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Abstract

A recently proposed formulation of the stochastic planning and control problem
as one of parameter estimation for suitable artificial statistical models has led to
the adoption of inference algorithms for this notoriously hard problem. At the
algorithmic level, the focus has been on developing Expectation-Maximization
(EM) algorithms. In this paper, we begin by making the crucial observation that
the stochastic control problem can be reinterpreted as one of trans-dimensional
inference. With this new understanding, we are able to propose a novel reversible
jump Markov chain Monte Carlo (MCMC) algorithm that is more efficient than
its EM counterparts. Moreover, it enables us to carry out full Bayesian policy
search, without the need for gradients and with one single Markov chain. The
new approach involves sampling directly from a distribution that is proportional
to the reward and, consequently, performs better than classic simulations methods
in situations where the reward is a rare event.

1 Introduction

Continuous state-space Markov Decision Processes (MDPs) are notoriously difficult to solve. Ex-
cept for a few rare cases, including linear Gaussian models with quadratic cost, there is no
closed-form solution and approximations are required [4]. A large number of methods have been
proposed in the literature relying on value function approximation and policy search; including
[3, 11, 17, 20, 22]. In this paper, we follow the policy learning approach because of its promise in
continuous domains, such as robotics and motor control [7, 15, 18]. Our work is strongly motivated
by a recent formulation of stochastic planning and control problem as one of inference and learning
with infinite dimensional mixture models. This line of work appears to have been initiated in [5],
where the authors used EM as an alternative to standard stochastic gradient algorithms to maximize
an expected cost. This algorithm has been applied to operational space control with immediate re-
wards [19]. In [2], a planning problem under uncertainty was solved using a Viterbi algorithm. This
was later extended in [25]. In these works, the number of time steps to reach the goal was fixed
and the plans were not optimal in expected reward. An important step toward surmounting these
limitations was taken in [24, 23]. In these works, the standard discounted reward control problem
was expressed in terms of an infinite mixture of MDPs. To make the problem tractable, the authors
proposed using the estimated posterior horizon time to truncate the mixture.

Here, we make the observation that, in the probabilistic approach to stochastic control, the objective
function can be written as the expectation of a positive function with respect to a trans-dimensional
probability distribution; that is, a probability distribution defined on an union of subspaces of dif-
ferent dimensions. By reinterpreting this function as a (artificial) marginal likelihood, it is easy to
see that it can also be maximized using an EM-type algorithm in the spirit of [5]. However, the
observation that we are dealing with a trans-dimensional distribution enables us to go beyond EM.
We believe it creates many opportunities for exploiting a large body of sophisticated inference algo-



rithms in the decision-making context. In particular, it enables us to formulate a full Bayesian policy
learning alternative to the EM algorithm.

In Bayesian policy learning, we set a prior distribution on the set of policy parameters and derive
an artificial posterior distribution which is proportional to the prior times the expected return. In the
simpler context of myopic Bayesian experimental design, a similar method was developed in [12]
and applied successfully to high-dimensional problems [13]. Our method can be interpreted as a
trans-dimensional extension of [12]. We sample from the resulting artificial posterior distribution
using a single trans-dimensional MCMC algorithm, which only involves a simple modification of
the MCMC algorithm developed to implement EM.

Although, the Bayesian policy search approach can benefit from gradient information, it does not
require gradients. Moreover, since the target is proportional to the expected reward, the simulation
is guided to areas of high reward automatically. This property results in an immediate reduction in
variance in policy search.

2 Model formulation

We consider the following class of discrete-time Markov decision processes (MDPs):
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where n = 1,2,... is a discrete-time index, u(-) is the initial state distribution, {X,,} is the
X —valued state process, {A,} is the A—valued action process, { R, } is a positive real-valued re-
ward process, f, denotes the transition density, g, the reward density and 7y is a randomized policy.
If we have a deterministic policy then 7y (a| ) = d,,(z) (a). In this case, the transition model

fa (*] x) assumes the parametrization fy (| 2). The reward model could also be parameterized as
g6 (+| ).

We are interested in maximizing the expected future returns with respect to the parameters of the
policy 6:
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where 0 < v < 1 is a discount factor. As shown in [24], it is possible re-write this objective of
optimizing an infinite horizon discounted reward MDP (where the reward happens at each step) as
one of optimizing an infinite mixture of finite horizon MDPs (where the reward only happens at the
last time step).

In particular, we note that by introducing the trans-dimensional probability distribution on the union
of spaces L—lj {k} x &F x Ak x RT given by
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we can easily rewrite V7 () as an infinite mixture model of finite horizon MDPs, with the reward
happening at the last horizon step; namely at k. Specifically, for a randomized policy, we obtain the



following mixture model characterization:
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Similarly, for a deterministic policy, the representation (2) also holds for the trans-dimensional prob-
ability distribution defined on L—Ij {k} x X¥ x R* given by

k
po (k, w1, i) = (1 =) 7*p (1) go (re] 2) H (Tn|Tn-1) 3)

The representation (2) was used in [6] to compute the value function through MCMC for a fixed 6.
In [24], this representation is exploited to maximize V7 (0) using the EM algorithm which, applied
to this problem, proceeds as follows at iteration ¢

0; = argmax Q (0;—1,0)
0co

where
Q(0i-1,0) =Ep, | [log (Rk.po (K, X1.x, A1k, RK))]|,

7Py (K, T1:k, G115 T1)
]Epe [RK ]

Unlike [24], we are interested in problems with potentially nonlinear and non-Gaussian proper-
ties. In these situations, the () function cannot be calculated exactly and we need to simulate from
Do (k; Z1:k, A1:k—1, Tk ) in order to obtain Monte Carlo estimates of the () function. The good news is
that py (k, 1., a1.k-1, %) is proportional to the reward. Consequently, the samples will be drawn
where there is high utility. This is a wonderful feature in situations where the reward is a rare event,
which is often the case in high dimensional control settings.

Do (k, Z1:k, Q1ik—1,TR) =

At this stage, we could proceed as in [24] and derive forward-backward algorithms for the E step.
‘We have in fact done this using the smoothing algorithms proposed in [10]. However, we will focus
the discussion on a different approach based on trans-dimensional simulation. As shown in the
experiments, the latter does considerably better.

Finally, we remark that for a deterministic policy, we can introduce the trans-dimensional distribu-
tion:
7£po (K, T1:k, k)

]Epe [RK ] :
In addition, and for ease of presentation only, we focus the discussion on deterministic policies and
reward functions go (7| £n) = 0y(z,) (7n) ; the extension of our algorithms to the randomized case
is straightforward.

ﬁQ (kv T1:k, rk) -

3 Bayesian policy exploration

EM algorithms result in point estimates of §. Moreover, they are not guaranteed to find the global op-
timum of the expected return. They are particularly sensitive to initialization and might get trapped
in a severe local maximum. Moreover, in the general state space setting that we are considering, the
particle smoothers in the E step can be very expensive computationally.

To address these concerns, we propose an alternative full Bayesian approach. In the simpler context
of experimental design, this approach was successfully developed in [12], [13]. The idea consists



of introducing a vague prior distribution p (#) on the parameters of the policy 6. We then define the
new artificial probability distribution defined on © x L—ij {k} x X*¥ x R*X by

p(0,k,w1.1) o< (z1) po (K, 21.4) P (0) -
By construction, this target distribution admits the following marginal in 6

p(0) < V.7 (0)p(0)
and we can select an improper prior distribution p (6) oc 1if [ V7 (6) df < oc.

If we could sample from p (@), then the generated samples {G(i)} would concentrate themselves
in regions where VT () is large. We cannot sample from p (¢) directly but we can developed a

trans-dimensional MCMC algorithm which will generate asymptotically samples from 7 (6, k, z1.),
hence samples from 7 (6).

Our algorithm proceeds as follows. Assume the current state of the Markov chain targeting
D(0,k,x1.) is (0, k, x1.). We propose first to update the components (k, z1.;) conditional upon 6
using a combination of birth, death and update moves using the reversible jump MCMC algorithm
[8, 9, 21]. Then we propose to update 6 conditional upon the current value of (k,x1.;). This can
be achieved using a simple Metropolis-Hastings algorithm or a more sophisticated dynamic Monte
Carlo schemes. For example, if gradient information is available, one could adopt Langevin diffu-
sions and the hybrid Monte Carlo algorithm [1, 14]. The overall algorithm is depicted in Figure 1.
The details of the reversible jump algorithm are presented in the following section.

e 0
1. Initialization: set (k(%, mi:;@ ,000),

2. Fori=0to N —1

e Sample u ~ Ujo,1j.
o If (u<bg)

- then carry out a “birth” move: Increase the horizon length of the MDP, say
k@ = kU= 4 1 and insert a new state.

- else if (u < by + di) then carry out a “death” move: decrease the horizon
length of the MDP, say £ = k¢~Y — 1 and an existing state.

G

- else generate samples xl,L(

;1) of the MDP states.
End If.

e Sample the policy parameters 6 conditional on the samples (') ), k'")).

Figure 1: Generic reversible jump MCMC for Bayesian policy learning.

We note that the samples of the states and horizon generated by this Markov process will also be
distributed according to the trans-dimensional distribution py (k, x1.;); this is indeed the output
of the reversible jump algorithm for a given 6. Hence, they can be easily adopted to generate a
Monte Carlo estimate of Q) (6;—1, 8). This allows us to side-step the need for expensive smoothing
algorithms in the E step. The trans-dimensional simulation approach has the advantage that the
samples will concentrate automatically in regions of high reward. Moreover, unlike in the smoothing
counterparts [24], it is no longer necessary to truncate the time domain.

4 Trans-Dimensional Markov chain Monte Carlo

We present a simple reversible jump method composed of two reversible moves (birth and death)
and several update moves. Assume the current state of the Markov chain targeting py (k, x1.x)



is (k,z1.;). With probability by, we propose a birth move; that is we sample a location uni-
formly in the interval {1,..,k+ 1}, ie. J ~ U{l,..,k+ 1}, and propose the candidate
(k+1,21.5-1,2% j41.) where X* ~ gg (-|xj_1.j41). This candidate is accepted with proba-
bility Ap;ren, = min{1, apren b where we have for j € {2,...,k — 1}
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With probability dj, we propose a death move; thatis J ~ U {1, ..., k} and we propose the candidate
(k—1,21.j-1, % 41.%) which is accepted with probability Ageqr, = min{l, ageqtrn} where for
je{2,...k—1}

Do (k— 1, 2151, %j41:%) bet1qo (25| 2j—1:541)
Po (k,x1:1) di
_ Jo(zjnalmi 1) briago (2] 5 -1:541)
vfo (zj41l ) fo (x5l 2j—1) di
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Adeath =

and for j = k
7 (zr—1) go (Tp] Tp—2:6—1) b1

yr (k) fo (x| TK—1) dy
Finally with probability uy = 1 — by, — dj, we propose a standard (fixed dimensional) move where
we update all or a subset of the components x;.; using say Metropolis-Hastings or Gibbs moves.
There are many design possibilities for these moves. In general, one should block some of the
variables so as to improve the mixing time of the Markov chain. If one adopts a simple one-at-a
time Metropolis-Hastings scheme with proposals gg (z*| £;_1.j4+1) to update the j-th term, then the
candidate is accepted with probability A,,q = min{1, a,,q} where for j € {2,....k — 1}

Qdeath =

~po(kyrr1, % w1k) go (x| 21, 2, 2540)
Qyupd = (
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forj=1
p(x*) fo (z2| 27) go (z1] 2", 22)
p (1) fo (2] x1) go (2% 21:2)

Aypd =

and for j = k
r(x*) fo (| xr—1) go (x| 2%, 25—1)
(k) fo (xr|xr—1) g0 (¥ Tp—1:k)

Under weak assumptions on the model, the Markov chain {K O X 1@( } generated by this transition

Qypd =

kernel will be irreducible and aperiodic and hence will generate asymptotically samples from the
target distribution pyg (k, 1. ).
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Figure 2: Example state-space. This figure shows an illustration of the 2d state-space described in section 5.
Ten sample points are shown distributed according to p, the initial distribution, and the contour plot corresponds
to the reward function r. The red line denotes the policy parameterized by an angle 6, while a path sampled
according to this policy is shown in blue.

We emphasize that the structure of the distributions py (1.x| k) will not in many applications vary
significantly with k& and we will often have py (x1.x| k) =~ Dg (1.1 kK + 1). Hence the probability
of having the reversible moves accepted will be reasonable. Standard Bayesian applications of
reversible jump MCMC usually do not enjoy this property and it makes it more difficult to design
fast mixing algorithms. In this respect, our problem is easier.

5 Experiment

We consider state and action spaces X = A = R2 such that each state x € X is a 2d position
and each action @ € A is a vector corresponding to a change in position. A new state at time n
is givenby X,, = X,,_1 + A,,_1 + v,_1 where v,,_; denotes zero-mean Gaussian noise. Finally
we will let i be a normal distribution about the origin, and consider a reward (as in [24]) given by
an unnormalized Gaussian about some point m, i.e. r(z) = exp(—%(z — m)"S 7 (z — m)). An
illustration of this space can be seen in Figure 2 where m = (1, 1).

It is worth noting that the problem described so far is not as simple as it might appear on the surface.
Using a reward covariance of 3 = .017 the reward is relatively rare in the state-space and especially
when starting from an initial parameter of 6 = 7/2. There is very little gradient information to
direct the search.

For this experiment, we chose a simple stochastic policy parameterized by 6 € [0, 7/2]. Under this
policy, an action A,, is normally distributed about nw(cos 6, sin §) — x,, for some (small) constant
step-length w. Intuitively, this ensures that an agent following this policy will advance on a path
along the angle 6. For a state-space with initial distribution and reward function as shown in Figure 2,
the optimal policy corresponds to § = 7 /4.

The plots in Figure 3 compare the performance of the reversible jump MCMC algorithms when ap-
plied to both Bayesian policy search and optimization with the EM algorithm. The comparison also
includes and EM algorithm with a two-filter particle smoother, which is not entirely a straightfor-
ward extension of the algorithms presented in [24].

The first thing of note is the poor performance of the EM approaches with particle smoothing.
This comes as no surprise considering the O(N2k2 ) time-complexity involved in computing the
importance weights, where NV is the number of particles and k. is the length of the truncated MDP.
While there do exist methods [10] for reducing this complexity to O(N log Nk2, ), the discrepancy
between this and the reversible jump MCMC method suggests that the MCMC approach may be
more adapted to this class of problems (and for this reason we have omitted discussion of the particle

smoothing method).
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Figure 3: The left plot shows estimates for the policy parameter 6 as a function of the cpu time. This data is
shown for the three discussed Monte Carlo algorithms as applied to a synthetic example and has been averaged
over five runs; error bars are shown for the SMC-based EM algorithm. The bottom figure shows a “zoomed”
version of this plot in order to see the reversible-jump EM algorithm and the fully Bayesian algorithm in more
detail. In both plots the red line denotes the known optimal policy parameter of 7 /4.
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Figure 4: Comparison between Bayesian policy search with the reversible jump MCMC algorithm and policy
gradient search with PEGASUS. Because of the extremely low gradient information, and the needed increase
in step-size for the gradient updates, the variance across multiple runs increases.

The reversible jump Monte Carlo EM algorithm and the fully Bayesian approach performed compa-
rably on this synthetic example. However, the Bayesian approach exhibited, in general, less in-run
variance and less variance between runs. The EM algorithm was found to be more sensitive, and we
were forced to increase the number of samples IV used in the E-step as the algorithm progressed.
This required controlling the learning rate with a smoothing parameter. For higher dimensional
and/or larger models it is not inconceivable that this could have an adverse effect on the algorithm’s
performance.

Finally, we also compared the proposed Bayesian policy exploration method to the PEGASUS [16]
approach using policy gradients. As shown in Figure 4, the Bayesian strategy is more efficient in
this rare event setting. As the state space increases, we expect this difference to become even more
pronounced.

6 Discussion

We believe that formulating stochastic control as a trans-dimensional inference problem is fruitful.
It has led to the development of the first, to the best of our knowledge, trans-dimensional MCMC
algorithm for policy search in general non-linear non-Gaussian control problems. Our results, on
an illustrative example, showed that this trans-dimensional simulator is more effective than the sim-



ulators based on EM with smoothing in the E step. It is also more effective than classic policy
gradient methods, where there is little gradient information. In the near future, we plan to apply our
algorithms to several control and planning tasks of interest.
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