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Admin
• Assignment 2 is out.

– Due Monday of next week. 
• Assignment 3 is out Friday
• Midterm in Tuesday, June 1, 2021
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Notes on Programming
• Remember: this is a 300-level computer science course.

– I’m assuming that you know how to:
• Associate plainly described algorithms to lines we wrote in Python
• Debug and test your code

– Or that you can pick up these skills as you go

• Please ask more efficient programming questions:
– Bad: “Here’s my code and it doesn’t work.”
– Good: “Here’s my code, and output of each variable in it. 

My understanding of the algorithm is <blah>. Where did I go wrong?”
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Ask “Upstream” Questions
• Assumption: if your understanding is correct and your logic is 

good, then assignment questions should be straightforward.

• Don’t ask: “Here’s my solution. Is this correct?”
• Ask: “I understand that <blah>, and I’m following this logic: 

<bleh>. Am I going in the right direction?”
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Live Demo:
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1.ipdb
2.using a runbook



Pro Tip: Keep a “Runbook”
• Python is general-purpose scripting language

– Different from Java or TypeScript

• We’ll be using main.py as if it’s a function on its own
– Has an argument called “q” and we specify question number

• Useful to copy-and-paste commands from somewhere 
instead of having to remember exact commands
– Optionally, debug commands (not really needed if using IDE 

and setting up run configs)
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In This Lecture
• Nonparametric Models (15 minutes)
• Data Augmentation (20 minutes)
• Ensemble Methods (15 minutes)
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Last Time: K-Nearest Neighbours
• An old/simple classifier: k-nearest neighbours (KNN).
• To classify an example �𝑥𝑥i:

1. Find the ‘k’ training examples xi that are “nearest” to �𝑥𝑥i.
2. Classify using the most common label of “nearest” training examples.

𝑋𝑋
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L2-norm, L1-norm, and L∞-Norms.
• The three most common norms: L2-norm, L1-norm, and L∞-norm.

– Visualizing 2D cases:

– Definitions of these norms in d-dimensions.

Infinite Series Video
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https://www.youtube.com/watch?v=ineO1tIyPfM


KNN Distance Functions
• Most common KNN distance functions: norm(xi – xj).

– L1-, L2-, and L∞-norm.
– Weighted norms (if some features are more important):
– “Mahalanobis” distance (incorporate correlations).

• See bonus slide for what functions define a “norm”.

• But we can consider other distance/similarity functions:
– Jaccard similarity (if xi are sets).
– Edit distance (if xi are strings).
– Metric learning (learn the best distance function).
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NON-PARAMETRIC MODELS
Coming Up Next

When you train KNN

No
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Parametric vs. Non-Parametric
• Parametric models:

– Have fixed number of parameters: trained “model” size is O(1) in terms ‘n’.
• E.g., naïve Bayes just stores counts. 
• E.g., fixed-depth decision tree just stores rules for that depth.

– You can estimate the fixed parameters more accurately with more data.
– But eventually more data doesn’t help: model is too simple.

• Non-parametric models:
– Number of parameters grows with ‘n’: size of “model” depends on ‘n’.
– Model gets more complicated as you get more data.

• E.g., KNN stores all the training data, so size of “model” is O(nd).
• E.g., decision tree whose depth grows with the number of examples.
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Parametric vs. Non-Parametric Models
• Parametric models have bounded memory.
• Non-parametric models can have unbounded memory.
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Effect of ‘n’ in KNN.
• With a small ‘n’, KNN model will be very simple.

• Model gets more complicated as ‘n’ increases.
– Requires more memory, but detects subtle differences between examples.

Feature space Feature space

Q: Does that mean we overfit with large n?
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Consistency of KNN (‘n’ going to ‘∞’)
• KNN has appealing consistency properties:

– As ‘n’ goes to ∞, KNN Etest < 2 * Ebest.
• Ebest := best test error possible
• For fixed ‘k’ and binary labels (under mild assumptions).

• Stone’s Theorem: KNN is “universally consistent”.
– If k/n goes to zero and ‘k’ goes to ∞, converges to Ebest.

• For example, k = log(n).
• First algorithm shown to have this property.

• Does Stone’s Theorem violate the no free lunch theorem?
– No: it requires a continuity assumption on the labels.
– Consistency says nothing about finite ‘n’ (see "Dont Trust Asymptotics”).
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https://www.naftaliharris.com/blog/asymptotics/


Parametric vs. Non-Parametric Models
• With parametric models, there is an accuracy limit.

– Even with infinite ‘n’, may not be able to achieve optimal error (Ebest).
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Parametric vs. Non-Parametric Models
• With parametric models, there is an accuracy limit.

– Even with infinite ‘n’, may not be able to achieve optimal error (Ebest).
• Many non-parametric models (like KNN) converge to optimal error.
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CURSE OF DIMENSIONALITY
Coming Up Next
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Application: Netflix Show Recommendation
• I want to recommend shows according to “likes”:

– A simplified case of “recommender systems”

All shows on Netflix

Should I recommend this show?

👍👍👍👍
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Application: Netflix Show Recommendation

20

x1 x2 x3 x4

1 0 1 0
0 0 0 0
0 0 0 1
0 0 1 0
1 1 1 0

y
0
0
1
0
1

𝑥𝑥𝑖𝑖𝑖𝑖 ≔ 1 if user i liked show j
0 otherwise

𝑦𝑦𝑖𝑖 ≔ 1 if user i liked Space Force
0 otherwise

1 1 0 0Your preference
Q: According to KNN with k=1, 

Should I recommend Space Force?



Curse of Dimensionality
• What if I have n=5 users and d=10000 shows?

– Much less likely that nearest neighbours have “perfect match”
– In fact, not very likely to have similar preferences at all.
– “Curse of dimensionality”: problems with high-dimensional spaces.

• We saw a similar case is Naïve Bayes, where we needed O(2d) examples 
– For each additional show, we need exponentially more users

to preserve the usefulness of nearest neighbours

• KNN is also problematic if features have very different scales.
– What if feature 1 is binary and feature 2 is continuous and can be huge?

• Nevertheless, KNN is really easy to use and often hard to beat! 
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DATA AUGMENTATION
Coming Up Next
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Application: Optical Character Recognition

Q: How can we convert handwritten letters and digits 
into corresponding strings?
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Application: Optical Character Recognition
• To scan documents, we want to turn images into characters:

– “Optical character recognition” (OCR).

https://www.youtube.com/watch?v=IHZwWFHWa-w

Q: How can we make this a supervised learning problem?
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Recall: Representing Images

(1,1) (2,1) (3,1) … (m,1) … (m,n)
45 44 43 … 12 … 35grayscale 

intensity

m x n  image

mn x 1 vector
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Application: Optical Character Recognition
– Turning this into a supervised learning problem

“3”

(1,1) (2,1) (3,1) … (28,1) (1,2) (2,2) … (14,14) … (28,28)
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0

char
3
6
0
9

28x28 image String (or char)
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Human vs. Machine Perception
• There is huge difference between what we see and what computer sees:

What we see: What the computer “sees”: Actually, it’s worse:

Impenetrable sea of numbers
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What the Computer Sees
• Are these two images “similar”?
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What the Computer Sees
• Are these two images “similar”?

Difference:

29

Q: How would this make KNN fail?



Failure Due to Translation
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“3”

“9”

?

Q: How do we fix this?



Encouraging “Invariance"
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• Idea: put translated images in training data

“3”

“3”

“3”

“3”

“3”

“3” ?

“9”



“Invariance”
• Invariance := recognizing exact same information in different-looking things
• E.g.

– “3” on the right-hand corner is exactly the same thing as “3” at the center.
– Sound effect at volume 5 is exactly the same thing as sound effect at volume 6

• Features “look” different but they correspond to the exact same signals.
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Data Augmentation
• May want classifier to be invariant to certain feature transforms.

– Images: translations, small rotations, changes in size, mild warping,

• The hard/slow way is to modify your distance function:
– Find neighbours that require the “smallest” transformation of image.

• The easy/fast way is to just add transformed data during training:
– Add translated/rotate/resized/warped versions of training images.
– Crucial part of many successful vision systems.
– Also important for sound (translate, change volume, and so on).
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Visualizing Data Augmentation
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Visualizing Data Augmentation
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Feature space

“3”

“9”

Augmented “3”
Augmented “9”

Q: Did we actually gain any information?



Why Data Augmentation?
• We (humans) did not gain any additional information

– All the transformed “3”s already look like 3 anyways

• However, data augmentation improves model performance
– We made the signal “thicker” by introducing more examples
– We communicated to the model the invariances we want
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“Online” Data Augmentation
• Online := introduce augmentation as you train the model

– As opposed to offline, where you compute Xaug and yaug first
– E.g. while fitting a decision tree, augment (Xyes, yyes) and (Xno, yno)

• Random transformations can be applied:
– E.g. translate image in the X direction by some number between 0 and 28

• Online augmentation improves training by enhancing the distribution
of training data (more on this later in course)
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ENSEMBLE METHODS
Coming Up Next
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Model 1
Model 2

Model 3

Model 4
Model 5

Model 6



Application: Body-Part Recognition
• Microsoft Kinect:

– Real-time recognition of 31 body parts from laser depth data.

http://research.microsoft.com/pubs/158806/CriminisiForests_FoundTrends_2011.pdf
39

Q: How can we make this a supervised learning problem?



Some Ingredients of Kinect
1. Collect hundreds of thousands of labeled images (motion capture).

– Variety of pose, age, shape, clothing, and crop.
2. Build a simulator that fills space of images by making even more images.

3. Extract features of each location, that are cheap enough for real-time calculation 
(depth differences between pixel and pixels nearby.)

4. Learn to classify body part of a pixel.
5. Run classifier in parallel on all pixels using graphical processing unit (GPU).

http://research.microsoft.com/pubs/145347/BodyPartRecognition.pdf
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Supervised Learning Step
• ALL steps are important, but we’ll focus on the learning step.

• Do we have any classifiers that are accurate and run in real time?
– Decision trees and naïve Bayes are fast, but often not very accurate.
– KNN is often accurate, but not very fast.

• Kinect deploys an ensemble method called random forests.
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Ensemble Classifier
• Ensemble classifiers are classifiers that have classifiers as input.

– Also called “meta-learning”.
• They have the best names:

– Averaging.
– Blending.
– Boosting. 
– Bootstrapping.
– Bagging.
– Cascading.
– Random Forests.
– Stacking.
– Voting.

• Ensemble classifiers often have higher accuracy than input classifiers.
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Ensemble Method Example: Voting
• Ensemble methods use predictions of a set of models. 

– For example, we could use:
• Decision trees make one prediction.
• Naïve Bayes makes another prediction.
• KNN makes another prediction.

• One of the simplest ensemble methods is voting:
– Take the mode of the predictions across the classifiers.
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Why can Voting Work?
• Consider 3 binary classifiers, each independently correct with probability 0.80:

• With voting, ensemble prediction is correct if we have “at least 2 right”:
– P(all 3 right) = 0.83 = 0.512.
– P(2 rights, 1 wrong) = 3*0.82(1-0.8) = 0.384.
– P(1 right, 2 wrongs) = 3*(1-0.8)20.8 = 0.096.
– P(all 3 wrong) = (1-0.8)3 = 0.008.
– So ensemble is right with probability 0.896 (which is 0.512+0.384).

• Notes:
– For voting to work, errors of classifiers need to be at least somewhat independent.
– You also want the probability of being right to be > 0.5, otherwise it can do much worse.
– Probabilities also shouldn’t be too different (otherwise, it might be better to take most 

accurate).
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Why can Voting Work?
• Why can voting lead to better results?

• Consider classifiers that overfit (like deep decision trees):
– If they all overfit in exactly the same way, voting does nothing.

• But if they make ____________ errors:
– Probability that “vote” is wrong can be lower than for each classifier.
– Less attention to specific overfitting of each classifier.
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Why can Voting Work?
• Consider a set of classifiers that make these predictions:

– Classifier 1: “spam”.
– Classifier 2: “spam”.
– Classifier 3: “spam”.
– Classifier 4: “not spam”.
– Classifier 5: “spam”.
– Classifier 6: “not spam”.
– Classifier 7: “spam”.
– Classifier 8: “spam”.
– Classifier 9: “spam”.
– Classifier 10: “spam”.

• If these independently get 80% accuracy, mode will be close to 100%.
– In practice errors won’t be completely independent (due to noise in labels).
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Types of Ensemble Methods
• How predictions are populated:

– Aggregation: take “average” of predictions
• Voting is the special case we weight each prediction equally

– Stacking: learn mapping of ensemble prediction -> final prediction
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Types of Ensemble Methods
• How model is trained:

– Bootstrapping: give each sub-model a uniquely shuffled dataset

– Boosting: chain sub-models and make later ones more “paranoid”
• Will be covered later.
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Summary
• Encouraging invariance: 

• Add transformed data to be insensitive to the transformation.
• Ensemble methods take multiplier classifiers as inputs.
• Voting ensemble method:

• Improves predictions of multiple classifiers if errors are independent.

• Next time:
• Random forests
• We start unsupervised learning.
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Review Questions
• Q1: KNN’s complexity increases with n. Does this mean KNN will overfit to the data 

for a large dataset?

• Q2: How does curse of dimensionality relate to the volume of a sphere in d-
dimensions?

• Q3: What are the kinds of features you don’t want to encourage invariance for?

• Q4: Why is it important for models inside an ensemble to make independent errors?
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3 Defining Properties of Norms
• A “norm” is any function satisfying the following 3 properties:

1. Only ‘0’ has a ‘length’ of zero.
2. Multiplying ‘r’ by constant ‘α’ multiplies length by |α|

• “If be will twice as long if you multiply by 2”: ||αr|| = |α|•||r||.
• Implication is that norms cannot be negative.

3. Length of ‘r+s’ is not more than length of ‘r’ plus length of ‘s’:
• “You can’t get there faster by a detour”.
• “Triangle inequality”: ||r + s|| ≤ ||r|| + ||s||.
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Squared/Euclidean-Norm Notation
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Lp-norms
• The L1-, L2-, and L∞-norms are special cases of Lp-

norms:

• This gives a norm for any (real-valued) p ≥ 1.
– The L∞-norm is the limit as ‘p’ goes to ∞.

• For p < 1, not a norm because triangle inequality 
not satisfied.

https://en.wikipedia.org/wiki/Lp_space
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Why does Bootstrapping select 
approximately 63%?

• Probability of an arbitrary xi being selected in a 
bootstrap sample:
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Why Averaging Works
• Consider ‘k’ independent classifiers, whose errors have a variance 

of σ2.
• If the errors are IID, the variance of the vote is σ2/k.

– So the more classifiers that vote, the more you decrease error variance.
(And the more the training error approximates the test error.)

• Generalization to case where classifiers are not independent is:

– Where ‘c’ is the correlation.
• So the less correlation you have the closer you get to 

independent case.
• Randomization in random forests decreases correlation between 

trees.
– See also “Sensitivity of Independence Assumptions”.
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https://www.naftaliharris.com/blog/sensitivity-of-independence-assumption/


How these concepts often show up in practice
• Here is a recent e-mail related to many ideas we’ve recently covered:

– “However, the performance did not improve while the model goes deeper and 
with augmentation. The best result I got on validation set was 80% with LeNet-5 
and NO augmentation (LeNet-5 with augmentation I got 79.15%), and later 16 and 
50 layer structures both got 70%~75% accuracy.
In addition, there was a software that can use mathematical equations to extract 
numerical information for me, so I trained the same dataset with nearly 100 
features on random forest with 500 trees. The accuracy was 90% on validation 
set.
I really don't understand that how could deep learning perform worse as the 
number of hidden layers increases, in addition to that I have changed from VGG 
to ResNet, which are theoretically trained differently. Moreover, why deep 
learning algorithm cannot surpass machine learning algorithm?”

• Above there is data augmentation, validation error, effect of the 
fundamental trade-off, the no free lunch theorem, and the 
effectiveness of random forests.
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