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Abstract

We present results of experiments testing
the Fast Gauss Transform, Improved Fast
Gauss Transform, and Dual-Tree methods
(using kd-tree and Anchors Hierarchy data
structures) for fast Kernel Density Estima-
tion (KDE). We examine the performance
of these methods with respect to data set
size, dimension, allowable error, and data set
structure (“clumpiness”), measured in terms
of CPU time and memory usage. This is
the first multi-method comparison in the lit-
erature. The results are striking, challeng-
ing several claims that are commonly made
about these methods. The results are useful
for researchers considering fast methods for
KDE problems.

Along the way, we provide a corrected error
bound and a parameter-selection regime for
the IFGT algorithm.

1 INTRODUCTION

This paper examines several methods for speeding up
KDE. This problem arises as a basic operation in
many statistical settings, including message passing
in belief propagation, particle smoothing, population
Monte Carlo, spectral clustering, SVMs and Gaussian
processes.

The KDE problem is to compute the values

fj =
N∑

i=1

wi Ki (xi, yj) , j = 1 . . .M . (1)

The points X = {xi} , i = 1 . . . N each have a weight
wi. We call these source particles. We call the points
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Y = {yj} , j = 1 . . .M the target points. We call fj

the influence at point yj , and K is the kernel function.

For simplicity, we consider a subset of the KDE prob-
lem in this paper. Some of these simplifying assump-
tions can be easily relaxed for some of the fast meth-
ods, but we assume that these will not change the es-
sential properties that we examine. Specifically, we
assume:

Ki (xi, yj) = exp

(
−‖xi − yj‖2

h2

)
wi ≥ 0
M = N .

That is, we consider the points to live in a vector space,
and use a Gaussian kernel, non-negative weights, and
equal numbers of sources and targets.

To be useful to a broad audience, we feel that fast
KDE methods must allow the user to set a guaranteed
absolute error level. That is, given an allowable error ε,
the method must return approximations f̂j such that∣∣∣f̂j − fj

∣∣∣ ≤ ε .

Ideally, the methods should work well even with small
ε, so that one can simply “plug it in and forget about
it.”

2 FAST METHODS

In this section, we briefly summarize each of the meth-
ods that we test.

2.1 Fast Gauss Transform

The Fast Gauss Transform (FGT) was introduced by
Greengard and Strain [5, 6, 2]. It is a specialization of
the Fast Multipole Method to the particular properties
of the Gaussian kernel. The algorithm begins by di-
viding the space into boxes and assigning sources and



targets to boxes. For the source boxes, Hermite series
expansion coefficients are computed. Since the Gaus-
sian falls off quickly, only a limited number of source
boxes will have non-negligible influence upon a given
target box. These neighbouring boxes are collected,
and the Hermite expansions are combined to form a
Taylor expansion that is valid inside the target box.

The FGT implementation we test was graciously pro-
vided by Firas Hamze, and is written in C with a Mat-
lab wrapper. It uses a fairly simple space-subdivision
scheme, so has memory requirements of O

((
1
h

)3).
Adaptive space subdivision or sparse memory alloca-
tion could perhaps improve the performance, particu-
larly for small-bandwidth problems.

2.2 Improved Fast Gauss Transform

The Improved Fast Gauss Transform (IFGT) [9, 10]
aims to improve upon the FGT by using a space parti-
tioning scheme and series expansion that scale better
with dimension.

The space-partitioning scheme is the farthest-point K-
centers algorithm, which performs a simple clustering
of the source particles into K clusters. As in the FGT,
the series expansion coefficients for the source points
in each cluster can be summed.

The IFGT does not build a space-partitioning tree for
the target points. Rather, for each target point it finds
the set of source clusters that are within range, and
evaluates the series expansion for each.

The implementation of the IFGT that we test was gen-
erously provided by Changjiang Yang and Ramani Du-
raiswami. It is written in C++ with Matlab bind-
ings.

2.2.1 IFGT Error Bounds

The original IFGT papers contain an incorrect error
bound, which we correct here.

The error bound given is equation 3.13 in [9]:

EC ≤ W exp
(
−ry

2

h2

)
,

where W is the sum of source weights. This is the error
that results from ignoring the influence of source clus-
ters that are outside of range ry from a target point.
That is, if the center of cluster B is xB , then the influ-
ence of the cluster on target point y is ignored if the
distance ‖xB − yj‖ > ry. This bound is incorrect, as
illustrated in Figure 1. The correct bound is

EC ≤ W exp
(
− (ry − rx) 2

h2

)
.
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Figure 1: An illustration of the IFGT error bound due
to ignoring clusters outside radius ry. The cluster cen-
ter is xB and its radius is rx; the cluster is ignored if
the distance dy from the center to y is greater than ry.
In the worst case, a particle x with large weight sits on
the cluster boundary nearest to y. The distance dy is
slightly larger than ry, so the cluster is ignored. The
distance between y and x can be as small as d = ry−rx,
not ry.

2.2.2 Choosing IFGT Parameters

The IFGT has several parameters that must be cho-
sen, yet the original papers ([10, 9]) do not suggest a
method for choosing these parameters. We developed
a protocol for automatically choosing parameters that
will satisfy a given error bound ε, without seriously
degrading the computational complexity of the algo-
rithm. We make no claim that this protocol is optimal.

The parameters that must be chosen include K, the
number of source clusters; p, the number of terms in
the series expansion; and ry, the range. As K in-
creases, the radius of the largest source cluster, rx,
decreases.

The IFGT has two sources of error. The first is dis-
cussed above, and is due to ignoring clusters that are
outside range ry from a given target point. The second
is due to truncation of the series expansion after order
p. This is called ET in equation 3.12 of [9]:

ET ≤ W exp
(

2 rxry − rx
2 − ry

2

h2

)
2p

p!

(rxry

h2

)p

where rx is the maximum source cluster radius, ry is
the range, and p is the order of the series expansion.

See Figure 2 for the protocol. It is based on four con-
straints C:

C1 : EC ≤ ε
C2 : ET ≤ ε
C3 : K ≤ K∗

C4 :
(rxry

h2

)
≤ 1

where C1 and C2 are hard constraints that guarantee
the error bound, C3 is a hard constraint that guar-
antees the algorithmic complexity, and C4 is a soft
constraint that improves convergence. Note that each
source cluster contributes to the error either through



Input: ry(ideal), ε
Output: k, ry, p
Algorithm:

for k = 1 to K∗:
run k-centers algorithm.
find largest cluster radius rx.
using ry = ry(ideal), compute C1, C4.
if C1 and C4:

break

if k < K∗:
// C4 can be satisfied.
set ry = min(ry) such that C1 and C4.

else:
// C4 cannot be satisfied.
set ry = min(ry) such that C1.

set p = min(p) such that C2.

Figure 2: Protocol for choosing IFGT parameters. We
first try to find k < K∗ that will allow all the con-
straints to be satisfied with the given ry(ideal). In
many cases, this is not possible so we must set k = K∗

and increase ry. Finally, we choose p to satisfy the
truncation error bound C2. In practice, the k-centers
algorithm is run iteratively rather than being run anew
each time through the loop.

series expansion (ET ) or by being ignored (EC), but
not both, so it suffices to require EC ≤ ε and ET ≤ ε.

Note that the IFGT, unlike the FGT, does not cluster
the target points y; the distance from each target to
each source cluster is computed. The algorithm there-
fore has O (KM) complexity, where K is the number
of source clusters and M is the number of targets. To
keep O (M) complexity, K must be bounded above
by a constant, K∗. This is constraint C3. Note that
rx (the maximum cluster radius) decreases as K (the
number of clusters) increases. Since K has an upper
bound, rx has a lower bound. Contrary to the claim
in [9], rx cannot be made as small as required by in-
creasing K while still maintaining O (M) complexity.

2.3 DUAL-TREE

We developed an implementation of the dual-tree re-
cursion described by Gray and Moore [4, 3]. We
make several implementation-level changes, as detailed
in [7].

The dual-tree strategy is based on building space-
partitioning trees for both the source and target
points. The algorithm proceeds by expanding the
‘cross product’ of the trees in such a way that only
areas of the trees that contain useful information are
explored. With these trees, it is inexpensive to com-
pute distance bounds between nodes, which allows us
to bound the influence of a source node upon a tar-

get node. If the influence bound is too loose, it can be
tightened by expanding the nodes; that is, by replacing
the parent nodes with the sum of their children. When
the influence bounds have been tightened sufficiently
(below ε), we are finished.

A major difference between the dual-tree strategy and
the series expansion-based methods (FGT and IFGT)
is that the expansion-based methods guarantee error
bounds based on theoretical bounds on the series trun-
cation error. These bounds are computed a priori,
and are valid for all data distributions. However, since
they are based on worst-case behaviour, they are often
quite loose for average-case problems. Conversely, the
dual-tree strategy is based solely on error bounds de-
termined at run time, so is fundamentally concerned
with a particular data set.

Our implementation of the dual-tree strategy is inde-
pendent of the space-partitioning strategy. We imple-
mented the classic kd-tree and the Anchors Hierar-
chy [8]. It is written in C with Matlab bindings.

3 RESULTS

All tests were run on our Xeon 2.4 GHz, 1 GB memory,
compute servers. We ran the tests within Matlab; all
the fast algorithms are written in C or C++ and have
Matlab bindings. We stopped testing a method once
its memory requirements rose above 1 GB in order to
avoid swapping. In all cases we repeated the tests with
several data sets. In some of the plots the error bars
are omitted for clarity. The error bars are typically
very small. Most of the plots have log-log scales.

For the IFGT, we set the upper bound on the number
of clusters to be K∗ =

√
N . In practice, K∗ should be

set to a constant, but since we are testing over several
orders of magnitude this seems more reasonable.

The curves labelled “KDtree” and “Anchors” are our
dual-tree implementation using kd-tree and Anchors
Hierarchy space-partitioning trees. “Naive” is the
straightforward O

(
N2
)

summation.

Many of the tests below can be seen as one-
dimensional probes in parameter space about the point
N = 10, 000, Gaussian bandwidth h = 0.01, dimension
D = 3, allowable error ε = 10−6, clumpiness C = 1 (ie,
uniform) point distribution, with weights drawn uni-
formly from [0, 1]. In all cases the points are confined
to the unit D-cube. We occasionally choose other pa-
rameters in order to illustrate a particular point. We
use D = 3 to allow the FGT to be tested.

3.1 Test A: N

Researchers have focused attention on the performance
of fast algorithms with respect to N (the number of



source and target points). Figure 3 shows that it is cru-
cially important to consider other factors, since these
strongly influence the empirical performance.
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Figure 3: Test A: D = 3, h = 0.1, uniform data,
ε = 10−6.

In this test, the scale of the Gaussians is h = 0.1, so a
large proportion of the space has a significant contri-
bution to the total influence. An important observa-
tion in Figure 3 is that the dual-tree methods (KDtree
and Anchors) are doing about O

(
N2
)

work. Empir-
ically, they are never faster than Naive for this prob-
lem. Indeed, only the FGT is ever faster, and then
only for a small range of N . The IFGT appears to
be demonstrating better asymptotic performance, but
the crossover point (if the trend continues) occurs at
about 1.5 hours of compute time.

Another important thing to note in Figure 3 is that
the dual-tree methods run out of memory before reach-
ing N = 50, 000 points; this happens after a modest
amount of compute time. Also of interest is the fact
that the IFGT has decreasing memory requirements.
We presume this is because the number of clusters
increases, so the cluster radii decrease and the error
bounds converge toward zero more quickly, meaning
that fewer expansion terms are required.

3.2 Test B: N

In this test, we repeat test A but use a smaller Gaus-
sian scale parameter, h = 0.01. The behaviour of the

algorithms is strikingly different. We can no longer
run the IFGT, since the number of expansion terms
required is more than 1010 for N = 100. The dual-tree
methods perform well, though memory usage is still a
concern.
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Figure 4: Test B: D = 3, h = 0.01, uniform data,
ε = 10−6.

3.3 Test C: Dimension D

In this test, we fix N = 10, 000 and vary the dimen-
sion. We set ε = 10−3 to allow the IFGT to run in
a reasonable amount of time. Surprisingly, the IFGT
and Anchors, both of which are supposed to work well
in high dimension, do not perform particularly well.
The IFGT’s computational requirements become in-
feasibly large above D = 2, while Anchors never does
better than KDtree. This continues to be true even
when we subtract the time required to build the An-
chors Hierarchy.

3.4 Test D: Allowable Error ε

In this test, we examine the cost of decreasing ε. The
dual-tree methods have slowly-increasing costs as the
accuracy is increased. The FGT has a more quickly
increasing cost, but for this problem it is still compet-
itive at ε = 10−11.

We find that the dual-tree methods begin to have prob-
lems when ε < 10−11; while these methods can give
arbitrarily accurate approximations given exact arith-
metic, in practice they are prone to cancellation error.
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Figure 5: Test C: h = 0.01, ε = 10−3, N = 10, 000,
uniform data.

The bottom plot in Figure 6 shows the maximum error
in the estimates. The dual-tree methods produce re-
sults whose maximum errors are almost exactly equal
to the error tolerance ε. One way of interpreting this
is that these methods do as little work as possible to
produce an estimate that satisfies the required bounds.
The FGT, on the other hand, produces results that
have real error well below the requirements. Notice
the ‘steps’; we believe these occur as the algorithm ei-
ther adds terms to the series expansion, or chooses to
increase the number of boxes that are considered to be
within range.
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Figure 6: Test D: D = 3, h = 0.01, N = 10, 000,
uniform data. Top: CPU Time. Bottom: Real error.

3.5 DATA SET CLUMPINESS

Next, we explore the behaviour of the fast methods on
data sets drawn from non-uniform distributions.

We use a method for generating clumpy data that
draws on the concept of lacunarity. Lacunarity [1]
measures the texture or ‘difference from uniformity’
of a set of points, and is distinct from fractal dimen-
sion. It is a scale-dependent quantity that measures
the width of the distribution of point density. Lacu-
narity at a given scale can be measured by covering the
set with boxes of that scale; the distribution of point
densities in the boxes is measured, and the lacunarity
is defined as the second moment of the distribution
divided by the first moment squared.

Figure 7: Example clumpy data sets. The clumpi-
nesses are C = 1 (left), C = 1.5 (middle), and C = 3
(right). Each data set contains 1000 points.

We adapt the notion of the ratio of variance to squared
mean. Given a number of samples N and a clumpi-
ness C, our clumpy data generator recursively divides
the space into 2D sub-boxes, and distributes the N
samples among the sub-boxes such than

2D∑
i=1

Ni = N

var ({Ni}) = (C − 1) mean
(
{Ni}

)2
.

This process continues until N is below some threshold
(we use 10). Some example clumpy data sets are shown
in Figure 7.

3.6 Test E: Source Clumpiness

In this test, we draw the source particles X from a
clumpy distribution, while the targets are drawn from
a uniform distribution.

Figure 8 shows the relative CPU time as clumpiness
increases. The dual-tree methods show significant im-
provements as the source points become clumpy. An-
chors improves more than KDtree, although KDtree is
still faster in absolute terms. The FGT shows minor
improvement as clumpiness increases.

3.7 Test F: Source and Target Clumpiness

In this test, we draw both the sources and targets
from clumpy distributions. The dual-tree methods
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Figure 8: Test E: D = 3, h = 0.01, ε = 10−6,
N = 10, 000, clumpy X, uniform Y , relative CPU
time.

show even more marked improvement as clumpiness
increases. The FGT also shows greater improvement
than in the previous test.
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Figure 9: Test F results: D = 3, h = 0.01, ε = 10−6,
N = 10, 000, clumpy X, clumpy Y ; relative CPU time.

3.8 Test G: Clumpy Data, Dimension D

In this test, we test the performance with dimension,
given clumpy data sets. The results are not very differ-
ent than the uniform case (Test C). This is surprising,
since neither Anchors nor IFGT does particularly well,
even given clumpy data.

4 CONCLUSIONS

We presented the first comparison between the most
widely used fast methods for KDE. In our comparison,
we varied not only the number of interacting points
N , but also the structure in the data, the required
precision and the dimension of the state space. The
results indicate that the fast methods can only work
well when there is structure in the kernel matrix. They
also indicate that dual tree methods are preferable in
high dimensions. Surprisingly, the results show that
the KDtree works better than the Anchors Hierarchy
in our particular experiments. This seems to contra-
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Figure 10: Test G results: h = 0.01, ε = 10−3,
N = 10, 000, clumpy X, clumpy Y .

dict common beliefs about these methods. Yet, there
is a lack of methodological comparisons between these
methods in the literature. This makes it clear that
further investigation is warranted.
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