < 1/3$

What complexity class does DUMBPP equal? Briefly explain your answer.

Question 2: [10 marks] Consider the following purported proof that $BPP \cap NP = RP$.

Proof. We already saw in class that $RP \subseteq BPP$ and $RP \subseteq NP$, so $RP \subseteq BPP \cap NP$.

Now consider any $L \in BPP \cap NP$. Every string $x \in L$ can be accepted with probability at least 2/3 since $L \in BPP$. Every string $x \notin L$ can be rejected with probability 1 since $L \in NP$. These acceptance/rejection probabilities are the same as in definition of RP, so $L \in RP$. So $BPP \cap NP \subseteq RP$.

Is this a valid proof? If so, explain how it can be made precise. If not, explain what the flaw is. In either case, ensure that your answer is explained carefully.

Question 3: [10 marks] Let G = (V, E) and H = (W, F) be two undirected graphs with |V| = |W| = n. We say that G and H are isomorphic if there is a bijection $\pi : V \to W$ such that

$$\{u, v\} \in E \quad \Leftrightarrow \quad \{\pi(u), \pi(v)\} \in F.$$

Consider the communication complexity problem ISO_n , where Alice is given a graph G, Bob is given the graph H, and they must decide if G and H are isomorphic.

- (a): Prove that $D(ISO_n) \leq O(n^2)$.
- (b): Prove that $D(ISO_n) \ge \Omega(n^2)$.

Hint: Isomorphism is an equivalence relation on the set of *n*-vertex graphs. Every equivalence class has size at most n!, so the number of equivalence classes is at least $2^{\binom{n}{2}}/n!$.

Question 4: Recall the "combinatorial auction" problem. The items for auction are $U = \{1, ..., n\}$. There are two bidders, and bidder *i* has valuation function $v_i : 2^U \to \mathbb{R}$. (For simplicity, let us even assume $v_i : 2^U \to \{0, 1\}$.) The goal is to compute $\max_{S \subseteq U} (v_1(S) + v_2(U \setminus S))$.

(a): [10 marks] In this question, we will prove that the bidders must exchange $2^{\Omega(n)}$ bits in order to solve the combinatorial auction problem. To do so, perform a reduction from the Disjointness problem. (Specifically, consider $DISJ_{\ell}$ with $\ell = 2^n$. Alice receives $A \subseteq \{1, \ldots, \ell\}$ and Bob receives $B \subseteq \{1, \ldots, \ell\}$. They must decide whether $A \cap B = \emptyset$.)

Hint: Let $\pi : 2^U \to \{1, \ldots, \ell\}$ be an arbitrary bijection. Define a valuation function for Alice using A and π , and define a valuation function for Bob using B and π .

(b): **OPTIONAL** [5 marks]

It is a natural assumption in auctions that valuation functions are **monotone** (i.e., $v_i(A) \leq v_i(B)$ if $A \subseteq B$). Intuitively, one should place more value on owning more items. Prove that the $2^{\Omega(n)}$ lower bound still holds, even under the restriction that v_1 and v_2 are both monotone.

Hint: Let $\ell = \binom{n}{n/2}$. Consider only subsets A and B with |A| = |B| = n/2.

OPTIONAL BONUS QUESTIONS:

Question 5: [20 marks]

Let $f: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$ be given by f(x,y) = 1 iff $\sum_i x_i y_i \equiv 0 \pmod{2011}$. Prove that f has no fooling set larger than n^c , for some constant c.

Relevant ideas are contained in Sherstov's lecture 3. http://www.cs.ucla.edu/~sherstov/teaching/2012-winter/docs/lecture03.pdf.

Question 6: [20 marks]

Let us briefly define randomized communication complexity of a function $f: X \times Y \to \{0, 1\}$. Alice receives her input $x \in X$ and Bob receives his input $y \in Y$. In a randomized protocol for deciding f, Alice also receives a string $r_A \in \{0, 1\}^k$ and Bob also receives a string $r_B \in \{0, 1\}^k$, for some integer k. So Alice's combined input is (x, r_A) and Bob's combined input is (y, r_B) . We assume that r_A and r_B are chosen independently and uniformly at random from $\{0, 1\}^k$.

A randomized protocol P decides f with two-sided error ϵ if, for all $x \in X$ and $y \in Y$,

 $\Pr\left[\text{protocol } P \text{ on input } (x, y) \text{ fails to output } f(x, y)\right] \leq \epsilon.$

Here the probability is over the random choice of r_A and r_B . The **cost of** P is the maximum number of bits sent by P over all $x \in X$, $y \in Y$, $r_A \in \{0,1\}^k$ and $r_B \in \{0,1\}^k$. The ϵ -error randomized communication complexity of f is the minimum cost of P, over all protocols P that decide f with two-sided error ϵ . This quantity is denoted $R_{\epsilon}^{\text{two}}(f)$.

Let ϵ and ϵ' satisfy $0 < \epsilon \le \epsilon' < 1/2$. Set $T = 4 \log(1/\epsilon) \cdot (1/2 - \epsilon')^{-2}$. Prove that $R_{\epsilon}^{\text{two}}(f) \le T \cdot R_{\epsilon'}^{\text{two}}(f)$.

Hint: Execute the best ϵ' -error protocol T times and take the majority vote.