Shaping and policy search in Reinforcement learning
by

Andrew Y. Ng

B.S. (Carnegie Mellon University) 1997
B.S. (Carnegie Mellon University) 1997
M.S. (Massachusetts Institute of Technology) 1998

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy
in
Computer Science
in the

GRADUATE DIVISION
of the
UNIVERSITY of CALIFORNIA, BERKELEY

Committee in charge:

Professor Michael 1. Jordan, Chair
Professor Andy Packard

Professor Stuart Russell

Professor Shankar Sastry

Spring 2003

The dissertation of Andrew Y. Ng is approved:

Chair Date

Date

Date

Date

University of California, Berkeley

Spring 2003

Shaping and policy search in Reinforcement learning

Copyright Spring 2003
by

Andrew Y. Ng

Abstract

Shaping and policy search in Reinforcement learning

by

Andrew Y. Ng

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Michael I. Jordan, Chair

Reinforcement learning offers a powerful set of tools for sequential decision making
under uncertainty. In this setting, an algorithm is required to learn to make sequences of
decisions, and is evaluated by the long-term quality of its choices. As a concrete example,
consider the problem of autonomous helicopter flight, in which an algorithm must repeatedly
choose good control actions every fraction of a second.

Central to reinforcement learning is the idea of a reward function, which indicates
to the learning algorithm what states of the world are preferred, and what states of the world
should be avoided. The reward function specifies the learning task. To make reinforcement
learning algorithms run in a reasonable amount of time, it is frequently necessary to use a
well-chosen reward function that gives appropriate “hints” to the learning algorithm. But,
the selection of these hints—called shaping rewards—often entails significant trial and error,

and poorly chosen shaping rewards often change the problem in unanticipated ways that

cause poor solutions to be learned. In this dissertation, we give a theory of reward shaping
that shows how these problems can be eliminated. This theory further gives guidelines for
selecting good shaping rewards that in practice give significant speedups of the learning
process. We also show that shaping can allow us to use “myopic” learning algorithms and
still do well.

The “curse of dimensionality” refers to the observation that many simple rein-
forcement learning algorithms, ones based on discretization, scale exponentially with the
size of the problem and are thus impractical for many applications. In this dissertation, we
consider the policy search approach to reinforcement learning. Here, we wish to select a
controller from among some restricted set of controllers for a task. We see that a key issue
in policy search is obtaining uniformly good estimates of the quality of the controllers being
considered. We show that simple Monte Carlo methods will not in general give uniformly
good estimates. We then present the PEGASUS policy search method, which is derived using
the surprising observation that all reinforcement learning problems can be transformed into
ones in which all state transitions (given the current state and action) are deterministic.
We show that PEGASUS has sample complexity that scales at most polynomially with the
size of the problem, and give strong guarantees on the quality of the solutions it finds. In
deriving these results, we also take the ideas of VC dimension and sample complexity that
are familiar from supervised learning and apply them to the reinforcement learning setting,
thus putting the two problems on a more equal footing.

Finally, we apply these ideas to designing a controller for an autonomous heli-

copter. Autonomous helicopter flight is widely viewed as a difficult control problem. Using

shaping and the PEGASUS policy search method, we are able to automatically design a
stable hovering controller for a helicopter, as well as make it fly a number of challenging

maneuvers taken from an RC helicopter competition.

Professor Michael I. Jordan
Dissertation Committee Chair

Contents

List of Figures

1

Introduction

1.1 Introduction to Reinforcement learning
1.2 Comparison to supervised learning
1.3 Thesis outline and contributions 0L,

Reinforcement Learning and (PO)MDPs

2.1 Markov decision processes v i i e e e e
2.2 Some MDP properties and algorithms
2.3 MDP algorithms
2.4 Partially observable Markov decision processes

Shaping in Reinforcement Learning

3.1 Changing the reward function 0oL
3.2 Shaping Rewards
3.3 Main shapingresults L oL o
3.4 Experiments.
3.5 Discussiono Lo e e e e

Pegasus: A policy search method for large MDPs and POMDPs

4.1 Policy Search

4.2 Policy search framework o o
4.2.1 Deterministic simulative models
4.2.2 Policy search strategy L.
4.2.3 VC dimension and complexity oL

4.3 The trajectory trees method o oL

4.4 Policy search method o oo
4.4.1 Transformation of (PO)MDPs.
4.4.2 PEGAsSUS: A method for policy search

4.5 Main theoretical results L oo
4.5.1 The case of finite action spaces

v

vi

coO U = =

11
15
18
22

25
26
29
31
37
42

4.5.2 The case of infinite action spaces: “Simple” II is insufficient for uni-

form convergence L 82

4.5.3 Uniform convergence in the case of infinite action spaces 84

4.6 Experiments. 87
4.7 Discussion and related worko oo oo 90

5 Autonomous helicopter flight via reinforcement learning 105
5.1 Introduction. e 106
5.2 Model identificationo L 110
5.2.1 Locally weighted regression 111

5.2.2 Model selection and incorporating prior knowledge 114

5.3 Learning to Hover 121
5.4 Flying competition maneuverso oL 129

6 Conclusions 138

Bibliography 143

List of Figures

1.1

2.1

3.1

3.2

3.3

3.4

4.1

4.2
4.3
4.4
4.5

Berkeley autonomous helicopter.0 L.

5x5 grid-world in which the agent starts at S and must make its way to the

(a) 10x10 grid-world in which the agent starts at S and must make its way to
the goal G. (b) 5x5 grid-world with 5 subgoals (including goal state), which
must be visited in order 1,2,3,4,G.
(a) Experiment with 10x10 grid-world. Plot of steps taken to goal vs. trial
number. Dotted line is with no shaping; dot-dash line is with ® = 0.5P;
solid line is with ® = ®q. (b) Experiment with 50x50 grid-world.
(a) Results of experiment with 5x5 grid-world with subgoals. Plot of steps
taken to goal vs. trial number. Dotted line is no shaping; dot-dash line is
with & = ®g; solid line is with ® = ®;. (b) Results of experiment with
larger, 8x8 grid-world with more subgoals.
The unlabeled thick edges correspond to both actions. All edges have prob-
ability 1. The edge (s1,a,$¢) carries a reward A/2, and all other edges have
zeroreward.o e

(a) A simulator/generative model for an MDP, that takes as input any (s, a)-
pair, and outputs s’ ~ P, (-). (b) A typical computer implementation of a
simulator, in which a random number generator is called to generate p, and
the output s’ is computed as a deterministic function g(s,a,p) of p and of
the inputs s,a. L
Monte Carlo evaluation of a policy =, using a generative model/simulator. .
A trajectory tree. L e e
PEGASUS evaluation of a policy 7, using a generative model/simulator. . . .
(a) 5x5 gridworld, with the 8 observations. (b) PEGASUS results using the
normal and complex deterministic simulative models. The topmost horizon-
tal line shows the value of the best policy in II; the solid curve is the mean
policy value using the normal model; the lower curve is the mean policy value

vi

13

38

39

40

47

60
64
71
75

using the complex model. The (almost negligible) 1 s.e. bars are also plotted. 87

5.1
5.2

9.3

5.4

9.5
5.6

0.7

5.8

5.9

5.10

Berkeley autonomous helicopter.
Examples of plots comparing a (globally) linear model fit using the parame-
terization described in the text (solid lines) to some other models (dash-dot
lines). Each point plotted shows the mean-squared error between the pre-
dicted value of a state variable—when a model (ignoring model noise) is used
to the simulate the helicopter’s dynamics for a certain duration indicated on
the z-axis—and the true value of that state variable (as measured on test
data) after the same duration. Top left: Comparison of z-error to model not
using extra aig, etc. variables. Top right: Comparison of Z-error to a model
that omits the intercept (bias) term. Bottom: Comparison of % and 6 to
linear deterministic model identified by [96].
The solid line is the true helicopter ¥ state on 10s of test data. The dash-dot
line is the helicopter state predicted by our model, given the initial state
at time 0 and all the intermediate control inputs. The dotted lines show 2
standard deviations in the estimated state. (Calculating these on a stochas-
tic non-linear model is actually intractable, so these were estimated using
an extended Kalman filter, and using a diagonal approximation to all the
covariances as in [67, 21].) Every two seconds, the estimated state is “reset”
to the true state, and the track starts again with zero error. Note that the
estimated state is of the full, high-dimensional state of the helicopter, but
only yisshown here.
Policy class II used to learn a controller for hovering. The pictures inside
the circles indicate whether each node computes and outputs the sum of its
inputs, or the tanh of its input. Each edge with an arrow in the picture
denotes a tunable parameter. Lo
Helicopter hovering under control of learned policy.
Comparison of hovering performance of learned controller (blue solid line;
colors where available) vs. trained human pilot (red dashed line). Shown
here are the 2%, y® and 2° (body coordinate) velocities.
Comparison of hovering performance of learned controller (blue solid line;
colors where available) vs. trained human pilot (red dashed line). Shown
here are the z,y and z (world coordinate) positions.
Diagrams of maneuvers from an RC helicopter competition organized by the
Academy of Model Aeronautics. [Source: www.modelaircraft.org]

Policy class II used to learn a controller for flying competition maneuvers.
The dashed arrows show the newly-added edges.
Plots of example helicopter trajectories (as recorded by the onboard teleme-
try) flying the three competition maneuvers.

vii

118

119

123
126

127

128

130

132

viii

Acknowledgements

First, I must thank Professor Michael Jordan for endless advice, guidance and
inspiration throughout my time as a graduate student. I am greatly indebted to Professor
Jordan for all that I learned from him both in terms of technical knowledge and in terms
of research style, and this work would have been impossible without his help and support.

Another person who had a large impact on my work is Professor Stuart Russell.
Professor Russell’s advice to me was invaluable on numerous occasions; I learned enormously
from many enlightening discussions with him, and feel privileged to have had opportunities
to work with him. I am also very grateful to Professor Shankar Sastry for his support
and advice; working with members of his research group was also a hugely positive and
enriching experience. I also thank Professor Andy Packard for helpful conversations about
this dissertation.

I would also like to acknowledge a debt to Professor Michael Kearns. Working
with him over the past 8 years has significantly influenced my thinking and research; indeed,
many of the learning theory tools that I use regularly now were things that I’d originally
learned from him when I was an undergraduate, and I count myself immeasurably lucky to
have had him as a mentor and colleague over the years.

My experience as a graduate student would have been much poorer but for the
post docs and fellow students at Berkeley. For their friendship and for many enlightening
and edifying discussions and collaborations, I would like to thank particularly David Andre,
Francis Bach, David Blei, Hoam Chung, Nando de Freitas, Daishi Harada, Hyounjin Kim,

Gregory Lawrence, Jon McAuliffe, Kevin Murphy, Vassilis Papavassiliou, Mark Paskin,

ix

Hanna Pasula, Doron Tal, Sekhar Tatikonda, Yair Weiss, Eric Xing, and Alice Zheng.

This work has also benefitted from conversations with Peter Bartlett, Yishay Man-
sour, Ronald Parr, Satinder Singh, and Ben Van Roy, and my thanks goes to them also.

Most of the work presented in Chapter 3 was done in collaboration with Daishi
Harada and Stuart Russell. I also thank Jette Randlgv and Preben Alstrgm for the use of
the bicycle simulator, and Eric Xing for helpful conversations regarding the horizon time
results.

The work presented in Chapter 5 was done in collaboration with Hyounjin Kim,
and the helicopter on which the experiments were run belongs to Professor Shankar Sastry’s
research group. I am also indebted to Hyounjin for many enlightening conversations about
control theory, which have significantly influenced the way I think about reinforcement
learning. I am also grateful to Hoam Chung for the very significant amount of help that
he gave in running helicopter experiments; to Drew Bagnell and to David Shim for many
helpful conversations and suggestions about helicopters; to helicopter safety pilot Cedric
Ma for his help in running the experiments; and to Peter Ray for his help organizing things
for experiments. Conversations with Drew Bagnell have also significantly influenced my
thinking about robust control.

The author was supported by a Berkeley fellowship and a Microsoft Research
fellowship. This work was also supported by ARO MURI grant DAAH04-96-1-0341, ONR
grant N00014-97-1-0941, and National Science Foundation grants ECS-9873474 and IIS-

9988642.

Chapter 1

Introduction

In this chapter, we give an informal, non-mathematical overview of the reinforce-
ment learning framework that we will consider in this thesis. We also describe some of the
issues in reinforcement learning that we will try to address, and give an outline for the rest

this dissertation.

1.1 Introduction to Reinforcement learning

Given a helicopter such as shown in Figure 1.1, how can we learn, or automatically
design, a controller to make it fly?

One of the fundamental problems in Artificial Intelligence and control is that of
sequential decision making in stochastic systems. A helicopter in flight is an example of
a stochastic system, in that it exhibits random, unpredictable behavior, and wind gusts
and other disturbances may cause it to move in unexpected ways. Helicopter control also

represents a sequential decision-making problem, in that flying a helicopter entails contin-

Figure 1.1: Berkeley autonomous helicopter.

ually deciding in which direction to push the control stick. This makes it a harder problem
than ones where we are required only to make a single good decision at a single instance
in time, as it exhibits the property of delayed consequences: The quality of an autopilot is
determined by its long-term performance, and if it makes a bad misstep now, the helicopter
might still not crash for many seconds. Another aspect of helicopter control that makes it
challenging is its partial observability. In particular, we usually cannot observe the heli-
copter position/state accurately; but despite our uncertainty about the state of the system,
we are still required to compute good control commands every fraction of a second to keep
it in the air.

We defer formalizing the Markov decision process (MDP) framework to Chapter 2.
Briefly, it models a system (such as the helicopter) that we are interested in controlling as
being in some “state” at each step in time. For instance, the state of a helicopter might
be represented by its position and orientation. As a result of the actions we select, our
system then moves through some sequence of states. Our task is to select actions so that
the system tends to stay in “good” states, such as ones corresponding to hovering stably,
and avoid “bad” states, such as ones corresponding to crashing. A large and diverse set
of problems can be modeled using the MDP formalism. Some examples include planning
and robot navigation [99], inventory management [85], machine maintenance [64], network
routing [20], elevator control [26], and building recommender systems [47].

Reinforcement learning [99] gives a set of tools for solving problems posed in the
MDP formalism. Despite its numerous successes, current algorithms still have difficulty

with many problems, and a number of issues and challenges remain. We briefly describe

some of the issues that we think make certain reinforcement learning problems particularly

challenging:

e First, there is the issue of high dimension problems. Specifically, simple reinforce-
ment learning algorithms, ones based on discretization, often scale exponentially with
the number of state variables. This problem, which we describe in more detail in
Chapter 2, is known as the “curse of dimensionality” [14]. Can we design practical

algorithms that provably work and that scale better to high dimensional problems?

e Also, there is the problem of how the “reward function” is chosen. In reinforcement
learning, a designer has to specify a function that tells us (say) when the helicopter
is flying well, and when it is flying badly. We have significant freedom in choosing
this function, but as we will see in Chapter 3, certain choices can accelerate learning
by orders of magnitude, while other, seemingly-benign choices can lead to very poor
controllers being learned. Can we select reward functions that do not suffer from
these problems, and that permit reinforcement learning algorithms to learn easily or

quickly?

e Partial observability refers to the setting in which the state of the system being con-
trolled cannot be observed exactly, such as when the sensors on a helicopter can
measure its position only approximately. Partial observability makes the problem
more difficult, and many standard reinforcement learning algorithms are inapplicable
or become very difficult to apply to this setting. How can we still choose good controls

for a system if we can only see approximately what it is doing?

In this thesis, we develop methods that attempt to address the first two of these

issues. Our resulting algorithms will also work well in the difficult, partially observable
setting, and we apply our methods to controlling the helicopter shown in Figure 1.1. In
doing so, we also visit topics such as system identification and verification that are familiar

from classical control theory.

1.2 Comparison to supervised learning

Supervised learning is another standard problem in Artificial Intelligence. It can
be thought of as a form of reinforcement learning in which we need to control a system
only for a single time step, so that we need to make only a one-shot decision, rather than
sequential decisions. While this difference may not seem significant, this turns out to make
supervised learning a significantly easier problem.

For a concrete example, consider applying a supervised learning algorithm to the
problem of predicting whether a patient has heart disease, given various measurements or
“features” of the patient (such as heart rate, temperature, and results of various medical
tests). Here, we imagine that we are given a training set consisting of some example patients’
features, and information indicating whether each of these patients had heart disease. We
might then use a supervised learning algorithm to fit some function—say a linear map [30]
or a small neural network [69]—to this data. When a new patient arrives, we can then use
our fitted function to try to predict, as a function of the new patient’s features, whether
she has heart disease; and as a result of this one-shot prediction, our patient then goes to
meet her fate. If we make a mistake on a prediction (such as if we decide to rush a patient

into surgery, but the subsequent operation reveals that there was nothing wrong after all

and the surgery was unnecessary), then we can also observe its consequences right away,
and recognize and learn from the mistake.

In contrast, in reinforcement learning the consequences of our actions are often
delayed, so that it becomes much harder to recognize and learn from the long-term effects
of our actions. For instance, if we were to lose (or win) a game of chess on move 63, it
may be non-trivial to recognize that the outcome had been predetermined by a blunder
(or brilliant move) that we had made back in move 17. This “credit assignment” problem
makes it much harder to learn to avoid past failures or repeat past successes.

Further, the sequential nature of reinforcement learning problems also makes it
generally difficult to reuse data. In the supervised learning setting, if we had previously
collected and stored away some set of examples of patients, and if we wanted to test a new
neural network for predicting heart disease, then we can easily test how well the new neural
network’s predictions on our set of examples matches the actual outcomes, and declare the
new model to be good or bad accordingly. In the reinforcement learning setting however,
suppose we had previously extensively tested a controller that flies the helicopter upside
down (or, for a less contrived example, one that flies the helicopter tilted slightly to the
right; this is actually done for good reasons—see Chapter 5). The data gathered during
these tests might then give us a very good idea of how the helicopter flies upside down,
but it is unclear how this data might be reused to evaluate, say, a new controller that flies
the helicopter straight-and-level. Thus, it seems that we might need to gather new data
to test each new controller that might fly the helicopter in a slightly different way than

previous ones. This property makes reinforcement learning typically require significantly

more “data” than supervised learning. One of the goals of this work will be to explore when
we can efficiently reuse data in the setting of reinforcement learning, and see when these
ideas can be exploited to give practical learning algorithms.

Lastly, one common theme in supervised learning is that of “agnostic learning.” [52,
102]. (In AI, there is also the closely-related notion of bounded optimality [89].) This refers
to the idea that it is often preferable to restrict the set of possible classifiers considered. For
instance, in the heart disease example, rather than considering all possible functions map-
ping from patients’ features to {disease,no_disease}—which is a huge space of functions—
we might instead restrict our attention to some small set of functions, say all thresholded
linear functions, or all functions representable by a medium-sized neural network. This
significantly reduces the space of classifiers that we must consider. If it so happens that
the “true” decision boundary separating patients with and patients without heart disease
is so extremely complicated that no neural network can make accurate predictions for his
problem, then since we have restricted our attention to functions represented by neural
networks, we will not find a good classifier. But if the true decision boundary turns not to
be that complicated, then our having restricted the set of classifiers considered allows one
to show that only a “small” amount of training data is needed to fit our neural network
well. Specifically, it turns out that the amount of data needed depends only on the number
of “free parameters” in the neural network, but not on the underlying “complexity” of the
input (distribution of) patients and heart disease occurrences [102, 52]. These results are
proved in the supervised learning setting using the fact that data in supervised learning can

be reused. In Chapter 4, we will generalize some of these notions to the setting of reinforce-

ment learning, and see how, by restricting our attention to some small set of controllers for
a reinforcement learning problem, we may also derive related guarantees such as bounds on

the “sample size” needed to learn well.

1.3 Thesis outline and contributions

The remainder of this dissertation is structured as follows. In Chapter 2, we begin
by formalizing the Markov decision process (MDP) and partially observable Markov decision
process (POMDP) frameworks. We also review some standard algorithms for solving MDPs,
point out when they may or may not work well, and discuss some of the difficulties with
scaling them to large problems or to POMDPs.

In Chapter 3, we describe reward shaping, which refers to the practice of choos-
ing or modifying a reward function to help algorithms learn. We describe how seemingly
natural attempts at shaping can lead to very poor solutions being learned, and give a the-
ory of shaping that shows how these problems can be eliminated. We also give guidelines
for designing good shaping functions that in practice result in significant speedups of the
learning process.

Chapter 4 begins by outlining the policy search framework, in which we restrict
our attention to a small set of possible controllers for an MDP, and we present a method
for “reusing” data for evaluating and finding good controllers. Our methods also applies
well to POMDPs, and scales well to large problems: We give bounds on the amount of data
needed that, depending on the exact assumptions, either has no dependence or has at most

polynomial dependence in the dimension of the problem.

Finally, in Chapter 5, we apply these ideas to designing a controller for flying the
helicopter shown in Figure 1.1. We begin with a description of the system identification
process, in which we learn a nonlinear stochastic model for the helicopter dynamics. We
then apply our learning algorithms, first to make the helicopter hover, and then to make it

fly challenging maneuvers taken from an RC helicopter competition.

10

Chapter 2

Reinforcement Learning and

(PO)MDPs

In this chapter, we describe the reinforcement learning problem and introduce
the Markov decision process (MDP) and partially observable Markov decision process
(POMDP) formalisms. In doing so, we also introduce the notation that will be used in
the remainder of this dissertation. We also describe some of the key ideas and algorithms
in reinforcement learning, and show how many important problems in decision making and
control can be posed in this framework.

For a more detailed introduction to reinforcement learning and MDPs than this,
readers may also refer to standard texts such as [99, 17, 85], or the survey by Kaelbling et

al. [48].

11

2.1 Markov decision processes

Markov decision processes provide a formalism for reasoning about planning and
acting in the face of uncertainty. There are many possible ways of defining MDPs, and
many of these definitions are equivalent up to small transformations of the problem. One

definition is that an MDP M is a tuple (S, D, A, {Ps.(-)},7, R) consisting of:

S: A set of possible states of the world.

e D: An initial state distribution (a probability distribution over S).

A: A set of possible actions from which we may choose on each time step. (|A| > 2.)

e Py (-): The state transition distributions. For each state s € S and action a € A,
this gives the distribution over to which state we will randomly transition if we take

action a in state s.

v: A number in [0, 1] called the discount factor.
e R:S+— R The reward function, bounded by Rpax. (|R(s)| < Rmax for all s.)

Events in an MDP proceed as follows. We begin in an initial state sy drawn from
the distribution D. At each time step ¢, we then have to pick an action a;, as a result of
which our state transitions to some s;1 drawn from the probability transition distribution
Ps,q,(+). By repeatedly picking actions, we traverse some sequence of states s, s1,.... Our

total payoff is then the sum of discounted rewards along this sequence of states

R(s0) +YR(s1) +7*R(s2) + -+ . (2.1)

12

Here, the discount factor -y, which is typically strictly less than one, causes rewards obtained
far down the sequence to be given a smaller weight. In economic applications, v has a natural
interpretation via the risk-free interest rate, so that money (rewards) obtained immediately
are more valuable than those obtained in the future. If we let v be close to 1, we can also
approximate an undiscounted problem.

Rewards can also be stochastic rather than deterministic functions of the state,
and are also frequently written in slightly different forms, such as R(sy,a;) (depending on
the current state and action) or R(s¢,a¢,s¢11) (depending on the current state, action,
and the successor state); we will also occasionally use these forms of reward functions. In
settings in which we need not be concerned with the initial state distribution, we also write
an MDP as (S, A, {Ps(-)},7, R).

In reinforcement learning, our goal is to find a way of choosing actions ag, aq, ...
over time, so as to maximize the expected value of the rewards given in Equation (2.1).

Figure 2.1 shows a standard, simple example problem that may be modeled as an
MDP. Imagine a robot that lives in the 5x5 grid. The 25 cells thus comprise its state space S.
It has a set A of four actions that try to move it in each of the four compass directions. But
perhaps because its wheels slip, it doesn’t always manage to go where it intends to, and hence
with some small probability, its state transitions to a randomly chosen neighboring state
rather than the one in the intended direction of movement. This stochastic behavior would
be encoded in the state transition probabilities. (For instance, P33 north ((3,4)) = 0.85,
P3.3) north ((3,2)) = P3.3) north ((2,3)) = P3,3) north ((4,3)) = 0.05.) The robot starts in the

bottom-left state, so D assigns the (1, 1) state probability 1, and when it reaches the goal,

13

S

Figure 2.1: 5x5 grid-world in which the agent starts at S and must make its way to the
goal G.

it receives a reward of plus one (thus, R ((5,5)) = 1). If we are using some discount y < 1,
we would thus prefer to reach the goal, and obtain the reward, quickly rather than slowly.

In a Markov decision process, our agent observes at each step the current state sy,
and is thus allowed to choose its next action a; as a function of the previous and current
states sg, ..., s;. But because of the Markov property of MDPs (informally, that the future
is conditionally independent of the past given the current state), to attain the optimal
expected sum of rewards, it suffices to choose actions only a function of the current state
s¢ [19, 99]. Thus, the reinforcement learning can be posed as that of finding a good policy
m: S — A so that if in each state s we take action 7(s), we will obtain a large expected
sum of rewards:

Ex[R(s0) +yR(s1) +7*R(s2) +---]. (2.2)

14

(Here, with some abuse of notation, we use “E;” to denote an expectation taken with
respect to actions chosen according to).

The reward function R is thus the “task description,” and specifies the objective
that we seek to optimize. Sometimes, we have significant freedom in choosing R. For
instance in our previous gridworld example, rather than giving the agent the carrot of a +1
reward when the agent reaches the goal, we might instead give the stick of a -1 reward on
every step until it reaches the goal. Alternatively, we might also try giving it a further +0.1
reward whenever it makes progress towards the goal. Certain choices of rewards may allow
an agent to learn orders of magnitude faster; other choices may cause the agent to learn
highly suboptimal solutions. The choice of reward can have a significant impact on the
performance of our algorithms, and in Chapter 3, we will explore the freedom we have in
choosing the reward function, and seek to understand how we might choose R to accelerate
learning, but without compromising the quality of the solutions found.

Sometimes, the undiscounted setting of v = 1 is also be of interest. In this case,
we need to ensure that the expectation of the rewards in Equation (2.1) is still well-defined.
When S is finite, one assumption that guarantees this is to assume that there is a dis-
tinguished “absorbing state” senq so that the MDP “stops” if we ever enter this state,
and moreover assume that the transition probabilities are so that no matter how an agent
chooses the actions, the probability of eventually entering senq is one. (Sometimes, the
notation “sy” is also used to denote an absorbing state rather than the initial state.) If

these assumptions holds, we say that the transition probabilities Ps,(-) are proper.

15

Lastly, measurability is not a significant issue nor cause for concern in any of the
applications we consider, and we will assume that anything that needs to be measurable
is measurable, and otherwise ignore the issue of measurability in the presentation of our
ideas. Readers interested in a detailed treatment of measurability in Markov chains and in

Markov decision processes may refer to, e.g., [31, 45].

2.2 Some MDP properties and algorithms

We now review some standard definitions and results for MDPs, some of which will
be useful in the subsequent chapters. Everything presented in this section holds straightfor-
wardly for discounted MDPs with finite state and action spaces; with only small modifica-
tions, they also hold for undiscounted, proper, MDPs or for infinite MDPs. Some standard
sources for proofs of the results we state here include, e.g., [85, 19, 98, 15, 16, 14].

In this section, we will use the “R(s,a)” form of rewards. Given a policy 7, define
its value function V™ : S — R to be the expected returns (sum of discounted rewards)

for taking actions according to m and starting from a state s:
V7™ (s) = Bx[R(s0,a0) + YR(s1,a1) + 7’ R(s2,a2) + - -[s0 = 5. (2.3)

Closely related to the value function is also the -function. For a given policy w, the
Q-function for it, @™ : S x A — R gives the expected returns for starting in a given state,

first taking a specified action, and then following policy 7 afterwards:

Q™ (s,a) = E[R(s0,a0) + YR(s1,a1) + 7> R(s9,a2) + - |so = 8,00 = a,Vt >0 a; = 7(s4)].

(2.4)

16

We also define the optimal value function V* : S — R to be the optimal

expected sum of rewards for starting from a state s:!

V*(s) = max V7 (s). (2.5)

™

Similarly, the optimal @Q-function can also be defined as
Q*(s,a) = max Q" (s,a). (2.6)

Sometimes, when we are working with multiple MDPs, we will also use a subscript

M to indicate that a particular quantity is for a certain MDP M (as in V};(s), mar, etc).

The quantities V* and V™ also satisfy following equations:?

Vs) = maxR(s,a)+7 Y Pul)V'(S) 2.7
s'eS
VT(s) = R(5,7(5)) +7 Y Pris)(s)V7(5) (2.8)
s'eS

These Bellman equations give a recursive definition of V* and V™. For instance, the term
in the max in Equation (2.7) is sum of the expected returns if we take action a (obtaining
reward R(s,a) immediately), and then behave optimally from then on (obtaining expected
yV*(s") returns from our successor state s'). Equation (2.7) thus states that V*(s) is given
by picking the best action a, and then behaving optimally afterwards. Equation (2.8) has
a similar interpretation: The expected returns under 7 is the immediate reward plus the

future expected returns if we continue to behave according to 7.

'"Here and in the rest of this chapter, for the sake of simplicity we will generally forego distinguishing
between max’s and sup’s, and indicating conditions for various max’s and arg max’s exist. In all the cases in
which a max fails to exist, our arguments may be straightforwardly modified to instead consider an infinite
sequence converging to the sup. Of course, in the case of finite MDPs, the max’s in Equations (2.5-2.6) will
exist and this is not a reason for concern.

’In the finite state case, our notation assumes Ps,(-) is a probability mass function over S, so that
p(st41 = §'|st = s,at = a) = Pso(s’). If S were continuous and Ps,(-) is a density, the sums in the
Equations (2.7-2.8) would be replaced by integrals over S. In the fully general case, the summation terms
should be replaced by Lebesgue integrals with respect to the measure P, (-) over the states.

17

It is also a fact that V* and V™ (for a given m) not only satisfy Equations (2.7-2.8),
but are also the unigue solutions to these two equations.?
Many quantities can be written in terms of either the - or the value-functions,

and we may usually pick whichever is more convenient to work with. Indeed, they are

related via the identities

Vi) = rgleaj(Q*(s,a) (2.9)
VT(s) = Q7(s,7(s)), (2.10)

and there is an analogous form of Equations (2.7-2.8) for Q- instead of value-functions:

Q*(s,a) = R(s,a)+7 Z Py, (s") glgi‘(Q*(s',a") (2.11)
s'es

Q"(s,a) = R(s,a)+7 Y Pul(s)Q™ (s, m(s")) (2.12)
s'es

Depending on the initial-state distribution D and what state we start from, one
may wonder if certain policies are better for starting from certain states, and other policies
better from other states. It is a remarkable fact of MDPs that there exists an optimal policy

7 : S — A, so that starting from any state, 7* attains the optimal expected returns:
V™ (s) = V*(s) for all s. (2.13)

(We will later see that this result unfortunately does not generalize to the POMDP setting,

in which the agent does not always know the current state s;.) Moreover, 7* is given by

3In the case of infinite MDPs, they are the unique bounded solutions to these equations. There may be
other, unbounded solutions that are neither V* not V'™

18

either of the following (equivalent) definitions:

w(s) = argmaxQ*(s,a) (2.14)
acA
T*(s) = argrileach(s,a)+75,§9Psa(s')V*(s') (2.15)

Note that while an agent knowing * can thus easily compute the optimal policy,
finding the optimal policy from V* is slightly more complicated, and also requires knowledge

of Psy(+).

2.3 MDP algorithms

We now briefly review some standard algorithms for finding policies for MDPs. As
before, readers interested in a more detailed treatment may refer to the previously referenced
texts.

Since a value function (or a Q-function) defines an optimal policy, many algorithms
attempt to find either @* or V*. For instance, if the transition probabilities P, (-) are
known, then Equation (2.7) defines a system of equations, the solution of which yields V*.
These equations may either be solved directly via solving a related linear program (e.g.,
[27, 41, 65]), or by iteratively performing the update

V(s) := max R(s,a) +7 D Pu(s)V(s) (2.16)
s'es
until it converges. The latter of these, a dynamic programming-based algorithm, is called
value iteration.
Another standard algorithm, policy iteration, involves keeping in memory a

policy 7 and an estimated value function V, and iteratively updating m according to Equa-

19

tion (2.15):

7(s) := argmax R(s,a) + Z Py (sV (), (2.17)
acA ies

and updating V to be the value function V™ for 7 by solving the system of linear equations
given by Equation (2.8).

The methods described above assumed that we had knowledge of the state transi-
tion probabilities Ps,(+). If we do not know the transition probabilities, we may first try to
learn them and then run our algorithms using the estimated probabilities. This approach is
known as “model-based reinforcement learning.” Alternatively, we may also try to learn ei-
ther the @- or value function directly, without learning a model (that is, the state transition
probabilities) as an intermediate step. This latter approach is called “model-free reinforce-
ment learning.” For example, the Q-learning algorithm performs the following update upon

seeing a transition from state s to s’ when taking action a [106]:

Q(s,a) == (1 —a)Q(s,a) + « (R(s,a) + v max Q(s',a')) . (2.18)

a'€EA
(Compare this to Equation 2.11.) Here, « is a small number called the learning rate pa-
rameter.

In certain applications in which we need to learn online, one might also ask an
agent to appropriately tradeoff between trying new actions to learn about them, vs. taking
actions already known to be good to accumulate large rewards. This is known as the
“exploration vs. exploitation” problem. (E.g., see [53].)

Most of the methods we have described work well for small MDPs, where the state
space S is sufficiently small that V : .S — R can be stored explicitly as a table, with one

entry for each state (and likewise for 7). For larger MDPs, these methods can be intractable

20

to apply exactly. Specifically, in many problems, the number of states grows exponentially
in the number of state variables. For example, if the state space is S = {0,1}" consisting
of n binary state variables, then the number of states is 2", and the cost of representing V'
or 7 explicitly would be exponentially large in n. Similarly, if we were to apply grid-based
discretization to an n-dimensional continuous state space to reduce the problem to one
with a finite number of states, we again end up with a number of discretized states that
is exponential in n. Bellman called this problem the “curse of dimensionality” [13], and
it makes the straightforward application of the simple reinforcement learning algorithms
impractical even for many moderate-dimensional problems.

Thus, various approaches have also been proposed for finding approximations to
the value function. A few examples of recent work proposing various approaches for doing
so in different settings include [58, 42, 27, 41, 28], and this topic remains an area of active
research.

The methods described so far all use (approximations to) V* or @* to implicitly
define, via Equations (2.14-2.15), a policy w. One alternative is to instead work directly in
the space of policies. In Chapter 4, we will explore policy search in significantly greater de-
tail, and also discuss some of its advantages and disadvantages compared to value-function
based methods. One well-known example of a policy search algorithm is William’s Reinforce
algorithm [109]. (Some other, related, algorithms include [57, 9, 12].) Consider a simple
2-state MDP in which we start from sy, pick an action a;, receive reward R(sg, a;), and tran-
sition to a zero-reward absorbing state senq. Suppose further that we have some distribution

over actions p(a;; @) smoothly parameterized by €, and that this is used to define our policy

21

m. Specifically, p(a;;0) is the probability of our taking action a; in state sg. For example,
this might be defined using the softmax parameterization, p(a;0) = exp(6;)/ >_; exp(6;).
Now, suppose we currently have some choice for #. Then to increase our expected payoff,
we would like to take a hillclimbing step 6; := 6; + aa%i V7™(sg), where « is a learning rate

parameter. We have:

0 . 0 _ B
8_97,V (SU) - %;R(Soaal)p(aug)

0
= > R(s0, i) 5,-p(ai; 0)

0
= D Rls0,0)p(as30) 50 Inp(ais 0)

0
Eai"'ﬁ(';g) |:R(30v al)a_el lnp(a’i; 9)

Thus, if we act according to our current policy p(a;;6), and for the random a; we picked,
take a small step in the R(so,ai)%lnp(ai;O) direction, we will be taking a stochastic
gradient ascent step, that on expectation is a step uphill on the objective that we would
like to maximize.

While our example used a trivial, single-step MDP, Reinforce (essentially) gener-
alizes the above derivation to work for general problems. While Reinforce can be proved
under various conditions to converge to either a local optima or a plateau, empirically, it
can be very slow to do so. Indeed, in order to make progress, Reinforce may require up to
an amount of sampling/number of steps that is ezponential in the number of states or in
the horizon time (an Q(1/(1 —+))-quantity that is more formally defined in Chapter 4) [49].
More seriously, Reinforce is also limited to stochastic policies. Apart from being a nontriv-

ial restriction on the class of policies we are therefore allowed to consider, in safety-critical

22

applications (such as the helicopter we consider in Chapter 5), it seems very undesirable to
add extra randomness to an already-stochastic problem by forcing our policies to randomly
pick its actions.

In Chapter 4, we will explore policy search in significantly more detail, and also
describe a policy search method that does not suffer from these problems. One of the key
ideas is that, unlike Reinforce, which uses data sampled from the MDP once to take a small
uphill step and then throws away the data, we will be reusing the data we obtain from
the MDP. This will allow us to derive more efficient algorithms, for which we can prove

nontrivial performance guarantees.

2.4 Partially observable Markov decision processes

So far, our discussion has centered on fully observable Markov decision processes,
in which our agent can at each time step ¢ observe its current state s;. In the more general
setting of Partially observable Markov decision processes (POMDPs), the agent has
some set of possible observations O, and on each step it only sees an observation o; = o(sy),
where o : S — O is a deterministic observation function. (The case of stochastic observations
is straightforward generalization.) For instance, s may be a vector of state variables, and
we may have sensors that measure only a subset of these variables; we will see an example
of this in Chapter 5. Alternatively, certain states may be indistinguishable from each other
from a sensor reading, in which case the observation o(s;) may be a list containing the
equivalence-class of states that, based on our sensor reading, we might be in.

In the POMDP setting, it becomes significantly harder to find an optimal policy.

23

Indeed, even finding a near-optimal policy is, depending on the exact assumptions, typically
at least NP-hard. (See [63] and references therein for an overview of many of these results.)
Unlike the MDP setting, in a POMDP, an agent that knows Q* will in general still be
unable to behave optimally, because it does not always know what the current state s is,
and thus cannot consistently pick arg max, Q*(s,a).

One way to act optimally in a POMDP involves belief state tracking. In this
approach, we will work with distributions p(s) over states that represent our belief of what
state we are in, given the observations we have seen so far and the actions we have taken.
Specifically, we can define and compute the optimal @)- or value-functions over these belief
states (which are distributions over S), and use that to act optimally. This problem
essentially reduces the POMDP problem to an MDP one, since the belief states are fully
observable. Note however that, assuming S was finite, this method requires computing
value functions over probability distributions over S, which are continuous and live in the
(|S| — 1)-dimensional simplex. Thus, this method has blown up a finite MDP problem to
a high-dimensional, continuous/infinite-state one. Methods that attempt to use these ideas
to find either optimal or near-optimal policies include [111, 60, 23, 107, 62, 61, 24].

While these belief-state based methods can work well on some problems, they
seem difficult to generalize to large POMDPs, such as ones with high dimensional continu-
ous/infinite state spaces. Indeed, if S were continuous, then it will typically be challenging
to work with and learn value functions over belief states p(s), which can in general be
fairly complicated distributions over the state space. (These belief states can also be ap-

proximated using various methods. For instance, McAllester and Singh [68] show how, by

24

combing the approximate tracking algorithm of [21] with the algorithm of Kearns, Mansour
and Ng [51], it is possible to obtain a policy that is computationally expensive to compute,
but for which one can obtain non-trivial performance bounds.)

Various heuristics for designing controllers for POMDPs have also been proposed.
For instance, we may find the state we are most likely to be in § = arg max, p(s), and pick
as our actions according to arg max, Q*(§,a). Whether these heuristics work well is highly
problem-dependent, and it seems difficult to give general guarantees . (See, e.g., [22], for
this and other examples of heuristics.)

Another, promising approach to finding good solutions to POMDPs involves using
policy-search based methods. We defer a discussion of these ideas to Chapter 4, in which
we will also see why, in many settings, policy-search methods generalize more easily than

dynamic programming or value-function-based methods to the setting of POMDPs.

25

Chapter 3

Shaping in Reinforcement

Learning!

In sequential decision problems, such as are studied in the dynamic programming
and reinforcement learning literatures, the “task” is specified by the reward function. Given
the reward function and a model of the domain, the optimal policy is determined. An
elementary theoretical question that arises is this: What freedom do we have in specifying
the reward function, such that the optimal policy remains unchanged?

Reward shaping refers to the practice of modifying the reward function to provide
guidance or give “hints” to a learning agent to help it to learn faster. Yet, sometimes
seemingly natural choices of shaping rewards can counter-intuitively result in the learning
agent giving very poor solutions. In this chapter, we will give examples of how these

problems can arise, and present a theory of reward shaping that addresses these problems

!Most of the work presented in this chapter first appeared in Ng, Harada and Russell (1999), “Policy
invariance under reward transformations: Theory and application to reward shaping,” Proceedings of the
Sixteenth International Conference on Machine Learning, pp. 278-287.

26

and gives us sound, systematic ways of modifying reward functions to accelerate learning.

3.1 Changing the reward function

Reward shaping has the potential to be a very powerful technique for scaling up
reinforcement learning methods to handle complex problems [29, 66, 86]. (Similar ideas
have arisen in the animal training literature; see [91] for a discussion.) Indeed, a very
simple pattern of extra rewards often suffices to render straightforward an otherwise in-
tractable problem. However, a difficulty with reward shaping is that by modifying the
reward function, it is changing the original problem M to some new problem M’, and ask-
ing our algorithms to solve M’ in the hope that solutions can be more easily or more quickly
found there than in the original problem. But, it is not always clear that solutions/policies
found for the modified problem M’ will also be good for the original problem M. Ideally,
we would like the set of optimal policies to be invariant to the changes we make to the
reward function, so that good policies learned using shaping rewards will still be good for
the original problem.

To see why policy invariance is important, consider the following examples of bugs

that can arise:

e Randlgv and P. Alstrom describe a system that learns to ride a simulated bicycle
to a particular location [86]. To speed up learning, they provided positive rewards
whenever the agent made progress towards the goal. The agent learned to ride in tiny
circles near the start state because no penalty was incurred for riding away from the

goal.

27

e A similar problem occurred with a soccer-playing robot being trained by David An-
dre and Astro Teller (personal communication). Because possession of the ball is
important in soccer, they provided a reward for touching the ball. The agent learned
a policy whereby it remained next to the ball and “vibrated,” touching the ball as

frequently as possible.

These policies are clearly not optimal for the original MDPs. We would like to pro-
vide systematic ways of modifying a reward function while guaranteeing that the resulting
learned policies will still be good. How is this possible?

The examples above suggest that the shaping rewards must obey certain conditions
if they are not to mislead the agent into learning suboptimal policies. If one had perfect
advance knowledge of the MDP, then it is possible to exactly characterize the set of all
reward transformations that leave the optimal policy (or policies) invariant. Specifically,
perfect knowledge of the MDP means that the optimal policy is exactly determined, and
there is then a set of linear constraints that exactly characterize all the reward functions
that do not change the optimal policy. This observation was the key idea used to derive the
“inverse reinforcement learning” algorithms presented in Ng and Russell [78], which seek to
recover a reward function given an optimal policy. But given that those methods start off
by assuming knowledge of the optimal policy (and significant knowledge about the MDP),
they do not seem to be immediately relevant to the more typical reinforcement learning
setting in which we are trying to find the optimal policy (often starting with little or no
information about the reinforcement learning problem).

More generally, we would like, even lacking intimate knowledge of the MDP, to be

28

able to give a non-trivial set possible changes to the reward function that preserve the opti-
mality of the resulting learned policies. A degenerate special case of this problem is studied
in utility theory, which is primarily concerned with single-step decisions. Here, correspond-
ing guarantees for the utility function can be obtained very simply. For single-step decisions
without uncertainty, any monotonic transformation on utilities leaves the optimal decision
unchanged; with uncertainty, only positive linear transformations are allowed. [104] These
results have important implications for designing evaluation functions in games, eliciting
utility functions from humans, and many other areas.

To our knowledge, the question of policy invariance under reward function trans-
formations has not been fully explored for sequential decision problems.? Policy-preserving
transformations are also relevant to the task of of structural estimation of MDPs [90],
which involves recovering the model and reward function from observed optimal behavior.
Policy-preserving transformations determine the extent to which a reward function can be
recovered.

Our two earlier examples of the bicycle and the soccer-playing robot had in com-
mon the property that the shaping reward caused the agent to choose a cyclical behavior,
in which by repeatedly visiting a sequence of states in a cycle, the agent continually ac-
cumulates (shaping) reward. The difficulty with these positive-reward cycles leads one to
consider rewards derived from a conservative potential—that is, the reward for executing
a transition between two states is (essentially) the difference in the value of a potential

function applied to each state. It turns out that not only is this a sufficient condition for

2Some results are known for approzimate invariance: If rewards are perturbed by at most e, the new
policy’s value is within 2e/(1 — «y) of the original optimal policy. [97, 110]

29

guaranteeing policy invariance under reward transformations, but that, assuming no prior
knowledge of the MDP, this is also a necessary condition for being able to make such a
guarantee.

The rest of this Chapter is structured as follows. In Section 3.2, we introduce
our basic shaping framework, which is then used in Section 3.3 to give and prove our main
shaping results. Section 3.4 gives some examples of how these results may be used to
construct shaping potentials of various kinds and demonstrates their efficacy in speeding
up learning on some simple domains. Finally, Section 3.5 shows that shaping allows us
to learn using overly “myopic” algorithms (informally, ones that try to optimize only the

short-term, rather than long-term, rewards,) and still do well, and closes with a discussion.

3.2 Shaping Rewards

We are trying to learn a policy for some MDP M = (S, A, {Ps,},7, R), and wish to
help our learning algorithm by giving it additional “shaping” rewards which will hopefully
guide it towards learning a good (or optimal) policy faster. To formalize this, we assume
that, rather than running our reinforcement learning algorithm on M = (S, A, {Ps.},7, R),
we will run it on some transformed MDP M' = (S, A, {Pss},7, R'), where R' = R+ F is the
reward function in the transformed MDP, and F : S x A x S — R is a bounded real-valued
function called the shaping reward function. (Similar to R, the domain of F for the
undiscounted case should strictly be S — {sp} x A x S where s is a zero-reward absorbing
state, but we will not be overly pedantic about this point for now.) So, if in the original

MDP M we would have received reward R(s,a,s’) for transitioning from s to s’ on action

30

a, then in the new MDP M’ we would receive reward R(s,a,s’) + F(s,a,s') on the same
event.

For any fixed MDP and assuming additive, memoryless shaping reward functions,
this R’ = R+ F is the most general possible form of shaping rewards.? Moreover, they cover
a fairly large range of the possible shaping rewards one might come up with. For example,
to encourage moving towards a goal, a shaping-reward function that one might choose is
F(s,a,s") = r whenever s’ is closer (in whatever appropriate sense) to the goal than s, and
F(s,a,s") = 0 otherwise, where r is some positive reward. Or, to encourage taking action
aj in some set of states Sy, one might set F(s,a,s’) = r whenever a = ay,s € Sy, and
F(s,a,s") =0 otherwise.

One important property of this form of reward transformation is that it can gen-
erally be implemented: In many reinforcement learning applications, we are not explicitly
given M as a tuple (S, A,T,v, R), but are allowed to learn about M only through taking
actions in the MDP and by observing the resulting state transitions and rewards. Given
such access to M, we can simulate having the same type of access to M’ simply by taking
actions in M, and then “pretending” we observed reward R(s,a,s’) + F(s,a,s’) whenever
we actually observed reward R(s,a,s’) in M. Naturally, the reason that this works is that
M and M' use the same actions, states and transition probabilities. Thus, online/offline

model-based /model-free algorithms that may be applied to M may in general be readily

81t is possible to show a similar result to that given shortly for an even more general, not necessarily
additive, form of shaped rewards: R'(s,a,s’) = F(r,s,a,s’). Here, F is an arbitrary function, and r =
R(s,a,s') is the reward we would have received in the original MDP M. It turns out that if we are to
give optimality guarantees similar to those we will give here, then under appropriate conditions, the only
additional freedom that this gives us in choosing shaping rewards is that it allows us to rescale rewards by
any fixed positive factor. Since this does not add any interesting richness to the possible choices for F', we
will forgo using this more general formulation.

31

applied to M’ in the same way.

In the sequel, we will use subscript M or M’ to distinguish between various quan-
tities computed in the original and in the transformed MDPs. Thus, 7}, is an optimal
policy in M, and 7}, an optimal policy in M’, and V}; and Q7, are the value and Q-
functions in M, and so on. Since the cases of discounted (y < 1) infinite horizon MDPs and
undiscounted (y = 1) MDPs with proper transition probabilities require slightly different
treatments, we will deal with both of them explicitly in this chapter. For the remainder of
this chapter, for simplicity it will be convenient to explicitly consider only MDPs with finite
state spaces .S, though the generalization offers no difficulties, and we will also give the key
(technical) condition needed to generalize these results to MDPs with infinite state spaces.

We are learning a policy for M’ in the hope of using it in M. The question at hand
is thus the following: For what forms of shaping-reward functions F' can we guarantee that
Ty, the optimal policy in M ', will also be optimal in M? The next section will answer this

to a fair degree of generality.

3.3 Main shaping results

In practical applications, we often do not exactly know the state transition prob-
abilities Py, () a priori (and may or may not know R(s,a,s’)). Our goal is therefore, given
only S and A (and possibly R), to come up with a shaping-reward function F': SxAxS — R
that is “good” and so that 7}, will be optimal in M. In this section, we will give a form
for F' under which we can guarantee 7}, will be optimal in M. We also provide a weak

converse showing that, without further knowledge of Ps,(-) and R, this is the only type of

32

shaping function that can always give this guarantee.

First ignoring discounting (i.e., letting v = 1), let us try to gain some intuition
about what F' might give rise to the shaping “bug” pointed out earlier. On Randlgv and
Alstrgm’s bicycle task, when the agent was rewarded for riding towards the goal but not
punished for riding away from it, it learned to ride in a tiny circle and thereby obtain
positive reward whenever it happened to be moving towards the goal. More generally, if
there is some sequence of states sy, so, ..., s, such that the agent can travel through them
inacycle (s1 — sg = -+ — s, = s1 — -+), and gain net positive shaping-reward by doing
so (F(s1,a1,82) + -+ F(sp—1,an-1,5n) + F(8n,an,s1) > 0), then it seems that the agent
may be “distracted” from whatever it really should be trying to do (such as ride towards
the goal,) and instead try to repeatedly go round this cycle.

To address this difficulty with cycles, a form for F' that immediately comes to
mind is to let F be a difference of potentials: F(s,a,s") = ®(s') — ®(s), where ® is some
function over states. This way, F(s1,a1,82) + -+ + F(Sp—1,n-1,8n) + F(sn,an,s1) = 0,
and we have eliminated the problem of cycles that “distract” the agent. Are there other
ways to choose F'?7 And aside from cycles, are there any other problems with shaping that
we need to address? It turns out that, without more prior knowledge about Ps, and R, such
potential-based shaping functions F' are the only ones that will guarantee consistency with
the optimal policy in M. Moreover, this turns out to be essentially all we need in order to

make this guarantee. This is made formal in the following theorem:

Theorem 1 Let any S, A, v, and any shaping reward function F' : S x A x S — R

be given. We say F is o potential-based shaping function if there exists o real-valued

33

function ® : S+ R such that for all s € S — {sp},a € A,s' € S,

F(s,a,s') = v®(s") — &(s), (3.1)

(where S — {so} = S if v < 1). Then, that F is a potential-based shaping function is
a necessary and sufficient condition for it to guarantee consistency with the optimal policy
(when learning from M' = (S, A,{Pso},7v, R+ F) rather than from M = (S, A,{Ps},7, R)),

in the following sense:

o (Sufficiency) If F' is a potential-based shaping function, then every optimal policy in

M' will also be an optimal policy in M (and vice versa).

e (Necessity) If F is not a potential-based shaping function (e.g., no such ® exists
satisfying Equation (3.1)), then there exist (proper) transition probabilities Ps, and a

reward function R: S x A~ R, such that no optimal policy in M' is optimal in M.

The statements of the necessity and sufficiency conditions above might seem a
little more complicated than expected, and this is because there can be multiple optimal
policies in M or in M’. Nevertheless, it should be clear that the quantifications used make
this the strongest possible theorem of this form. The sufficiency condition says that so long
as we use a potential-based F', then we are guaranteed any 7}, we might be trying to learn
will also be optimal in M. The necessity condition says that if we have no knowledge of Pj,
and R, then we must choose a potential-based F for learning in M’, if we want to guarantee
consistency with learning the optimal policy in M. (If we do have intimate knowledge of
P;,, R, then the necessity condition does not say much, and it is possible that we might be

able to use other shaping functions.)

34

The proof of necessity is given in Appendix A. Here, we only prove that Equa-

tion (3.1) is a sufficient condition: that if F' is indeed of the form in (3.1), then we may
guarantee that every optimal policy in M’ will also be optimal in M.
Proof (of sufficiency): Let F' be of the form given in (3.1). If y = 1, then since replacing
®(s) with ®'(s) = ®(s) — k for any constant k& would not change the shaping rewards F
(which is a difference of these potentials), we may, by replacing ®(s) with ®(s) — ®(sq) if
necessary, assume without loss of generality that the ® used to express F' via (3.1) satisfies
®(sp) = 0. (Recall that sy here is the zero-reward absorbing state.)

For the original MDP M, we know that its optimal @Q-function @}, satisfies the

Bellman Equations (see, e.g., [99])
Qir(s:0) = By [R50, + 7 max Qi (5)| 2)
Some simple algebraic manipulation then gives us
Qis(s.0) — ©(s) = By [R(s, @) 7 B(s') — B(s) + oy max (Q3 (s,) - <1>(s’>)] (3.3)

If we now define Q (s, a) 2 Q% (s,a) — ®(s) and substitute that and F(s,a,s’) = y®(s') —

®(s) back into the previous equation, we get

Qur(s,a) = By [R(s, a,s') + F(s,a,8") + 7y max QM/(S,,G,I)] (3.4)
a' e
= Eg [R'(s,a, s') + ¥ max QM/(S',a')] (3.5)
a'e

But this is exactly the Bellman equation for M’. For the undiscounted case, we moreover
have Qar(s0,a) = Q%,(s0,a) — ®(sg) = 0 — 0 = 0. So, Qur(s,a) satisfies the Bellman

equations for M’, and must in fact be the unique optimal Q-function. Thus, @3}, (s,a) =

35

~

Qumr(s,a) = Q3(s,a) — ®(s), and the optimal policy for M’ therefore satisfies

my(s) € argmax @y (s,a) (3.6)
acA

= argmaﬁ(Q%(s,a)—@(s) (3.7)
a€

= argmaxQ}y(s,a) (3.8)

and is therefore also optimal in M. To show every optimal policy in M is also optimal in
M’ simply apply the same proof with the roles of M and M’ interchanged (and using the
shaping function —F'). This completes the proof. 0

We also have the following closely-related result:

Lemma 2 Under the conditions of Theorem 1, suppose that F' does indeed take the form
F(s,a,s") = y®(s") — ®(s). Suppose further that ®(sp) =0 if v = 1. Then for all s € S,

a€ A,

Qi (s,a) = Qu(s,a) — D(s), (3.9)

Var(s) = Vir(s) — ®(s). (3.10)

Proof: (3.9) was proved in the sufficiency proof above; (3.10) follows immediately from

this using the identity V*(s) = max,ca Q*(s,a). 0

Remark 1 (Robustness and learning). Although we have not proved it here, it is
straightforward to generalize Lemma 2 to hold for arbitrary policies 7, not just the optimal
policy: Vi, (s) = Vi (s) — ®(s) (and similarly for @-functions). A consequence of this
is that potential-based shaping is robust in the sense that near-optimal policies are also

preserved; that is, if we learn a near-optimal policy m in M’ (say, |V (s) — Vi (s)] < €)

36

using potential-based shaping, then 7 will also be near-optimal in M (|V;(s) — Vi (s)] < €).
(To see this, apply the identity we just pointed out to policies 7 and to 7}, = 7}, and

subtract.)

Remark 2 (All policies optimal under ®). To better understand why potential-based
F preserve optimal policies, it is worth noting if we have an MDP M that has a potential-
based reward function R(s,a,s’) = y®(s') — ®(s), then any policy is optimal in M. Thus,
potential-based shaping functions are indifferent to policies, in the sense that they give us
no reason to prefer any policy over any other; at an intuitive level, this accounts for why
they do not give us any reason to prefer any policy other than 73, when we switch from M

to M'.

We note that in the infinite-state discounted case, in order to guarantee policy
invariance, we need an additional (benign) condition that ® be bounded.* This is sufficient
for ensuring that the rewards R' = R+ F in the modified MDP also be bounded, and more
importantly is needed for certain steps of the proof of the theorem.® For the finite-state
case, demanding that ® be bounded is a vacuous condition since @, having a range of finite
cardinality, is automatically bounded by the maximum element in its range.

From the theorem, we also recover the familiar result that, with v < 1, constant

offsets of the reward (i.e., letting R' = R + ¢) leaves the optimal policy (policies) invariant.

"Recall that ® : S — R is bounded iff there exists some constant B < oo such that |®(s)| < B for all
seS.

SSpecifically, under standard regularity conditions (e.g., [45, 98]), there is a unique bounded solution to
the Bellman equations, but there may be many unbounded solutions. That ® is bounded thus enables us
to argue that V — @ (or @ — ®) is also bounded, and is hence the unique bounded solution to the Bellman
equations, which was used in the proof to conclude that Q% (s,a) = Q (s,a). We note that in the context
of reinforcement learning, the existence of unbounded solutions to the Bellman equations is also related to
the “spurious” solutions discussed in [43].

37

Specifically, F' = ¢ is simply achieved by letting ®(s) = —c/(1 —) for all s.

Theorem 1 suggests that we choose shaping rewards of the form F(s,a,s’) =
y®(s") — ®(s). In applications, ® should of course be chosen using expert knowledge about
the domain. As to how one may do this, Lemma 2 suggests a particularly nice form for ®, if
we know enough about the domain to try choosing it as such. We see that if ®(s) = V;(s),
(with ®(sg) = 0 in the undiscounted case), then Equation (3.10) tells us that the value
function in M’ is V},(s) = 0. This is a particularly easy value function to learn; even
lacking a model of the world, all that would remain to be done would be to learn the non-
zero (Q-values. Though to avoid misconception, we also stress this is not the only way of
choosing useful @, and that such shaping rewards can help significantly even if ® is far from
V3; (say in the sup-norm), such as by guiding exploration, etc., and we will see examples of
this in the next section. But in any case, so long as we choose potential-based F', we have
the guarantee that any (near-)optimal policy we learn in M’ will also be (near-)optimal
in M. Let us now turn our attention to some small experiments that demonstrate how

potential-based shaping might be applied in practice.

3.4 Experiments

Much empirical work before us has convincingly justified the use of shaping [66, 86],
and we will not bother to try to further justify its use. Here, our goal instead is to show
how potential-based shaping functions fit into the picture, and to demonstrate how such
shaping functions might be derived in practice.

Towards these goals, we chose for simplicity and clarity to use very simple grid-

38

w
=

s S 4

(a) (b)

Figure 3.1: (a) 10x10 grid-world in which the agent starts at S and must make its way to
the goal G. (b) 5x5 grid-world with 5 subgoals (including goal state), which must be visited
in order 1,2,3,4, G.

world domains to showcase the interesting aspects of potential-based shaping. The first
domain was a shortest-path-to-goal 10x10 grid-world (Figure 3.1a), with start and goal
states in opposite corners, no discounting, and a -1 per-step reinforcement. Actions are the
4 compass directions, and move 1 step in the intended direction 80% of the time and a
random direction 20% of the time, and the agent stays in the same place if it tries to walk
off the grid. What might be a good shaping potential ®(s)? We had pointed out earlier
that Equation (3.10) suggests ®(s) = V;(s) might be a good shaping potential. So let us
now go through the type of reasoning that might suggest a crude estimate of V;; by doing
so, we hope to demonstrate how, with a little expert knowledge about distances and the
location of the goal, similar reasoning may perhaps be used to similarly derive ® for other
minimum-cost-to-goal problems.

Upon trying to take a step towards the goal, we have an 80% chance of taking the

desired step towards the goal, and a 20% chance of a random action. If we take a random

39

10x10 Grid world x10°
T T T T

50x50 Grid world
25 T

600

500~

@ IS
1<} S

3 3

T

Steps taken to reach goal

Steps taken to reach goal

N
15}
S}
<

! 051

L L L L L L L L L = =
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
Trial number Trial number

(2) (b)

Figure 3.2: (a) Experiment with 10x10 grid-world. Plot of steps taken to goal vs. trial
number. Dotted line is with no shaping; dot-dash line is with & = 0.5®¢; solid line is with
® = @j. (b) Experiment with 50x50 grid-world.

action, then unless we are at the border of the gridworld, we are as likely to move towards
as away from the goal. Hence, from most states, we would expect the optimal policy to
make about 0.8 steps of (Manhattan distance) progress towards the goal per timestep, and
a crude estimate of the expected number of steps needed to get to the goal from s would
be MANHATTAN(s,GOAL)/0.8. Thus, we set our estimate of the value function and therefore
®(s) to be ®o(s) = Var(s) = —MANHATTAN(s,GOAL)/0.8. This is what we used as our
guess of a “good” shaping function. Also, as a shaping-reward that would be quite far (in
the sup-norm) from V), (s), we also tried using ®(s) = 0.5®g(s). The results of this first
experiment® are shown in Figure 3.2a. (All experiments reported in this section are averages
over 40 independent runs.) As can be readily seen, using either of these shaping functions

significantly helped speed up learning. Moreover, it is worth re-stressing that even though

6The learning algorithm used was Sarsa [99], with 0.10-greedy exploration, and learning rate 0.02. Ex-
periments with Sarsa()) also gave analogous results showing shaping significantly speeding up learning.

40

5x5 Grid world with 5 flags/subgoals 8x8 Grid world with 20 flags/subgoals
T T T T T T

3500

3000

2500

2000 -

1500 !

Steps taken to reach goal
Steps taken to reach goal

1000~ \

I I I I I I I I I I I I I I
0 100 200 300 400 500 600 700 800 [100 200 300 400 500 600 700 800
Trial number Trial number

(a) (b)

Figure 3.3: (a) Results of experiment with 5x5 grid-world with subgoals. Plot of steps taken
to goal vs. trial number. Dotted line is no shaping; dot-dash line is with ® = ®; solid line
is with ® = ®;. (b) Results of experiment with larger, 8x8 grid-world with more subgoals.

0.5®q is quite far from Vj;, it still significantly helped the initial stages of learning. For
a larger 50x50 grid-world, the results become even more dramatic: Figure 3.2b shows the
result of the same experiment repeated on the larger grid. The plots for &y and 0.5®q are
so low in the graph that they can barely be seen; learning without shaping is clearly losing
badly to the potential-based shaping algorithm.

Reiterating, the goal of these experiments was not to try to justify shaping—that
has been done far more convincingly by others. Instead, what we have demonstrated here is
a style of some very simple reasoning that, by putting together a distance-to-goal heuristic,
has enabled us to pick a sensible ® that dramatically sped up learning.

Next, another class of problems for which a similar style of reasoning might work
is domains where we can assign subgoals. Consider the grid-world in Figure 3.1b, where we
start in the lower-left hand corner, and must pick up a set of “flags” in sequence before going

to the final goal state. Actions and rewards are the same as in the previous grid-world, and

41

the state-space is expanded to keep track of the collected flags. Since each flag is a subgoal,
it is tempting to choose F' so that we are rewarded for visiting the subgoals. Let us now
see how a potential-function style of reasoning can indeed lead us to choose such an F', and
how Equation (3.10) further suggests magnitudes for the subgoal rewards.

With knowledge of the subgoal locations and using reasoning analogous to that
suggested earlier (0.8 steps of progress per timestep, etc.), we may estimate the expected
number of timesteps, say ¢, needed to reach the goal. If we imagine that each subgoal is
about equally hard to reach from the previous one, then having reached the n-th subgoal,
we would still have about ((5 — n)/5)t steps to go. A slightly more refined argument
changes this to ((5 —n — 0.5)/5)t steps (where 0.5 comes from the “typical case” where
we are halfway between the n-th and n + 1-st subgoals), and so our first choice of ®(s) is
®y(s) = —((6 —ns — 0.5)/5)t, where ns denotes the number of subgoals we have achieved
when we are at s. Using this form of shaping-reward function, we see that ®(s) = ®¢(s)
jumps by ¢/5 whenever we reach any subgoal (other than the final goal state), and so
the shaping reward function F(s,a,s’) = ®(s') — ®(s) is giving ¢/5 reward for reaching
each of these subgoals. This is exactly what our intuition had suggested might be a good
shaping reward. For comparison, we also carried out this experiment using a more fine-tuned
shaping reward that, similar to the previous grid-world experiments, explicitly estimated
the remaining time-to-goal for each state by counting the number of steps it is away from
the goal and dividing by 0.8, and using that to construct the corresponding ®1(s) = Vi (s)
potential function. The result of these experiments are shown in Figure 3.3a, and we see that

using our first crude shaping function ®y has allowed us to significantly speed up learning

42

over not using shaping (and the fine-tuned ®; unsurprisingly gave even better performance).
When repeating this experiment on a larger 8x8 domain, the differences become even more

dramatic (Figure 3.3b).

3.5 Discussion

We have given several intuitive examples of how shaping can reward “good” be-
havior and hence accelerate learning. We now show that a well-chosen shaping function can
formally make a reinforcement learning “easier” for certain (myopic) learning algorithms, in
sense that if a good shaping function is chosen, then we may learn using a reduced discount
factor/lookahead horizon time, and still attain near-optimal behavior. What we mean by
this is the following: One of the things that makes reinforcement learning interesting and
difficult is that one’s actions must be chosen to maximize the long-term, rather than only
the immediate, rewards. The rate at which future rewards are discounted is controlled by
v, which thus also controls the “lookahead horizon time”—informally, the number of time
steps the algorithms must plan ahead in order to do well. (Horizon times are made more
formal in Chapter 4.) Intuitively, it is harder to learn in MDPs where « close to 1, since the
algorithm must then lookahead further; indeed, we will later see algorithms whose running
time has an explicit (either exponential or polynomial) dependence on 1/(1 —), so that a
smaller v means more efficient algorithms. We can show that if a good shaping function is
chosen, then it is possible to learn using some ' < «y (i.e., use a smaller lookahead horizon),
and still attain near-optimal performance.

Recall our previous discussion that a good shaping potential might be one close

43

to Vy;. We can show the following result:

Theorem 3 Let M = (S,A,{Pss},7v,R) be an MDP (v < 1), and suppose ® satisfies
|®(s) — Vi(s)| < e for all s. Let F be a potential-based shaping reward defined using @,
and consider learning using some discount ' < v and the shaping rewards F. Specifically,

let & be an optimal policy for the MDP (S, A,{Psq},7',R+ F). Then

Vir(s) > Vir(s) = Oy (v = 7)e) - (3.11)

(where the subscript in the big-O notation indicates that it is hiding constants that may

depend on).

In other words, if we are using shaped rewards, then we may run our learning algorithm
using some smaller discount factor ' < « than the “original” v, and still have the guarantee
that, so long as our shaping function was a good one (i.e., € is not too large), we will obtain
a near-optimal policy. Given that many reinforcement learning algorithms will learn or
converge faster if run with smaller discount factors, this shows another way that shaping
can be used to accelerate learning, without sacrificing much performance. The proof of this
Theorem is given in Appendix B.

Previously, we showed necessary and sufficient conditions for a shaping function F’
to leave optimal policies invariant. Here also are two easy generalizations worth mentioning:
Aside from guaranteeing consistency while trying to learn the optimal policy, it is easy to
show (by an argument similar to Remark 1 in Section 3.3) that potential-based F' also work
when trying to learn a good policy from within a restricted class of policies, such as in the
policy-search framework that we study in the next chapter. Also, for semi-Markov decision

processes (SMDPs) where actions take varying amounts of time to complete, Equation (3.1)

44

unsurprisingly generalizes to F(s, a, s, 7) = e #7®(s') — ®(s), where 7 is the time the action
took to complete, and 3 is the discount rate.

Finally, the “y®(s’) — ®(s)” form also seems on the surface reminiscent of terms
in some of the equations used in Advantage learning [10] and A-policy iteration [17]. At
a very crude level, it turns out that each of them may be thought of as trying to modify
® so as to gain some computational or representational advantage. If we consider the
problem of modifying ®, then trying to learn a rough shaping function seems to lead quite
naturally to an algorithm for multi-scale value-function approximation; specifically, we may
use a “course” approximation to ®, and a “fine” approximation to learn a policy given the
shaped rewards. Although it may initially seem unusual to try to learn a shaping function,
it is the multiscale “rough vs. fine” approximation aspect that this leads to which makes it
possibly powerful;” this may be an interesting subject for future work.

But more interestingly, the result of Theorem 3 also suggests that it might be
fruitful to use a hybrid algorithm in which a value function approximation algorithm is
used to approximate V} (and the approximation is then used as ®); and a policy-search
algorithm is run using the shaped rewards and a reduced discount factor, for efficiency.
(This also turns out to be closely related to actor-critic methods [99], but here we would
run the “actor” /policy search algorithm with a reduced horizon time.)

In this chapter, we have shown that potential-based shaping rewards y®(s') — ®(s)
leave (near-)optimal policies unchanged. Moreover, potential-based shaping rewards were

proved to be the only type of shaping that can guarantee such invariance unless we make

"This also relates to the observation that something like a learned shaping reward seems to be operating
psychologically—e.g., the capture of a piece in chess operates as a reward even though the underlying MDP
has rewards only for checkmate.

45

further assumptions about the MDP. But just as some practitioners use discounting even on
undiscounted problems (perhaps to improve convergence of algorithms), we believe it will
also be occasionally reasonable to try shaping rewards that are inspired by potentials, but
which are perhaps not strictly of the form we have given. For example, by analogy to using
discounting even on undiscounted problems, it is conceivable that for certain problems, it
may be easier for an expert to propose a potential ® for an “undiscounted” shaping function
®(s') —®(s), even when v # 1. Even though our results may no longer guarantee optimality
in this case, such a shaping function may, purely from an engineering point of view, still be
worth trying, albeit judiciously and with care. In the same spirit, whereas our regularity
conditions had demanded using bounded @, it is also plausible that some practitioners
might want to try certain unbounded ®. Naturally, if expert knowledge about the domain
is available, then non-potential shaping functions might also be fully appropriate.

As guidelines for choosing shaping functions, we have suggested a distance-based
heuristic and a subgoal-based heuristic for choosing potentials; because shaping is often
crucial to making learning tractable, we believe the task of finding good shaping functions

will be a problem of increasing importance.

Appendix 3.A: Proof of necessity

In this Appendix, we sketch the proof of the necessity part of Theorem 1. For
brevity, we give the proof only for the case of |A| = 2; the generalization is obvious but

more tedious. We begin with the following Lemma.

46

Lemma 4 If there exist s € S—{sp},s’ € S and a,a’ € A such that F(s,a,s') # F(s,d,s'),
then there exist transition probabilities Ps, and a reward function R such that no optimal

policy in M' is optimal in M.

Proof (Sketch). Assume without loss of generality that F(s,a,s’) > F(s,d,s"), and let
A = F(s,a,s") — F(s,d',s") > 0. In the undiscounted case, also assume for simplicity that
s #s'. (When v = 1, the proof for s = s’ is nearly the same, but having to ensure properness
just makes it much more tedious.) We then construct M as follows: Let Py, (s') = Py (') =
1.0, and let R(s,a,s’) =0 and R(s,d’,s') = A/2. Clearly 7},(s) = a’. On the other hand,
since R = R+ F, we have R/(s,a,s') = F(s,a,s') and R'(s,d’,s") = A/2 + F(s,d,s') =

F(s,a,s") —AJ/2 < R'(s,a,s"), and hence 7}, (s) = a. O

We are now ready to show the main necessity result.

Proof (of necessity). Assume F' is not potential-based. We need to show we can construct
Pyq, R such that no optimal policy 7}, in M’ is also optimal in M. By Lemma 4, if
F(s,a,s") depends on a, we are done; hence we need only consider shaping functions of the
form F(s,a,s") = F(s,s') (which do not depend on a).

If vy =1, let §9 = sg be the distinguished absorbing state; otherwise let §y be some
fixed state. Noting that constant offsets of the reward do not affect the optimal policy when
v < 1, we may, by replacing all F'(s, s') with F(s,s") — F(8, 80) if necessary, assume without
loss of generality that F'(Sp,59) = 0. Now define ®(s) = —F (s, §¢) for all s. By assumption
of F' not being potential-based, there exist s1, s such that y®(s2) — ®(s1) # F(s1,s2) (let
us assume $1, S2, §9 are distinct; the other cases are either impossible or handled similarly).

We then construct M in the following way (still assuming |A| = 2). From state s, let

47

Figure 3.4: The unlabeled thick edges correspond to both actions. All edges have probability
1. The edge (s1,a,So) carries a reward A/2, and all other edges have zero reward.

Ps,4(30) = Ps, o (s2) = 1.0, and from states s; and §g let both actions ¢ and o’ lead to §y with

probability 1. Also define A = F(s1, s2) +vF(s2,50) — F(s1,80) and let R(s1,a,80) = A/2,

R(-,+,-) = 0 elsewhere. This model is illustrated in Figure 3.4. Then we have

Q?\/[(Sla a’) =
Qi(s1,d") =

Qi (s1,a) =

QM/(Sl,GI) =

A

D) (3.12)
0 (3.13)
A

5 +F(s1,5%) (3.14)

. A

F(s1,52) +7F(s2,%0) — 5 (3.15)
F(s1,82) +vF (s2, %), (3.16)

where we have relied on the fact that V;(50) = V;;/(50) = 0 by construction. Hence

T (1)

i (s1)

r

a if A >0,

= (3.17)

a' otherwise

a if A >0,

= (3.18)

a otherwise

48

Appendix 3.B: Learning with a smaller horizon

In this Appendix, we give a fuller form of, and prove, Theorem 3, which shows
that if a “good” shaping function is used, then we may learn using a smaller discount
factor/smaller horizon time, and still attain near-optimal behavior.

Let F(s,a,s’) = y®(s')—®(s) be a potential-based shaping function, and R'(s, a, s')
R(s,a,s') + F(s,a,s'). We previously showed that an MDP using reward R’ and discount
v will have the same optimal policy (or policies) as one with rewards R and discount +.
We are now interested in the question of what happens if we perform shaping—thus learn-
ing with rewards R'—but use some new discount ' < . Under v/, future rewards are
discounted more heavily. Informally, this corresponds to letting our learning algorithm be
more “myopic,” so that it looks ahead fewer steps.

Whereas we had previously considered transforming the reward function of an
MDP from R to R', we are now also interested in transforming the discount factor from

v to 4. Modifying our previous notation, we will use “R,vy,” “R,v',”

etc. subscripts to
denote quantities from each of the four MDPs arising from combinations of the two rewards
and two discount factors. For instance, V*,ﬁ is the optimal value function in an MDP using
reward function R’ and discount vy (and the same state space, actions, and state transition
probabilities as the original MDP). Similarly, W}‘%,ﬁ is an optimal policy in the MDP that

Mot o
uses R’ and ~; and VR,R7}7 is the value function for the policy 77, in the MDP using R, 9.

Note also that, by Theorem 1, we have that
TRy = TRy - (3.19)

This says that optimal policies in the (R',~)- and the (R,~y)-MDPs are the same. Restating

49

part of Remark 2 of Section 3.3, we also have that for any =,
Vi, =Vigy— 9. (3.20)

The following result (essentially a restatement of Theorem 3) states that if we
chose a “good” shaping function (if ®(s) is close to Vj . (s)), then we may learn using some
smaller horizon time (i.e., use some ' <) and still attain near-optimal behavior. Note
that we are always interested in evaluating policies with respect to the original, (R,7)-
MDP. And, the theorem guarantees that value of the policy w}‘{,ﬁ, (the result of learning an
optimal policy using the modified rewards and discount factor), as evaluated in the original

MDP, will be near-optimal.

Theorem 5 Suppose |®(s) — Vi _(s)| < e for all s € S, and let v < 1. Let R'(s,a,s') =

R(s,a,s") +y®(s') — ®(s), and v' <. Then

T, " 2 — e
Vi () 2 Vi (o) = o) (3.21)

L—9)(1—7)

Before proving the theorem, we first state, without proof, the following simple fact.

Proposition 6 Let f,g: A+— R be two real-valued functions with domain A, and suppose

that |f(a) — g(a)| < n for all a € A. Then | max, f(a) — max, g(a)| < 7.

Proof (of Theorem 5). From Lemma 2, we have that Vy, . (s) = V (s) — ®(s) for all s.

Since moreover |V (s) — ®(s)| < e for all s (by assumption), this shows that for all s € S,

Vi (s)] < e. (3.22)

Let

_ * I 74
T = msax|VR,77(s) Vi 4 (3)]

*

- VWR’,W Vﬂ_;‘{/ﬁ/
= msax| 0 (8) = Vi (s)].

We will now show a bound on 7. For every s, a, we have that

VBy () Vi (8] = Vgt () [V o (8]

= |VEynru Vi (8] = VEaap, () [Vir (5]

+’Y,E51Npsa(.) [V;@ﬁ(s')] — ’yIES,NPSG(') [Vé/ Y (S,)] ‘

< VBompa() Vi (8N = YV Egop,, () [Vir (8]

+ |V Eopo () Vi 7 (8] = VEgp () Vi 4 (8)]]
= (V=) [Bonpy Vit o ()]

+ 9 |Byap() Vi (8)] = Egop, () [Vie 1 (8]
< (r=v)e+Ar

This implies that for every s,

Vi (s) = Vi i(s)] = ‘(mngs/Npsa(,)[R'(s,a, s')—i—’ny@ﬁ(s')])

— (mgx Eyop,, ()[R (s,0,8) + 7' Vi (3')]) ‘

< (Y=t

The second step above used Proposition 6, with

f(a’) = ES’NPM(-) [RI(Sa a, Sl)] + ’yEs’NPSa(-) [VE’,y(S,)]

gla) = Byop,[R(s,0,8)] +7VEgop, [V (5],

50

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

o1

and the fact that |f(a) — g(a)] < (y —4')e ++'7 for all a (as shown in Equation 3.29).
But since (3.31) holds for any state s, it must also be a bound on 7. (See Equa-
tion 3.23). Hence,

T<(y—-v)e++'7 (3.34)

Some simple manipulation then allows us to show

A
<Y - 1,) e, (3.35)
and hence that, for all s,
_ !
Vi (8) = Vi (s)] < 9 - z,) ‘. (3.36)

Recall that we are interested in evaluating 7%, ., with respect to the (R,~y)-MDP.
Now, 7, ., is the policy that acts greedily with respect to the value function V, , (s); and,
we have just shown that this value function is close (within (y—+")e/(1—+")) to the optimal
value function Vg, _(s) for the (R',7)-MDP. A standard result (see, e.g., [97]) shows that
the value of W;z',y in the (R',v)-MDP cannot be far from optimal. Specifically, we have
that for all s,

Vi (s) = Vi (9 < 2y L) (3.37)

But using Equations (3.19-3.20), we also know that

Vip () = VR (s) = VR (s) = Vit (s) (3.38)
= Vi (s) = Vgt (s) (3.39)

- (vgfy(s) - @(s)) - (V;?;’ﬁ’ (s) — <I>(s)> (3.40)
= ng(s) - Vg{jv () (3.41)

= Vi, (s) = Vga ' (s). (3.42)

52

Putting this together with (3.37) proves the theorem. U
Lastly, to simplify this result to give Theorem 3, note that since 4’ <+, we have

that 1/(1 — ') < 1/(1 =) = O,(1).

93

Chapter 4

Pegasus: A policy search method

for large MDPs and POMDPs!

In this chapter, we propose a method for searching within a space of policies
for a Markov decision process (MDP) or a partially observable Markov decision process
(POMDP). We will focus on the “planning” setting in which we are given a model of the
MDP’s state transition dynamics. We begin by describing the policy search framework and
why naive algorithms do not work well. We then review the trajectory trees method of
Kearns, Mansour and Ng [50], which solve some problems faced by the naive methods, but
is still intractable for most reasonable problems. We then present the PEGASUS approach
to policy search. PEGASUS is based on the following observation: Any (PO)MDP can be
transformed into an “equivalent” POMDP in which all state transitions (given the current

state and action) are deterministic. Thus, this reduces the general problem of policy search

!The PEGASUS algorithm presented this chapter first appeared in Ng and Jordan (2000), “PEGASUS: A
policy search method for large MDPs and POMDPs,” Uncertainty in Artificial Intelligence, Proceedings of
the Sixteenth Conference, pp. 406-415.

54

to one in which we need only consider POMDPs with deterministic transitions. We give a
natural way of estimating the quality of policies in these transformed POMDPs, leading to
algorithms for efficiently evaluating and searching in the space of controllers. We also prove

guarantees on the performance of our methods.

4.1 Policy Search

As discussed in Chapter 2, a recurring challenge in learning in large MDPs or
POMDPs is the “curse of dimensionality.” [13] For instance, consider learning in an MDP
that has an n-dimensional state space S = R" or S = [0,1]", where n is large. To obtain
a controller for such an MDP, one must have a way of representing policies w : S — A.
How can we represent a function with domain S? One simple method is to discretize the
state space by “chopping” it into little grid cells of some edge-width €, and then picking
a separate action for each grid cell. Unfortunately, this method has a representational
cost that is exponential in the dimension n, making it infeasible even for moderate-sized
problems. Note that this problem arises even if S is not continuous. For instance, with a,
discrete n-dimensional state space S = {0,1}", the cost of representing 7 : S — A is still
exponential n if we use a naive lookup-table representation for 7 (storing a separate action
for each state).

For a more practical way of representing policies, suppose we instead start by
picking some restricted, tractably representable, set of functions IT that map S to A. Then,
rather than trying to find the “universally optimal” policy among all possible policies map-

ping from from S to A, suppose we instead restrict our attention to II, and seek only to find

95

a good policy within the set II. Recent years have seen growing interest in such algorithms
for policy search in large MDPs and POMDPs (e.g., [109, 57, 108, 77, 9, 50]).

As a concrete example, if S = R"” and A = R, then one possible choice for IT might
be the set of all linear functions mapping from the state variables to the real numbers.
If there is indeed a linear controller that performs well on the MDP under consideration,
then we hope that our learning algorithms will find it or something close to it. As another
example, II may also be the set of all possible functions representable by a medium-sized
neural network [69] or any other smoothly parameterized function approximator. The goal
of policy search will then be to find a setting of the neural network weights so that when
the current state is set as the input into the neural network, it will compute a good choice
of action to take at that state.

In contrast to dynamic programming-based algorithms that try to find an approx-
imate value or Q-functions, policy search methods tend to apply straightforwardly to the
setting of POMDPs, in which an agent cannot observe the state exactly at each step, and
must act using only partial information. Specifically, the policy search framework we have
discussed also encompasses cases where our family IT consists of policies that depend only
on certain aspects of the state. In particular, to learn in a POMDP, we might use a class
IT that contains only policies that depend only on the observables. (E.g., II may be the
set of all linear functions mapping from the observations to the actions.) This results in a
class of stochastic memoryless (reactive) policies? that can be applied to the POMDP. By

introducing artificial “memory variables” into the process state, we can also define limited-

2 Although we have not explicitly addressed stochastic policies so far, they are a straightforward general-
ization (e.g. using the transformation to deterministic policies given in [50]).

o6

memory policies [72] (which permits some belief state tracking, in which the agent uses past
and present observations to try to estimate the true state).

Policy search methods may also enjoy other advantages over dynamic-programming
and value-function based solutions. Specifically, policy search methods represent and work
with policies directly, without the intermediate step of representing a value function. They
can thus more readily exploit the fact that, for many MDPs, the value and @Q-functions can
be complicated and difficult to approximate, even though there may be simple, compactly
representable policies that perform very well. Indeed, the existence of a good, compact rep-
resentation of a @Q-function (via a small neural network, say) implies the existence of a good,
compact representation of a policy, because a ()-function defines a policy. In contrast, there
is no guarantee that the existence of a good, compact representation of a policy implies a
good, compact representation of a value or a @)-function.

Of course, while policy search provides a powerful tool for solving many problems in
reinforcement and control, there are also settings in which other methods may be preferred.
For instance, policy search typically requires explicitly searching in IT for a good policy. This
may be computationally expensive and more prone to local optima than certain dynamic
programming-based methods. So if these are issues, and particularly if there is reason
to believe that the value function can be easily approximated, then value-function-based
approaches would be competitive.

Policy search requires choosing II. This choice is typically up to the user designing
the system. When there is prior knowledge about a likely form of a good controller (such

as a belief that there exists a good linear controller), then that can be used to choose II.

o7

When such prior knowledge is not available, then one may instead use a general function
approximator (such as a neural network [69]) for II.

A useful way of thinking about II is to consider writing a computer program for
controlling the MDP or POMDP, but one that has many parameters left unset. It will be
then the role of our learning algorithm to automatically set those parameters. For example,
if we were designing a controller to fly a helicopter through a sequence of maneuvers, we
might write a program that explicitly loops through the different segments of the trajectory,
taking the helicopter through each segment in turn. (We will, in fact, see this done in
Chapter 5.) If, however, there are certain parameters that we do not know how to set (say,
exactly how hard to pull on the control stick in order to make the helicopter accelerate
forward smoothly), then we may leave these parameters undefined and leave the learning
algorithm to set them to appropriate values.

This “philosophy” of designing II via writing “partial programs” has also been
espoused in a certain line of research that has attempted to construct specialized program-
ming languages for representing prior knowledge in learning problems, and that then designs
specialized algorithms that can take advantage of these representations. For example, Parr’s
HAMs [81] allow one to specify finite-automata controllers for (fully observed) MDPs; An-
dre and Russell’s PHAMs encompass HAMs and generalizes it to permit more operators [4];
and Thrun’s CES [100] is another programming language for machine learning. In contrast
to being forced to use these specialized languages with all their limitations (e.g., HAMS
and PHAMS do not support recursion/for-loops), in our view it is often preferable to allow

users to use their favorite, fully expressive, programming language (such as C, C++, Java,

o8

etc.) to specify II. Despite not placing such restrictions on II, we will see that, under

certain assumptions about the programs (such as that it is “efficient”

and terminates using
only a small number of operations), we are able to show non-trivial guarantees about the
performance of our algorithms.

In the next section, we set up the formalism giving our policy search framework,
and describe our policy search strategy. Our eventual goal is an efficient algorithm whose
“sample complexity” is polynomial in all quantities of interest. As an intermediate step, we
review the “trajectory trees” method of Kearns, Mansour and Ng [50] in Section 4.3. The
trajectory tree method requires an exponentially large number of samples, and does not
apply to problems with an infinite-dimensional action space. In Section 4.4, we therefore
describe the PEGASUS policy search method, which resolves these difficulties. In Section 4.5,

we give guarantees on our method’s performance; Section 4.6 presents the results of some

experiments using these methods; and Section 4.7 closes with a discussion.

4.2 Policy search framework

For the sake of concreteness, we will assume, unless otherwise stated, that S =
[0, l]ds is a dg-dimensional hypercube. For simplicity, we also assume rewards are determin-
istic, and written R(s) rather than R(s,a). We will also consider only the case of discounted
MDPs (v < 1), the extensions being straightforward.

Recall that the value function of a policy 7 is a map V™ : § — R, so that
V7™ (s) gives the expected discounted sum of rewards for executing 7 starting from state s.

To simplify our subsequent notation, define the utility of a policy w, with respect to the

99

initial-state distribution D, to be

U(r) = Eson [V (0)] (4.1)

(where the subscript sy ~ D indicates that the expectation is with respect to sy drawn
according to D). Thus, U () is simply the expected discounted sum of rewards for executing
m starting from sg drawn according to D. As before, when we are considering multiple MDPs
and wish to make explicit that a value function or other quantity is for a particular MDP
M, we will use a subscript M, as in V[(s), etc.

In the policy search setting, we have some fixed class II of policies, and desire to
find a good policy w € II. More precisely, for a given MDP M and policy class I, define

the best possible utility attainable by II to be?

opt(M,1I) = max Upr(m). (4.2)

Our goal is to find a policy @ € II that gives high utility; i.e., one where U(7) is close to

opt (M, 1I).

4.2.1 Deterministic simulative models

We are interested in the “planning” problem, and will assume that we are given a
model of the (PO)MDP.
In order for an algorithm to find a good policy for an MDP (or POMDP), it must

have access to, or some information about, the MDP. One common assumption is that a

3Here and in the rest of this chapter, we will be not be overly pedantic about the difference between
max’s and sup’s, and whether various max’s and arg max’s exist. In all the cases in which the max fails to
exist, our arguments may be straightforwardly modified to instead consider an infinite sequence converging
to the sup.

60

5

s—e SMuUlaor | 5 s g g >S
|
a

(2) (b)

Figure 4.1: (a) A simulator/generative model for an MDP, that takes as input any (s, a)-
pair, and outputs s’ ~ P (-). (b) A typical computer implementation of a simulator, in
which a random number generator is called to generate p, and the output s’ is computed
as a deterministic function g(s, a,p) of p and of the inputs s, a.

learning algorithm has access to the MDP via a generative model or a simulator [50, 98],
which is a stochastic function that takes as input any (s, a) state-action pair, and outputs
a successor state s’ drawn according to Py, (). (In the POMDP setting, the simulator also
returns an observation for the state.) This enables the learner to try actions from arbitrary
states. Such a generative model/simulator is most commonly implemented via a computer
program that takes as input any state s € S, and action ¢ € A, and randomly samples
§' ~ Pgo(+). This is depicted in Figure 4.1a.

In this work, we will assume access to such a generative model, but will take the
assumption one step further. The only way (essentially) to implement a computer simulator
of the form in Figure 4.1a is to write a computer program that takes as input s and a, then
makes a call to a random number generator to obtain one (or several, say, dp), random
numbers p, and then computes some function g of the input s, a, and of the random p.

Indeed, this is how (almost) all programs are written that need to sample a random variable

61

from some distribution P, (-)—they compute some deterministic function of their inputs
and the random number generator’s output. We will assume that our learning algorithm has
access not only to the generative model/simulator, but also access to the function g. L.e., we
assume that our computer simulator exposes its interface to the random number generator.
While this initially seems a fairly minor assumption, we will later see how demanding that
the simulator expose its interface to the random generator allows us to derive significantly
more powerful algorithms.

Since g : S x A x [0,1]9" + S is a deterministic function, we will refer to it as
a deterministic simulative model. To draw a sample from Pj,(-) for some fixed s and
a, we need only draw uniformly in [0, 1]%7, and then calculate g(s,a,$). A deterministic
simulative model therefore allows us to simulate a generative model.

Let us examine some simple examples of deterministic simulative models. Suppose
that for a state-action pair (s1,a1) and some states s’ and s”, Ps 4, (") = 1/3, Ps,q,(8") =
2/3. Then we may choose dp = 1 so that = p is just a real number, and let g(s1,a1,p) = '
ifp <1/3,and g(s1,a1,p) = s” otherwise. As another example, suppose S = R, and Py, (+) is
a normal distribution with a cumulative distribution function Fs,(-). Again letting dp = 1,
we may choose g to be g(s,a,p) = F,,'(p), so that g(s,a,p) is distributed as Py, ().

It is a fact of probability theory that, given any transition distribution Ps,(-),
such a deterministic simulative model g can always be constructed for it. (See, e.g. [31].)
Indeed, some texts (e.g. [15]) routinely define POMDPs using essentially deterministic sim-
ulative models. However, there will often be many different choices of g for representing a

(PO)MDP, and it will be up to the simulator’s programmer to decide which one is most

62

“natural” to implement. As we will see later, the particular choice of g that is used can
indeed impact the performance of our algorithm, In subsequent sections, one of our goals
will be to bound the number of samples required to obtain good performance, and we will
see that “simpler” (in a sense to be formalized) implementations of g are generally to be

preferred.

4.2.2 Policy search strategy

Our goal is to find or approximate arg max e U(7), the best policy in II. If we
could easily compute U(m), we could simply apply a search algorithm to search in II for the

utility-maximizing policy. But
U(r) = Ex[R(s0) + yR(s1) +v*R(s2) + -] (4.3)

is the expected sum of discounted rewards for picking actions according to 7, and calculating
U(n) is, in general, intractable.

Our strategy will therefore be to instead find a tractable estimate U of U, and then
instead optimize U, as a “proxy” for optimizing U. When will optimizing U be “nearly as
good” as optimizing U? It is a straightforward to show that if U is a uniformly good estimate
of U—that is, if

U () — U(n)| < e for all 7 € 1II, (4.4)
then optimizing U will result in a policy whose utility is within 2¢ of the best possible

utility. This result was also used in [50]. Readers may also be familiar with a form of

this result commonly seen in the standard supervised learning setting.* But for the sake of

*E.g., in [54], it is shown that in the supervised learning setting, if we optimize the estimated generalization
error of a classifier, and if the estimates are uniformly e-close to the true generalization errors, then we will
obtain a classifier within 2¢ of the best possible error.

63

completeness, we state and formally prove this result now.
Letting 7 = arg max,eq U(?T) be the policy we get from optimizing the estimated

utilities, we have the following:

Proposition 7 Let an MDP M be given, and suppose |U(m) — U(x)| < € for all = € II.

Let 7t = arg maxyey U(w). Then
U(w) > opt(M,II) — 2e. (4.5)

Proof. Let 7* = argmax,cyp U(7) be the best policy in II. (So, U(7*) = opt(M,II).) We

then have:

U(f) > Ul#)—e (4.6)
> U(r*)—e (4.7)
> Ur*) - 2 (4.8)
= opt(M,TI) — 2. (4.9)

Above, to obtain the first and third inequalities, we used the assumption that Uis uniformly

e-close to U; for the second inequality, we used that fact that 7 maximizes U so that

U(x) > U(r*). O
Thus, if we can obtain U that is a uniformly good estimate of U, then optimizing
U will give a policy that achieves nearly the best possible utility.
How might one try to obtain good estimates of U? Since we have a simulator
for the (PO)MDP, one very natural method is to use Monte Carlo samples. (E.g., [98].)
Specifically, to estimate the utility of a policy 7, we can use our generative model to simulate

controlling the MDP using «. Le., we first draw sg ~ D from the initial-state distribution,

64

S | Simulator | St | Simulator | 2 | Simulator | 3

ta ta ta

Figure 4.2: Monte Carlo evaluation of a policy 7, using a generative model/simulator.

and then we repeatedly find the action a; = 7(s;) chosen by our policy at state s;, and
simulate taking action a; by sampling a state transition s;11 ~ Py, q,(-). By repeatedly
doing this, we obtain a sequence of states sg, $1, $2, This process is shown in Figure 4.2.

By summing up the discounted rewards along the observed state sequence, we
obtain R(sp) + yR(s1) + ¥?R(s2) + ---, which is an unbiased estimate of U(w). More
generally, we may repeat this entire sampling process m times, and average over the m
samples to obtain a better estimate of U(w). Thus, letting {s,gi)} denote the i-th sampled

state sequence, we define our Monte Carlo estimate of U () to be

Z R(sgi)) + 'yR(sgi)) + "yzR(sg)) +-- (4.10)
i=1

U(r) =

1
m

To actually implement this, one last algorithmic detail is that, rather than working
with infinite state sequences, we actually truncate the sequence after H. = [log,(e(1 —
v)/2Rmax)] steps. Here, H. is called the e-horizon time, and it is easily verified that

(because of discounting, so that rewards in the distant future are given a small weight,) the

65

truncation introduces at most €/2 error into the approximation.

Monte Carlo gives a simple way of obtaining estimates of policies’ utilities. Un-
fortunately, if U : IT — R is defined this way, then U is a stochastic function: Evaluating U
involves a random sampling procedure, and thus each time we evaluate it, we may obtain a

slightly different value. Thus, optimizing U to find
7 = “arg max U(m)” (4.11)

represents a non-trivial stochastic optimization problem, which presents a significant algo-
rithmic challenge.

Even more seriously, Monte Carlo evaluation will in general fail to give the uniform
convergence guarantee (Equation 4.4) when |II| is infinite.5 This is true even if we were to
average over arbitrarily large numbers m of Monte Carlo samples. We can formalize this in

the following proposition:

Proposition 8 Let m,mo,... CII be an infinite sequence of policies. Let there be an MDP
that is “sufficiently random” that a single Monte Carlo sample cannot be guaranteed to give
a good estimate for U(m;), in the sense that there exist some B > 0,6 > 0 so that for every

m;, it holds true with probability at least § that
|(R(s0) + YR(s1) + ... + YT R(sy)) — U(m;)| > B, (4.12)

where the probability is over the random state sequence sq, . ..,sg generated by taking actions
according to w;. For each m;, let U(m) be a Monte Carlo estimate of U(m;), determined by

averaging over m sampled state sequences of H steps each. Here, an independent set of

*When |TI| is finite, then with m = O(log |II|) samples, the uniform convergence guarantee can be shown
to hold with high probability. [50]

66

samples is used to determine each U(m;), so that the U(m;)’s are mutually independent.
Then with probability one,

max U (m;) — U(n;)| > B

Proof. Consider any fixed ;. For Equation (4.12) to hold, it must necessarily be the case
that either

(R(so) + vR(s1) + ...v"R(sg)) — U(m;) > B (4.13)

holds with probability at least 6/2, or
(R(so) + YR(s1) +...v"R(sy)) = U(m;) < —B (4.14)

holds with probability at least /2. We assume without loss of generality that the latter
case holds, so that the probability of a single Monte Carlo sample being more that B below
the true utility is at least 0/2. Now, the probability of m independent samples all giving
an estimate that is more than B below U(m;) is therefore at least (6/2)". Hence, with

probability at least (6/2)™, we have that
U (m;) = U(m;)| > B.

Let A; = 1 if |U(m;) — U(n;)| > B, and A; = 0 otherwise. Then we have that P(4; =
1) > (6/2)™. Thus, >.;2, P(A; = 1) = co. Moreover, the A;’s are mutually independent
random variables. The Borel-Cantelli Lemma (e.g., [31]) states that if there is a sequence of
independent events so that the probability of the i-th event is p;, and if Y "2, p; = oo, then
with probability one at least one of these events will occur. Hence, we conclude that with
probability one, there will be some value of i so that A; = 1, and hence |U(m;) — U(x)| > B

for that value of 1. O

67

Less formally, consider sequentially evaluating a list of policies my,mo, 73, ... via
Monte Carlo, where the majority of the policies (say, 72, 73, . . .) are very poorly-performing,
risky policies, so that U(m;) for them is small. Because we are evaluating so many policies,
with probability one we will eventually obtain a highly unrepresentative sample for some
i, so that U(m) is very large. Thus, uniform convergence will, with probability one, fail to
hold. To see why this is a problem, consider a setting in which 7 is a good policy (U ()
is large), but my, 3, ... are poor policies as discussed. Our argument indicates shows that,
even if we average over an arbitrarily large m number of samples, we will, with probability
1, pick a policy “arg max e (7(%)” that is significantly worse than m;. Indeed, in our
experiments on an autonomous helicopter (Chapter 5), all of our attempts to use this style

of Monte Carlo evaluations resulted in very poor policies being found.

4.2.3 VC dimension and complexity

In the subsequent sections, one of our goals will be to derive algorithms for which
we can bound the number of samples m we need to average over in order to derive uni-
formly good estimates of the utilities. This will allow us to give guarantees of the form in
Proposition 7. We now introduce a few definitions and concepts that will later be useful to
showing these results.

In supervised learning—say fitting a binary (0/1) classifier to training data—it
is well known that the number of training examples needed to fit the parameters “well”
is intimately related to the number of free parameters in the model we're fitting. Here,

the number of “free parameters” must be defined appropriately. Indeed, since any d real

68

numbers can be encoded into a single real number,® we can reparameterize any d-parameter
family of functions into a 1-parameter family of functions. Thus, it is clear that a useful
notion of the “number of free parameters” parameterizing a set of functions cannot simply
be the obvious one.”

The most common way of characterizing the number of free parameters in a set of
functions IT is the Vapnik-Chervonenkis (VC) dimension. More precisely, consider a 2-action
MDP (|A| = 2), and let II be some set of policies. II is thus some set of binary functions
mapping from S to A. We say that II shatters a set {s1,...,s,} C S if for every length-m
string of actions @ € A™, there is a policy m € II such that 7(s;) = @; for every i = 1,...,m.
We define VC(II) to be the size of the largest set of states that can be shattered by II. [102]
If II can shatter arbitrarily large sets, then its VC dimension is infinite. So, if d = VC(II),
there is a set of states {si,...,sq} so that by picking an appropriate policy 7 € II, we can
realize any combination of actions over these states. Intuitively, a set of functions that can
shatter large sets—and hence has high VC dimension—is thus a rich or a “complex” set,
whereas one that can shatter only small sets—and hence has small VC dimension—is thus
“simple.”

As a concrete example, let A = {a1,as}, and suppose II consists of the set of linear

threshold functions over states s € R", so that

a if0Ts+ B >0,
m(s) = . (4.15)

as otherwise

For example, consider two real numbers x,y € [0,1). To encode them into a single real number z, we
can take the decimal representation of x and y, and let z € [0,1)’s digits be alternately taken from z and y.
Thus, x = 0.1234 ... and y = 0.5678 ... can be encoded into z = 0.15263748 .. ., from which we can recover
z and y exactly.

"It is possible to construct other examples of “complicated” functions that are parameterized by a single
real number, that are less contrived than the example given in the previous footnote. (See [102].)

69

Here, § € R" and 8 € R are the parameters controlling II. Then, the VC dimension of II
equals n + 1. [102] In this case, the VC dimension coincides exactly with the number of
parameters of the model. More generally, for many models, the VC dimension turns out to
be roughly linear or at most some low-order polynomial in the number of parameters (see,
e.g., [5, 40]).

In the setting of supervised learning, if one is trying to fit a function approximator
to labeled training data, then it is known that sample complexity—that is, the number
of training examples needed to fit our function approximator “well”—is linear in the VC
dimension. [102] One of the results of this work will be to generalize these ideas to the setting
of reinforcement learning, thus putting reinforcement learning on a more equal footing with
simple supervised learning.

To close this section, we introduce one more concept that will be useful later.
This concept captures the idea of the family of dynamics that a (PO)MDP and policy class
can exhibit. Assume a deterministic simulative model g, and consider some fixed policy
w € II. If we are executing 7w from some state s, the successor-state is determined by
fr(s,9) = g(s,m(s),p), which is a function of s and p. Varying 7 over II, we obtain a whole
family of functions F = {fr|fx(s,p) = g(s,7(s),p), 7 € II} mapping from S x [0, 1]9" into
successor states S. This set of functions F should be thought of as the family of dynamics
realizable by the POMDP and II, though since its definition does depend on the particular
deterministic simulative model g that we have chosen, this is “as expressed with respect to
»

g.” Another way of thinking about F is that its elements are simply the compositions of

the transition dynamics (as represented by g) with policies. For each f, also let f; be the

70

i-th coordinate function (so that f;(s,p) is the i-th coordinate of f(s,p)) and let F; be the
corresponding families of coordinate functions mapping from S x [0, 1]47 into [0, 1]. Thus,

F; captures all the ways that coordinate i of the state can evolve.

4.3 The trajectory trees method

We saw in Section 4.2.2 how naive Monte Carlo estimation failed to give (uni-
formly) good estimates of policies’ utilities. In this section, we review the trajectory trees
method of Kearns, Mansour and Ng [50], which gives a solution that does not suffer from
this problem.

Consider a (PO)MDP with two actions, A = {a1,a2}. A trajectory tree is a data
structure that, similar to the Monte Carlo evaluation discussed earlier, allows us to give an
estimate of U(m). However, the key difference between trajectory trees and Monte Carlo
evaluation is that the evaluations will not be independent. Specifically, we will “reuse” the
same samples to evaluate different policies.

A trajectory tree is a binary tree whose nodes are labeled with states. (See Fig-
ure 4.3.) A trajectory tree is built as follows. We begin by sampling sg ~ D, which we
use to label the root of a binary tree. We then recursively “simulate” taking actions aq
and ay from each state/node in the tree, and create children nodes labeled with the re-
sulting states. Thus, we label the the a;/left-child of the root with s; ~ Py, 4, (), and the
ag/right-child of the root with s} ~ Py, 4,(-). The children of the s; node are in turn labeled
with states drawn from Py, 4, (-) and Ps, 4, (), and so on. This process is repeated until we

have a full binary tree of depth H.. Note that building a trajectory tree requires only a

71

al/\a2 al/\a2 al/\a2 al/\a2 al/\a2 al/\a2 al/\a2 al/\ a2

Figure 4.3: A trajectory tree.

simulator/generative model, but not a deterministic simulative model g.

To evaluate a policy 7 using a trajectory tree, we start at the root, and depending
on whether 7(sp) equals a; or ag, we follow the path to either the a;/left or the ay/right
child. From each node, we then repeatedly apply 7 to the state labeling that node, and
follow the path corresponding to the action dictated by 7. By continuing this process until
it terminates at a leaf of the tree, we traverse a sequence of states sg,si,...,sny.. The
reader can easily verify that for any fixed policy «, this sequence of states has exactly the

same distribution as that obtained under the Monte Carlo evaluation method described in

72

Section 4.2.2. Thus, as before, the sequence R(sg) +vR(s1) +v2R(s2) +--- is an unbiased
estimate of U(r).%

If we construct m such trajectory trees independently, each policy then defines a
path (sgi), sgi), .. 3;2) through each of them (i = 1,...,m), and we may average over the
m resulting samples to obtain an estimate of U (w):

1 m
Ur)=—>) R R -+ y"R(sm,). 4.16
() m; (s0) +7R(s1) + -+ R(sm.) (4.16)
Building m trees requires drawing only a finite number, about m2¥¢, of samples
from the generative model/simulator, but the resulting set of trees then defines U(r) for all

policies 7 € II, even if IT is infinite. Moreover, it is shown in [50] that the following uniform

convergence guarantee holds:

Theorem 9 (Kearns, Mansour and Ng, 1999) Let a (PO)MDP with actions A = {a1, a2}
be given, and let I1 be a class of policies for this POMDP, with Vapnik- Chervonenkis dimen-
sion d = VC(II). Also let any €, > 0 be fized, and let U be the utility estimates determined

by using m trajectory trees and a horizon time of H.. If

Rmax 11
— Iy (d, =22 Jog =, —— 4.1
m O(p0y<d, - ,0g6,1_7>>, (4.17)

then with probability at least 1 — 4, U will be uniformly close to U:

U(r) = U(r)| < € for all w € 11, (4.18)

For the sake of completeness, we also include the proof of this theorem in Appendix

A. Thus, by Proposition 7, we obtain as a corollary that, with high probability, the policy &

8Up to truncation at the horizon time, H. steps.

73

obtained by optimizing U will have utility nearly as high as that of the best possible policy
in II:

U(7) > opt(M,II) — 2e. (4.19)

It is surprising that, with only a finite set of samples drawn from the simulator,
we obtain enough information to evaluate even an infinite set of policies well. Indeed, the
bound in Theorem 9 on the number of trees required has no dependence on how complicated
the (PO)MDP’s state transitions P, (-) are, on how complicated the reward function is, or
on the size of the state space S.

Informally, by sharing samples to evaluate different policies, we are causing the
evaluations of different policies to become correlated. The problem with Monte Carlo eval-
uations was that, by using independent samples, we would almost certainly see at least one
highly unrepresentative sample, which causes the uniform convergence condition to be vio-
lated (Proposition 8). Here, we draw only a finite set of trees, and so long as this finite set
is a representative sample—which Theorem 9 guarantees to be true with high probability—
then we are guaranteed uniformly good estimates of policies’ utilities. Readers familiar with
paired t-tests in statistics, and how they are often more powerful than (non-paired) ¢-tests,
will also recognize this as another example of when having correlated estimates is desirable.

Of course, the number of samples that the trajectory tree method requires is still
exponential in the horizon time H., because the size of each tree is exponential in H..
This makes it impractical for most problems. Trajectory trees are also straightforward
to generalize to k-action MDPs (by letting each node have a fan-out of k, and modifying

Equation (4.17) to have an appropriate dependence on k). But, they do not apply to

74

problems with infinite action spaces, since then the fan-out of each node would have to be
infinite.

In the next section, we describe a different way of estimating policies’ utilities that
resolves these problems. The method described in the next section is based on certain trans-
formations of (PO)MDPs that, unlike trajectory trees, will require access to a deterministic
simulative model g, and not only to a generative model/simulator. However, we will show
how, by allowing access to g, we can reduce the exponential dependence on the horizon time
to only a polynomial dependence. This makes the algorithm significantly more practical for

many applications.

4.4 Policy search method

We show how, given a deterministic simulative model, we can reduce the problem of
policy search in an arbitrary POMDP to one in which all the transitions are deterministic—
that is, a POMDP in which taking an action a in a state s will always deterministically
result in transitioning to some fixed state s’. This reduction is achieved by transforming
the original POMDP into an “equivalent” one that has only deterministic transitions.

We may then perform policy search on these “simplified” transformed POMDPs.
Specifically, in these simplified POMDPs, it is straightforward to define simple, natural, esti-
mates U (7) of policies’ utilities U (). We call our method PEGASUS (for Policy Evaluation-
of-Goodness And Search Using Scenarios, for reasons that will become clear). Our algorithm
also bears some similarity to one used in Van Roy [88] for value determination in the setting

of fully observable MDPs.

75

&

> Q e
%

> Q e
N2

> Q e
e

Figure 4.4: PEGASUS evaluation of a policy 7, using a generative model/simulator.

In Section 4.4.1, we give the transformation of POMDPs to deterministic ones,
and in Section 4.4.2, we show how this transformation leads to our policy search algo-
rithm. Theoretical results giving guarantees on the performance of our method are given

in Section 4.5.

4.4.1 Transformation of (PO)MDPs

We begin by describing how, given a (PO)MDP M = (S,D,A,{Ps()},v,R),
a policy class II and a deterministic simulative model g, we construct our transformed
POMDP M' = (S’, D', A,{P.,(-)},7, R') and corresponding class of policies II'. Our trans-
formed M' will have only deterministic transitions (though its initial state may still be
random). To simplify the exposition, we assume dp = 1, so that the terms p are just real
numbers.

M' is constructed is as follows: The action space and discount factor for M’ are

the same as in M, so A’ = A, 4/ = v. The state space for M’ is S x [0,1]*°. In other words,

76

a typical state in M’ can be written as a vector (s, p1,po,...) — this consists of a state s
from the original state space S, followed by an infinite sequence of real numbers in [0, 1].

The rest of the transformation is straightforward. Upon taking action ¢ in state
(s,p1,p2,...) in M', we deterministically transition to the state (s',p2,ps,...), where s’ =
g(s,a,p1). In other words, the s portion of the state (which should be thought of as the
“actual” state) changes to s', and one number in the infinite sequence (p1,p2, .. .) is used up
to generate s’ from the correct distribution. By the definition of the deterministic simulative
model g, we see that so long as p; ~ Uniform[0, 1], then the “next-state” distribution of s’
is the same as if we had taken action a in state s (randomization over p;).

Finally, we choose D', the initial-state distribution over S’ = S x [0, 1]*°, so that
(s,p1,p2,...) drawn according to D’ has a distribution where s ~ D, and the p;’s are
distributed independently according to a Uniform[0, 1] distribution. For each policy « € II,
also let there be a corresponding policy ' € IT', given by «'(s,p1,p2,...) = 7(s), and let
the reward be given by R/(s,p1,po,...) = R(s).

If one observes only the “s”-portion (but not the p;’s) of a sequence of states
generated in the transformed POMDP M’, starting from the initial-state distribution D’
and with actions chosen according to some 7’ € II', then one obtains a sequence that is
drawn from the same distribution as would have been generated from the original (PO)MDP
M under the corresponding policy 7 € II. It follows that, for corresponding policies w € I1
and ©' € II', we have that Ups(m) = Upp(n'). This also implies that the best possible
expected returns in both (PO)MDPs are the same: opt(M,II) = opt(M',II'). It also holds

that for any state s, Vi (s) = E,,3~Unif[o,1] [Vﬂ,(s,pl,pQ,)]

77

To summarize, we have shown how, using a deterministic simulative model, we can
transform any POMDP M and policy class IT into an “equivalent” POMDP M’ and policy
class II', so that the transitions in M’ are deterministic; i.e., given a state s € S’ and an
action a € A, the next-state in M’ is exactly determined. Since policies in IT and IT' have
the same values, if we can find a policy n’ € II' that does well in M’ starting from D’, then
the corresponding policy = € II will also do well for the original POMDP M starting from
D. Hence, the problem of policy search in general POMDPs is reduced to the problem of
policy search in POMDPs with deterministic transition dynamics. In the next section, we

show how we can exploit this fact to derive a simple and natural policy search method.

4.4.2 Pegasus: A method for policy search

As discussed, it suffices for policy search to find a good policy ' € II' for the
transformed POMDP, since the corresponding policy © € II will be just as good. To do
this, we first construct an approximation ﬁMr(-) to Upr(+), and then search over policies
7' € I’ to optimize Upp (') (as a proxy for optimizing the hard-to-compute Upp (7)), and
thus find a (hopefully) good policy.

Recall that Uy is given by
UM/(’/T) = EsowD’ [V]\Z'(SO)]) (4.20)

where the expectation is over the initial state sy € S’ drawn according to D’. The first
step in our approximation is to replace the expectation over the distribution with a finite
(2) (m

sample of states. More precisely, we first draw a sample {3(()1),30 yeres))} of m initial

states according to D'. These states, also called “scenarios” (a term from the stochastic

78

optimization literature; see, e.g. [18]), define an approximation to Uy (7):

1 — ;
Unrr(m) ~ — SV (s). (4.21)
i=1

Since the transitions in M’ are deterministic, for a given state s € S’ and a
policy m € II', the sequence of states that will be visited upon executing 7 from s is
exactly determined; hence the sum of discounted rewards for executing w from s is also
exactly determined. Thus, to calculate one of the terms V](f[,(sgi)) in the summation in

(#)

Equation (4.21) corresponding to scenario s;”’, we need only use our deterministic simulative

model to find the sequence of states visited by executing 7 from sgi), and sum up the resulting
discounted rewards. Naturally, this would be an infinite sum, so as before as truncate the
sum after H, steps.

(1) (m)

To summarize, given m scenarios s; ’,...,5, ~, our approximation to Uy is the

deterministic function Uy : I’ — R

. 1 &)))
U () = — Z R'(sgl)) + ’)/R'(sgl)) +e ’yHER'(sSfI)E) (4.22)
i=1
where (s(()i), sgi), el 5(;1)6) is the sequence of states deterministically visited by 7 starting from

s(()i). Given m scenarios, this defines an approximation to Uy (7) for all policies 7 € IT'.
The final implementational detail is that, since the states s(()i) € S x [0,1] are
infinite-dimensional vectors, we have no way of representing them (and their successor
states) explicitly. But because we will be simulating only H, steps, we need only represent
pgi),pg), . ,pg)f, of the state s(()i) = (S(i)’pgi),pgi), ...), and so we will do just that.

Viewed in the space of the original, untransformed POMDP, evaluating a policy

this way also has a simple interpretation. It is similar to the original Monte Carlo method

79

we had described earlier, with the key difference that the randomization is “fixed” in ad-
vance and “reused” for evaluating different 7. Specifically, while carrying out Monte Carlo
evaluations for the policies, we will always use the same sequences of random numbers to
evaluate all the policies. As in the trajectory tree method, we thus draw one finite set of
samples, and use them to evaluate all the policies in our class.

Having used m scenarios to define Uy () for all r, we may now search over policies
to optimize Upp (m). We call this policy search method PEGASUS: Policy Evaluation-of-
Goodness And Search Using Scenarios. Since Upy : II' — R is an ordinary deterministic
function, the search procedure only needs to optimize a deterministic function, and any
number of standard optimization methods may be used. This should again be contrasted
with the simple Monte Carlo setting, which resulted in a stochastic optimization problem
(Equation 4.11) that we did not really know how to solve.

In the case that the action space is continuous and TT = {7|@ € R’} is a smoothly
parameterized family of policies (so my(s) is differentiable in 6 for all s) then if all the relevant
quantities are differentiable, it is also possible to find the derivatives of Unr (mg) with respect
to the parameters 0, and use algorithms such as gradient ascent or conjugate gradient, or
higher order methods such as Newton’s method, to optimize it. One common barrier to
applying these ideas is that R is often discontinuous, being (say) 1 within a goal region and
0 elsewhere. One approach to dealing with this problem is to use a smoothed version of R,
possibly in combination with “continuation” methods that gradually unsmooth it again. An
alternative approach that may be useful in the setting of continuous dynamical systems is

to alter the reward function to use a continuous-time model of discounting. Assuming that

80

the time at which the agent enters the goal region is differentiable, then Unpr (mg) is again
differentiable.® Of course, there are still many problems where Unp may be discontinuous or
non-differentiable. In these cases, other search algorithms or modified versions of gradient-
based algorithms can still be applied. (For example, see the discussion in Chapter 5 on the
helicopter problem.)

Unlike the trajectory tree method, PEGASUS no longer requires building expo-
nentially large trees. Moreover, it applies readily to infinite-action MDPs, which will be
necessary for the helicopter application we consider later. In the next section, we study

theoretically how well this method works.

4.5 Main theoretical results

PEGASUS samples a number of scenarios from D’, and uses them to form an ap-
proximation U(r) to U(w). As before, we are interested in whether, and if so when, U
will be a uniformly good approximation to U, so that Proposition 7 applies and we are

guaranteed that optimizing U will result in a policy with utility close to op¢(M,II). This

section establishes conditions under which this occurs.

4.5.1 The case of finite action spaces

We begin by considering the case of two actions, A = {a1,a2}. For this case, we

have the following theorem:

9More precisely, if the agent enters the goal region on some time step, then rather than giving it a reward
of 1, we figure out what fraction 7 € [0, 1] of that time step (measured in continuous time) the agent had
taken to enter the goal region, and then give it reward 47 instead. Assuming 7 is differentiable in the
system’s dynamics, then 4™ and hence Unrr (mp) are now also differentiable (other than on a usually-measure
0 set, for example from truncation at He steps).

81

Theorem 10 Let a POMDP with actions A = {a1,a2} be given, and let I be a class of
policies for this POMDP, with Vapnik-Chervonenkis dimension d = VC(IT). Also let any
€,0 > 0 be fixed, and let U be the utility estimates determined by PEGASUS using m scenarios

and o horizon time of H.. If

Rmax . 1 1
= ly (d, =22 Jog =, —— 4.2
m 0(p0y<, ; ,0g6,1_7>>, (4.23)

then with probability at least 1 — 4, U will be uniformly close to U:

U(r) — U(?T)‘ <e forallwell (4.24)

Proof (sketch). Observe that each scenario in PEGASUS can be viewed as a compact
representation of a “trajectory tree,” in that it gives a H¢-step Monte Carlo evaluation of
every policy. Specifically, given a scenario, we can construct a corresponding trajectory tree
(as a deterministic function of that scenario), so that the a;-child of a node (s,p1,po,...)
is (g(s,ai,p1),p2,...), so that the tree gives the same utility estimate on any policy as the
scenario. Actually, there is a technical difference between trajectory trees defined this way
and trajectory trees as defined previously, in that here different subtrees are not constructed
independently (since each level i of the tree was generated from the ancestor nodes using
the same random number p; in g(Sparent, @, p;)); but the proof of Kearns et al. [50] applies
without modification to give Theorem 10. U

Using the transformation given in Kearns et al. [50] , the case of a finite action
space with |A| > 2 also gives rise to essentially the same uniform convergence result, so long
as II has low “complexity.”

In Section 4.1, we also discussed designing a policy class II via writing a partial

program. When does a uniform convergence result such as the one given in Theorem 10

82

apply to policy classes defined this way? It turns out that so long as the “program”
implementing IT calculates its output using only a small number of the usual arithmetic
operations on the real numbers (that is, +,—, X, /, and jumps based on inequality =, <
, < tests on pairs of real numbers), and so long as the number of real-valued parameters
controlling IT is small, then VC(II) will also be small. Specifically, [40] shows that, if a set
of functions IT is parameterized by k real numbers, and if there is a program that evaluates
these functions (taking as input the & parameters and s) using at most 7' of the operations
mentioned above, then VC(II) will be at most O(Tk). Thus, Theorem 10 implies that, so
long as the program we wrote is “efficient” (terminating in a small number of operations)
and does not have too many parameters, then with a small number of samples m, our
estimates of the utilities of the policies in II will be uniformly good.

Again, we also note that the bound given in the theorem has no dependence on
the size of the state space or on the “complexity” of the POMDP’s transitions and rewards.
Thus, so long as II has low VC-dimension, uniform convergence will occur, independently
of how complicated the POMDP is. As in Kearns et al., this theorem therefore recovers the
best analogous results in supervised learning, in which uniform convergence occurs so long
as the hypothesis class has low VC-dimension, regardless of the size or “complexity” of the

underlying space and target function.

4.5.2 The case of infinite action spaces: “Simple” II is insufficient for

uniform convergence

We now consider the case of infinite action spaces. Whereas in the 2-action case, 11

being “simple” was sufficient to ensure uniform convergence, this is not the case in POMDPs

83

with infinite action spaces.

Suppose A is a (countably or uncountably) infinite set of actions. A “simple” class
of policies would be IT = {m,|m,(s) = a,a € A} — the set of all policies that always choose
the same action, regardless of the state. Intuitively, this seems to be the simplest policy
that actually uses an infinite action space; also, any reasonable notion of complexity of
policy classes should assign IT a low “dimension.” If it were true that simple policy classes
imply uniform convergence, then it is certainly true that this II should always enjoy uniform

convergence. Unfortunately, this is not the case, as we now show.

Theorem 11 Let A be an infinite set of actions, and let II = {m,|m,(s) = a,a € A} be
the corresponding set of all “constant valued” policies. Then there exists a finite-state MDP
with action space A, and a deterministic simulative model for it, so that PEGASUS’ estimates
using the deterministic simulative model do not uniformly converge to their means. ILe.,
there is an € > 0, so that for estimates U derived using any finite number m of scenarios

and any finite horizon time, there is with probability 1 a policy w € 11 such that
\U(r) = U(n)| > e (4.25)

The proof of this Theorem, which is not difficult, is in Appendix B. This result
shows that simplicity of II is not sufficient for uniform convergence in the case of infinite
action spaces. However, the counterexample used in the proof of Theorem 11 has a very
complex g despite the MDP being quite simple. Indeed, we could have constructed a
different, “simpler,” choice for g for which uniform convergence would occur.!’ Thus, we

might hypothesize that assumptions on the “complexity” of g are also needed to ensure

YOFor example, g(so,a,p) = s—1 if p < 0.5, s; otherwise; see Appendix B.

84

uniform convergence in the general case. As we will shortly see, this intuition is roughly
correct. Since actions affect transitions only through g, the crucial quantity is actually the
composition of policies and the deterministic simulative model — in other words, the class F
of the dynamics realizable in the POMDP and policy class, using a particular deterministic
simulative model. In the next section, we show how assumptions on the complexity of F

leads to uniform convergence bounds of the type we desire.

4.5.3 Uniform convergence in the case of infinite action spaces

For the remainder of this section, assume S = [0,1]95. Then F is a class of
functions mapping from [0,1]%s x [0,1]¢7 into [0,1]%, and so a simple way to capture
its “complexity” is to capture the complexity of its families of coordinate functions, F;,
i=1,...,ds. Bach F; is a family of functions mapping from [0,1]4s x [0,1]¢# into [0, 1],
the i-th coordinate of the state vector. Thus, F; is just a family of real-valued functions —
the family of i-th coordinate dynamics that II can realize, with respect to g.

The complexity of a class of boolean functions is measured by its VC dimension,
defined to be the size of the largest set shattered by the class. To capture the “complexity”
of real-valued families of functions such as F;, we need a generalization of the VC dimension.

The pseudo-dimension, due to Pollard [82], is defined as follows:

Definition (Pollard, 1990). Let H be a family of functions mapping from a space X
into R. Let a sequence of d points z1,...,z4 € X be given. We say H shatters x1,...,xq
if there exists a sequence of real numbers ti,...,t; such that the subset of R? given by
{(h(x1) —t1,...,h(zq) — tg)|h € H} intersects all 2¢ orthants of R? (equivalently, if for any

sequence of d bits by, ..., by € {0, 1}, there is a function h € H such that h(x;) > t; < b; = 1,

85

for all i = 1,...,d). The pseudo-dimension of H, denoted dimp(#), is the size of the

largest set that # shatters, or infinite if 74 can shatter arbitrarily large sets.

The pseudo-dimension generalizes the VC dimension, and coincides with it in the
case that H maps into {0,1}. We will use it to capture the “complexity” of the classes of
the POMDP’s realizable dynamics F;. We also remind readers of the definition of Lipschitz

continuity.

Definition. A function f : R” — R is Lipschitz continuous (with respect to the
Euclidean norm on its range and domain) if there exists a constant B such that for all
z,y € dom(f), ||f(z) — f(y)ll2 < B||z — y||2. Here, B is called a Lipschitz bound. A
family of functions H mapping from R” into R is uniformly Lipschitz continuous with

Lipschitz bound B if every function h € H is Lipschitz continuous with Lipschitz bound B.

We now state our main theorem, with a corollary regarding when optimizing U

will result in a provably good policy.

Theorem 12 Let a POMDP with state space S = [0,1]95, and a possibly infinite ac-
tion space be given. Also let a policy class 11, and o deterministic simulative model g :
Sx Ax[0,1]% s S for the POMDP be given. Let F be the corresponding family of realizable
dynamics in the POMDP, and F; the resulting families of coordinate functions. Suppose that
dimp(F;) < d for eachi=1,...,dg, and that each family F; is uniformly Lipschitz contin-
uous with Lipschitz bound at most B, and that the reward function R : S — [—Rmax, Rmax]
is also Lipschitz continuous with Lipschitz bound at most Br. Finally, let €,5 > 0 be given,

and let U be the utility estimates determined by PEGASUS using m scenarios and a horizon

86

time of He. If

Rinax 1 1 B
m = O | poly d,ﬂ,log—,—,logB,log—R,dS,dp (4.26)
€ 0’1 —x Rmax

then with probability at least 1 — 4, U will be uniformly close to U:

U(r) —U(r)| <e forallmell (4.27)

Corollary 13 Under the conditions of Theorem 10 or 12, let m be chosen as in the The-
orem. Then with probability at least 1 — 0, the policy T chosen by optimizing the value

estimates, given by T = arg maXyecy U(W), will be near-optimal in I1:
U(r) > opt(M,II) — 2¢ (4.28)

Remark. The (Lipschitz) continuity assumptions give a sufficient, but by no means nec-
essary, set of conditions for the theorem, and other sets of sufficient conditions can be
envisaged. For example, if we assume that the distribution on states induced by any pol-
icy at each time step has a bounded density, then we can show uniform convergence for a
large class of (“reasonable”) discontinuous reward functions such as R(s) = 1 if s; > 0.5,
R(s) = 0 otherwise.!! Using tools from [40], we can also show similar uniform convergence
results without Lipschitz continuity assumptions, by assuming that the family 7 is param-
eterized by a small number of real numbers, and that 7 (for all = € II), g, and R are each
implemented by a function that calculates their results using only a bounded number of

operations (similar to the discussion in the previous section).

"Briefly, this is done by constructing two Lipschitz continuous reward functions Ry and Ry that are
“close t0” and which upper- and lower-bound R (and which hence give value estimates that also upper- and
lower-bound our value estimates under R); using the assumption of bounded densities to show our values
under Ry and Ry are e-close to that of R; applying Theorem 12 to show uniform convergence occurs with
Ry and Ry ; and lastly deducing from this that uniform convergence occurs with R as well.

87

E @ o Results on 5x5 gridworld
- T T T T T
E ﬁ A
@ 1
st

mean policy value

(a) (b)

Figure 4.5: (a) 5x5 gridworld, with the 8 observations. (b) PEGASUS results using the
normal and complex deterministic simulative models. The topmost horizontal line shows
the value of the best policy in II; the solid curve is the mean policy value using the normal
model; the lower curve is the mean policy value using the complex model. The (almost
negligible) 1 s.e. bars are also plotted.

The proof of Theorem 12, which uses techniques first introduced by Haussler [44]

and Pollard [82], is quite lengthy, and is deferred to Appendix C.

4.6 Experiments

In this section, we report the results from two experiments. The first, run to
examine the behavior of PEGASUS parametrically, involves a simple gridworld POMDP.
The second studies a complex continuous state/continuous action problem involving riding
a bicycle.

Figure 4.5a shows the finite state and action POMDP used in our first experiment.
In this problem, the agent starts in the lower-left corner, and receives a —1 reinforcement
per step until it reaches the absorbing state in the upper-right corner. The eight possible

observations, also shown in the figure, indicate whether each of the eight squares adjoining

88

the current position contains a wall. The policy class is small, consisting of all 4% = 65536
functions mapping from the eight possible observations to the four actions corresponding to
trying to move in each of the compass directions. Actions are noisy, and result in moving in
a random direction 20% of the time. Since the policy class is small enough to exhaustively
enumerate, our optimization algorithm for searching over policies was simply exhaustive
search, trying all 4% policies on the m scenarios, and picking the best one. Our experiments
were done with v = 0.99 and a horizon time of H = 100, and all results reported on this

problem are averages over 10000 trials. The deterministic simulative model was

;

d(s,up) if p<0.05
d(s,left) if 0.05 < p <0.10
9(s,a,p) = § (s, down) if 0.10 < p < 0.15

5(s,right) if 0.15 < p < 0.20

\ d(s,a) otherwise
where (s, a) denotes the result of moving one step from s in the direction indicated by a,
and is s if this move would result in running into a wall.

Figure 4.5b shows the result of running this experiment, for different numbers of
scenarios. The value of the best policy within II is indicated by the topmost horizontal line,
and the solid curve below that is the mean policy value when using our algorithm. As we
see, even using surprisingly small numbers of scenarios, the algorithm manages to find good
policies, and as m becomes large, the value also approaches the optimal value.

We have previously shown that “complicated” deterministic simulative model ¢

can lead to poor results. For each (s,a)-pair, let hg, : [0,1] — [0,1] be a hash function

89

that maps any Uniform[0, 1] random variable into another Uniform[0, 1] random variable.!?
Then if ¢ is a deterministic simulative model, ¢'(s,a,p) = g(s,a,hsq(p)) is another one
that, because of the presence of the hash function, is a much more “complex” model than
g. (Here, we appeal to the reader’s intuition about complex functions, rather than formal
measures of complexity.) We would therefore predict that using PEGASUS with ¢’ would
give worse results than g, and indeed this prediction is borne out by the results as shown
in Figure 4.5b (dashed curve). The difference between the curves is not large, and this is
also not unexpected given the small size of the problem.'?

Our second experiment uses Randlgv and Alstrgm’s [86] bicycle simulator, where
the objective is to ride to a goal one kilometer away. The actions are the torque 7 applied
to the handlebars and the displacement v of the rider’s center-of-gravity from the center.
The six-dimensional state used in [86] includes variables for the bicycle’s tilt angle and
orientation, and the handlebar’s angle. If the bicycle tilt exceeds /15, it falls over and enters
an absorbing state, receiving a large negative reward. The randomness in the simulator
arises from a uniformly distributed term added to the intended displacement of the center-
of-gravity. Rescaled appropriately, this became the p term of our deterministic simulative
model.

We performed policy search over the following space: We selected a vector & of
fifteen (simple, manually-chosen but not fine tuned) features of each state; actions were then

chosen with sigmoids: 7 = o (w1 * Z)(Tmax — Tmin) + Tmins ¥ = 0(w2 * Z) (Vmax — Ymin) + Vmin,

2Tn our experiments, this was implemented by choosing, for each (s, a) pair, a random integer k(s, a) from
{1,...,1000}, and then letting hs q(p) = fract(k(s,a) - p), where fract(z) denotes the fractional part of z.

13 Theory predicts that the difference between g and g'’s performance should be at most O(+/log [TI|/m);
see [50].

90

where 0(z) = 1/(1+e7%), and w; and wy are the parameters. Note that since our approach
can handle continuous actions directly, we did not, unlike [86], have to discretize the actions.
The initial-state distribution was manually chosen to be representative of a “typical” state
distribution when riding a bicycle, and was also not fine-tuned. We used only a small number
m = 30 of scenarios, v = 0.998, H = 500, with the continuous-time model of discounting
discussed earlier, and a a slightly modified version of gradient ascent to optimize over the
weights.' Shaping rewards, to reward progress towards the goal, were also used.!?

We ran 10 trials using our policy search algorithm, testing each of the resulting
solutions on 50 rides. Doing so, the median riding distances to the goal of the 10 different
policies ranged from about 0.995km!® to 1.07km. In all 500 evaluation runs for the 10
policies, the worst distance we observed was also about 1.07km. These results are signifi-
cantly better than those of [86], which reported riding distances of about 7km (since their
policies often took very “non-linear” paths to the goal), and a single “best-ever” trial of

about 1.7km.

4.7 Discussion and related work

In this chapter, we showed how POMDPs may be transformed to deterministic
ones, and used the transformation to define a policy search algorithm. Using the ideas of

VC dimension and sample complexity familiar from supervised learning, we also proved

MR unning experiments without the continuous-time model of discounting, we also obtained, using a non-
gradient based hillclimbing algorithm, equally good results as those reported here. Our implementation of
gradient ascent, using numerically evaluated derivatives, was run with a bound on the length of a step taken
on any iteration; this helps the algorithm to avoid problems near (7(71'9)’5 discontinuities.

50ther experimental details: The shaping reward was proportional to and signed the same as the amount
of progress towards the goal. As in [86], we did not include the distance-from-goal as one of the state
variables during training; training therefore proceeding “infinitely distant” from the goal.

"“Distances under 1km are possible since, as in [86], the goal has a 10m radius.

91

guarantees on the quality of the solutions found by our method.

The goals of this work are also related in spirit to that of the large literature on
variance reduction. (E.g., see [32].) With any Monte Carlo algorithm, variance is typically
a source of error that we would like to diminish. Proposition 8 in essence showed that
simple Monte Carlo has too large a variance to work well for this problem, and in particular
leads to an overly optimistic, biased, estimate for max, U(w). There are a number of
standard variance reduction methods, many of which may also be applied in combination
with PEGASUS. We briefly review a few examples here; our presentation is based in part
on [32], which readers may refer to for more detailed descriptions.

Consider a variant on the bicycle problem in which with 50% chance we are asked
to ride to some goal A, and with 50% chance we are asked to ride to some goal B.!7
One may then apply Monte Carlo in which each of the m samples has 50% chance each
of selecting each of the two goals. Alternatively, one may set the goal to be goal A in
exactly m/2 samples, and goal B in the remaining m/2 samples. This idea, an instance of
stratified sampling, can often be shown to reduce the variance of Monte Carlo estimates.
More broadly, there are also variants of stratified sampling where the number of samples
allocated to each goal is not necessarily proportional to the probability of that goal, and
where the samples are then reweighted accordingly.

Dimension reduction (also called Rao-Blackwellization or conditional Monte Carlo)
refers to settings where we sample over only a subset of the variables, and integrate over

the remainder. For instance, if we are using Monte Carlo to estimate E[f(p1,p2)], but can

'"More formally, imagine that the state is modified to have an extra bit specifying the goal, where this
bit is determined randomly by the initial state distribution D.

92

calculate E[f(p1,p2)|p2] exactly, then we might sample only ps and average together the
resulting F[f (p1, p2)|p2]’s, rather than sampling both p; and ps. In reinforcement learning
problems where this idea applies, dimension reduction may be used (in combination with
PEGASUS or not) to reduce variance. Some of these ideas are also explored in [56].

Systematic sampling refers to a setting in which, whenever some random numbers

p1,--.,pm are generated as a sample for Monte Carlo, we also generate and use some other
sequence as a deterministic function of py,...,py. For instance, having sampled py, ..., pm,
we may choose always to also include 1—p1,...,1—pg as an additional sample. If the Monte

Carlo estimates using these two difference sequences have a strong negative correlation, then
this method can significantly reduce variance. In the special case of H = 1, the particular
method that we have described of using p and 1 — p is also called antithetic sampling.

Some other standard examples of variance reduction methods include the use of
control variates, and randomized quadrature methods. Since they seem (to us) to be more
difficult to apply to reinforcement learning problems, we leave the interested reader to refer
to [32] for their descriptions.

At the end of the day, our goal in this chapter has been to give accurate estimates
of the expectation U(mw) = E[R(sg) + vR(s1) + - - |r]. In addition to random Monte Carlo
algorithms for estimating expectations, there are also many deterministic methods, such
as numerical integration and quadrature algorithms. (E.g., [38, 32]). Many of these deter-
ministic methods are known not to scale well with the dimension of the problem, but one
that we think might be particularly promising for reinforcement learning is the method of

quasi-Monte Carlo. (E.g., [83].) Here, rather than using random numbers pq, po, ..., with

93

which to estimate the expectation, we use quasi-random numbers. Informally, quasi-random
numbers are sequences chosen to be “spread out,” so that they hopefully form a more “rep-
resentative” sample than a random one. While the scalability of quasi-Monte Carlo to high
dimensional problems is still a matter of some debate, Traub and Werschulz [101] show
encouraging results demonstrating quasi-Monte Carlo to work on some large problems.

Finally, while our approach has focused on defining a good estimate of the U and
treating the resulting ﬁ, one may also apply similar ideas to estimate only the gradients (or
finite differences) of U with respect to a policy’s parameters, and use that in the inner-loop
of stochastic gradient ascent to try to maximize U. Some work on infinitesimal pertur-
bation analysis and gradient estimation attempts to characterize conditions under which
dU () /06 is an unbiased estimate for U/dH. If this is holds true, then dU (my)/06 may
be used in stochastic gradient ascent to try to maximize U(mp). [87, 55, 46] (Here, a fresh
set of Monte Carlo samples is typically drawn after each gradient ascent step.) Unfortu-
nately, the conditions needed for this to be true typically fail to hold for the reinforcement
learning problems that we are interested in, and may be difficult to apply outside a number
of specialized applications (such as certain queuing problems) that have strictly continuous
dynamics and rewards. For instance, the helicopter described in the next chapter has dis-
continuous dynamics/rewards, and straightforward implementations of these approaches do
very poorly on it. Similarly, our implementation of policy search on the bicycle had to use
a modified version of gradient ascent to do well. Nonetheless, we view this work as related
in spirit to ours.

To summarize this chapter, we began by describing the policy search problem, and

94

saw how obtaining uniformly good estimates of policies’ utilities plays a key role in finding
good policies. We also saw how naive Monte Carlo methods did not work well, and then
reviewed the trajectory trees method, which made certain theoretical results possible, but
was still computationally too expensive to be practical. We then showed that any POMDP
can be transformed into an “equivalent” one in which all transitions are deterministic. By
approximating the transformed POMDP’s initial state distribution with a sample of scenar-
ios, we defined an estimate for the value of every policy, and finally performed policy search
by optimizing these estimates. We also saw how this method was akin to the simple Monte
Carlo method, with the key difference that random numbers are shared to evaluate different
policies. Conditions were established under which this method gives uniformly good esti-
mates, and experimental results showed our method working well. It is also straightforward
to extend these methods and results to the cases of finite-horizon undiscounted reward;
undiscounted rewards with proper state transitions and uniformly bounded expected-time-
to-absorbing-state from all states; and infinite-horizon average reward with e-mixing time

..

Appendix 4.A: Proof of Theorem 9

In this appendix, we give the proof (by Kearns, Mansour and Ng, 1999) of Theo-
rem 9.

The definition of the VC dimension of classes of binary functions was given in
Section 4.2.3. There are several ways to generalize that definition to sets of real-valued

functions. We now introduce one given in [103]. If X = {h : X — [-B,B]} is a set of

95

real-valued functions bounded by B, define VC, (H) to be the (conventional) VC dimension
of the set of binary functions {I(h,r,-) : h € H,r € (—B,B)}, where I(h,r,z) = 1 if
h(z) > r, I(h,r,xz) = 0 otherwise. That is, we take H, introduce all possible thresholds to
get indicator functions, and finally take the conventional VC dimension of the resulting set
of indicators.

Let Vinax = Rmax/(1—7y). For a fixed policy 7, define a map R(m,-) from trajectory
trees to real numbers [—Vinax, Vinax), given by evaluating that policy 7 on the trajectory tree,
Thus, II may also be viewed as defining a set of real-valued functions whose domain is the
space of trajectory trees, and whose range is [—Vinax, Vnax)- Thus, it makes sense to ask
what VC, (II) is. (With some abuse of notation, here we are using II to also denote this set of
functions with domain being trees; this is not to be confused with the alternative/original
view of II as a set of functions mapping from states to actions.) We have the following

lemma.

Lemma 14 Let II be a set of policies for a two-action POMDP, with VC dimension VC(II)
when viewed as a set of maps from states to actions. Then when viewed as a set of maps
from the space of all depth-H trajectory trees to [—Vimax, Vimax), the set I has dimension
bounded by

VC,(IT) = O (HVC(IL)) (4.29)

Proof. Let d = VC(II). From Sauer’s Lemma (see [103]), IT can realize at most (ek/d)?

different action labelings on any set of k states. Now on m trajectory trees, there are at

H+1)

most k = m2(different states (one for each node). So if we view each 7 as selecting

a path through each tree, then IT can realize at most (ek/d)? = (em2H+1) /d)¢ different

96

selections (where each “selection” is a set of m paths taken by a policy 7, one per tree).
Moreover, this set of trees has a total of m2 paths from roots to leaves, and so R(w,T)
can take on at most m2 values for 7 € II and T in our set of m trees. Thus, we need
consider only m2f settings of the threshold parameter r.

Multiplying the quantities together, we see therefore that the set of indicator func-
tions used to define VC, (II) (where II is now viewed as a map from trees to [—Viax, Viax])
can, on m trees, realize at most m2” (em2(#+1) /d)¢ different labelings. Now in order for II
(viewed a a set of real functions) to shatter m trees, it must be able to realize at least 2™
different labelings, so that

m2H (em2H+D jd)d > om (4.30)

must hold. A little algebra shows this implies m = O (HVC(II)), proving the lemma. [

We now state one more result due to Vapnik [103], after which we will be ready
to prove our theorem. Let 7 be a set of bounded real-valued functions h : X — [-B, B]
bounded by B, and let d = VC,.(H). Let D be some distribution over X, and let x1,..., 2,

be m iid samples drawn according to D. Then with probability 1 — ¢,

dlog 2 +log }
<0 B\/Ogd—+0g5 (4.31)

m

1 m
sup Ep[h(z)] — po ;h(wi)

holds (where the randomization is over the draw of the z;’s).

We are now ready to prove the theorem.
Proof (of Theorem 9). There are two sources in the error in our estimate of V™ (sp): Error
from truncating at depth H, and error from the randomness in the sampling of trajectory
trees. Let V7 (so) be the expected H,-step sum of discounted reinforcements for 7 starting

at so. Clearly, Ep[R(m,T)] = V (so) holds for all 7. From our choice of H., it also holds

97

by construction that |V7 (so) — V™ (so)| < €/2 for all . Finally, we apply Equation (4.31)
with 2 = T being the trajectory trees, H = II (viewed as a set of real-valued functions),
B = Vinax, h = 7, h(z) = R(n,T), d = VC,(II) and Ep[h(z)] = Er[R(7,T)] = V{ (s0),

and find that with probability 1 — 4,

m

Vi (s0) — - > R(m,T)

=1

dlog = + log
<0 Vmax\/—og 1085 (4.32)
m

holds simultaneously for all # € II. Substituting d = O(HVC(II)) from Lemma 14, we

therefore see that with a choice of
m = O ((Viax/€)? (HVC(II) log(Vinax/€) + log(1/4))) (4.33)

we have that with probability 1 — d, it holds simultaneously for all 7 € II that |V} (so) —
(1/m)> %, R(m,T;)| < €/2. When this is true, the triangle inequality gives [V (sg) —
(1/m) 3252 R(m, Ty)| < [V (s0) = Vi, (s0) |+ [VE, (s0) = (1/m) 322 R(m, Ti)| < €/2+€/2 =€

simultaneously for all 7, which proves the theorem. [

Appendix 4.B: Proof of Theorem 11

Proof (of Theorem 11). We construct an MDP with states s_1,sg, and s; plus an
absorbing state. The reward function is R(s;) = i for ¢ = —1,0, 1. Discounting is ignored
in this construction. Both s_; and s; transition with probability 1 to the absorbing state
regardless of the action taken. The initial-state so has a .5 chance of transitioning to each
of s_1 and s;.

We now construct g, which will depend in a complicated way on the p term.

Let T = {UN,[ai,b;]]ai,b; € [0,1] N Q,a; < bj,1 < N < 0o} be the countable set of all

98

finite unions of intervals with rational endpoints in [0,1]. Let 7" be the countable subset
of T' that contains all elements of T that have total length (Lebesgue measure) exactly
0.5. For example, [1/3,5/6] and [0.0,0.25] U [0.5,0.75] are both in T". Let Ty, T%,... be
an enumeration of the elements of 7”. Also let {a1,as,...} be an enumeration of (some
countably infinite subset of) A. The deterministic simulative model on these actions is

given by:

s ifpeT;
9(803 aiap) =
s1 otherwise

So, Psya,(51) = Psyq; (s—1) = 0.5 for all a;, and this is a correct model for the MDP. Note
also that U(w) = 0 for all 7 € II.

For any finite sample of m scenarios
(50,1, (50,), ..., (s0,p™), there exists some Tj such that pgj) g T;forallj=1,...,m.
Thus, evaluating 7; = a; using this set of scenarios, all m simulated trajectories will tran-
sition from sg from s;, so the value estimate (assuming H. > 1) for 7; is (A](m) = 1. Since
this argument holds for any finite number m of scenarios, we have shown that U does not

uniformly converge to U(m) = 0 (over m € II). U

Appendix 4.C: Proof of Theorem 12

The proof techniques we use here are due to Haussler [44] and Pollard [82]. Haus-
sler [44], to which we will be repeatedly referring, provides a readable introduction to most
of the methods used here.

We begin with some standard definitions from [44]. For a subset 7" of a space X

endowed with (pseudo-)metric p, we say Ty C X is an e-cover for T if, for every ¢t € T,

99

there is some t' € Ty such that p(¢,t') < e. For each € > 0, let (¢, T, p) denote the size of
the smallest e-cover for T'.

Let H be a family of functions mapping from a set X into a bounded pseudo
metric space (A, p), and let P be a probability measure on X. Define a pseudo metric on
H by dripy)(f,9) = Egp[p(f(z),9(z))]. Define the capacity of H to be C(e, H,p) =
sup N (e,?—l,dLl(p,p)), where the sup is over all probability measures P on X. The quan-
tity C(e, H, p) thus measures the “richness” of the class H. Note that C and N are both
decreasing functions of €, and that C(e, H, p) = C(ke, H, kp) for any k > 0.

The main results obtained with pseudo-dimension are uniform convergence of the
empirical means of classes of random variables to their true means. Let H be a family of
functions mapping from X into [0, M], and let ¥ (the “training set”) be m i.i.d. draws from
some probability measure P over X. Then for each h € H, let 74(Z) = (1/m) >, h(x;)
be the empirical mean of h(x). Also let r,(P) = Ey.p[h(z)] be the true mean.

We now state a few results from [44]. In [44], these are Theorem 6 combined
with Theorem 12; Lemma 7; Lemma 8; and Theorem 9 (with Y being a singleton set,
l(y,a) =a, a =€¢/4M, and v = 2M). Below, ¢; and /5 respectively denote the Manhattan

and Euclidean metrics on R". e.g. ¢1(Z,%) = >, |z; — yi| .18

Lemma 15 Let H be a family of functions mapping from X into [0, M], and d = dimp(H).
Then for any probability measure P on X and any 0 < € < M, we have that N (e, H, dLl(p742)) <

2((2eM/€) In(2eM /€))<.

Lemma 16 Let Hi,...,Hy each be a family of functions mapping from X into [0,1]. The

18 This is inconsistent with the definition used in [44], which has an additional (1/n) factor.

100

free product of the H;’s is the class of functions H = {(f1,...,fx) : f; € H;} mapping
from X into [0,1]F (where (f1,...,fx)(z) = (fi(z),..., fx(z))). Then for any probability

measure P on X and € > 0,
k
N(e,H,dipe)) < HN(G/kaHjadLl(P,zz)) (4.34)
7=1

Lemma 17 Let (X1,p1),...,(Xg+1, pr+1) be bounded metric spaces, and for each j =
L,...,k, let H; be a class of functions mapping from X; into X; 1. Suppose that each
M is uniformly Lipschitz continuous (with respect to the metric p; on its domain, and pji1
on its range), with some Lipschitz bound bj > 1. Let H = {fro---of1: f; € H;,1 < j <k}
be the class of functions mapping from Xy into Xpy1 given by composition of the functions

in the H;’s. Let eg > 0 be given, and let € = If(l_[;?:1 bj)eo. Then

k
C(G,H,,O]H-l) < Hc(eov?—[japj+1) (435)
7j=1

Lemma 18 Let H be a family of functions mapping from X into [0, M], and let P be a
probability measure on X. Let T be generated by m independent draws from X, and assume

€ > 0. Then
Pr[3h € H : |#n(Z) — ri(P)| > €] < AC(e/16,H, £y)e™¢ ™/64M° (4.36)

We are now ready to prove Theorem 12. No serious attempt has been made to
tighten polynomial factors in the bound.
Proof (of Theorem 12). Our proof is in three parts. First, U gives an estimate of the
discounted rewards summed over (H, + 1)-steps; we reduce the problem of showing uniform

convergence of U to one of proving that our estimates of the expected rewards on the H-th

101

step, H =0,..., H, all converge uniformly. Second, we carefully define the mapping from
the scenarios s(? to the H-th step rewards, and use Lemmas 15, 16 and 17 to bound its
capacity. Lastly, applying Lemma, 18 gives our result. To simplify the notation in this proof,
assume Ry« = 1, and B, B > 1.

Part I: Reduction to uniform convergence of H-th step rewards. U was defined
by

1 & ;

—Z +’yR ()) -—i—'yHER(sS?E).

m :
For each H, let Uy (m) = LS R(s G)) be the empirical mean of the reward on the H-th
step, and let Uy (7) = E;, [R(sm)] be the true expected reward on the H-th step (starting

from sy ~ D and executing 7). Thus, U(m) = Y 5_o v Un (7).

Suppose we can show, for each H =0, ..., H,, that with probability 1 —§/(Hc+1),
U (7) — U ()| < €/2(H, +1) Vr eIl (4.37)

Then by the union bound, we know that with probability 1—4, |Ux (7) — Ug (r)| < €/2(H,+
1) holds simultaneously for all H = 0,..., H, and for all 7 € TI. This implies that, for all

m € 11,

H. H.
U(@) =U@| < [U(x) =Y +"Ur(m) +1) +"Un(n) ~U@)] (4.38)
H= H=

He

< Y |Un(m) = Un(m)| + €/2 (4.39)
H=0

< e (4.40)

where we used the fact that | Zg‘:o YUy (7)-U(7)| < €/2, by construction of the e-horizon
time. But this is exactly the desired result. Thus, we need only prove that Equation (4.37)

holds with high probability for each H =0,..., H..

102

Part II: Bounding the capacity. Let H < H, be fixed. We now write out the mapping
from a scenario s() € § x ([0,1]%7)> to the H-th step reward. Since this mapping depends
only on the first dp - H elements of the “p”s portion of the scenario, we will, with some
abuse of notation, write the scenario as s() € § x [0, l]dP H " and ignore its other coordinates.
Thus, a scenario s(*) may now be written as (s, p1,p2,...,PdpH)-

Given a family of functions (such as F;) mapping from S x [0,1]%” into [0,1], we
extend its domain to S x [0, 1]47 T for any finite n > 0 simply by having it ignore the extra
coordinates. Note this extension of the domain does not change the pseudo-dimension of a
family of functions. Also, for each n = 1,...,n, define a mapping I, from S x [0, 1] — [0, 1]
according to I, (s,p1,p2,...,Pn) = pn. For each n, let Z,, = {I,,} be singleton sets. Where
necessary, I,,’s domain is also extended as we have just described.

For each i = 1,...,H +1, define X; = S x ([0, 1]%7)7+1=¢_ For example, X is just
the space of scenarios (with only the first dp H elements of the p’s kept), and Xy = S.
For each 1 = 1,..., H, define a family of maps from X; into X;;; according to H; =
Fi X Fax o+ X Fag X Lgpy1 X Lapro X - X Lig_iy1)dp (where the definition of the free
product of sets of functions is as given in Lemma 16); note such an #; has Lipschitz bound
at most By = (dg + Hdp)B. Also let Hy 11 = {R} be a singleton set containing the reward
function, and X9 = [—Rmax, Rmax)- Finally, let H = Hp 11 0Hpg o---oHy be the family
of maps from S x ([0,1]%?)" into [~ Rmax, Rmax]-

Now, let U}\T/['H : 8" = [~ Rmax, Rmax] be the reward received on the H-th step
when executing 7 from a scenario s € S’. As we let m vary over II, this defines a family

of maps from scenarios into [—Rmax, Rmax]|.- Clearly, this family of maps is a subset of H.

103

Thus, if we can bound the capacity of H (and hence prove uniform converge over H), we
have also proved uniform convergence for U]\T/[,, g (over all 7 € TI).

Foreachi = 1,...,dg, since dimp(F;) < d, Lemma 15 implies that N'(e, F;, dp1(py,)) <
2((2e/€) In(2e/€))?. Moreover, clearly N (e, Z;, dri(pe,)) = 1 since each Z; is a singleton set.

Combined with Lemma 16, this implies that, for each : =1,...,H and € < 1,

ds
N(e,Hirdpipg) < [[N(e/(ds + (H = i)dp), Fj,dpspy,)) (4.41)
7=1
ds
< [[N(e/(ds + Hedp), Fj, dpi (ps)) (4.42)
7=1
dds
< ois <2e(dg + Hdp) In 2e(ds + Hedp)> (4.43)
€ €
2dds
< ods (26(ds+HEdp)> (4.44)
€

where we have used the fact that N is decreasing in its € parameter. By taking a sup
over probability measures P, this is also a bound on C(e, H;,¢1). Now, as metrics over

R(ds+(H=1)dp) g, < ¢, Thus, this also gives

2¢(ds + Hedp)) 2dds (4.45)

€

Cle, Hy, by) < 2% (

Finally, applying Lemma 17 with each of the p;’s being the ¢5 norm on the appro-

priate space, k = H + 1, and € = (H + 1) B{! Bre,, we find

H+1
Cle,H,lo) <[] Cle/((H +1)B§ Br), H;, o) (4.46)
j=1
H H 2ddg
< H 9ds (26(d5 + Hedp)(H + 1)B0 BR> (4.47)
3 €
7=1
H. 2ddg H.
o gisth <2€(ds + Hdp)(He +1)B] BR> s
€

104

Part III: Proving uniform convergence. Applying Lemma 18 with the above bound
on C(e,H, ¢3), we find that for there to be a 1 —§ probability of our estimate of the expected

H-th step reward to be e-close to the mean, it suffices that

2 1
m = ?<log5+log(4C(e/16,’H,€2))> (4.49)
€
1 1 1
= O/ poly d,—,logg,ﬁ,logB,logBR,dS,dp . (4.50)
B _

This completes the proof of the Theorem. [

105

Chapter 5

Autonomous helicopter flight via

reinforcement learning!

Helicopters represent a challenging control problem with complex, highly coupled,
asymmetric, noisy, non-linear, high-dimensional, MIMO, non-minimum phase dynamics.
They are widely regarded to be significantly more difficult to control than fixed-wing air-
craft. [59] Consider, for instance, the problem of designing a helicopter that hovers in place.
We begin with a single, horizontally-oriented main rotor attached to the helicopter via the
rotor shaft. Suppose our helicopter’s main rotor rotates clockwise (viewed from above),?
blowing air downwards and hence generating upward thrust. This keeps the helicopter in
the air against the force of gravity, but by applying clockwise torque to the main rotor

to make it rotate, our helicopter experiences an anti-torque that tends to cause the main

chassis to spin anti-clockwise. Thus, in the invention of the helicopter, it was necessary to

!The work presented in this chapter was jointly done by the author and Hyounjin Kim.
2Throughout this chapter, we will adopt the convention of clockwise-rotating rotors.

106

add a tail rotor, which blows air sideways/rightwards to generate an appropriate moment to
counteract the spin. But this creates another problem: This sideways force now causes the
helicopter to tend to drift leftwards. So, for a helicopter to hover in place, it must actually
be tilted slightly to the right, so that the main rotor’s thrust is directed downwards and
slightly to the left, to counteract this tendency to drift sideways.

The history of the development of the helicopter is rife with such tales of complex,
nonintuitive dynamics and of ingenious solutions to problems caused by solutions to other
problems. When the helicopter is in forward flight, the main rotor blades, because they are
rotating clockwise, move through the air faster on the left than on the right, generating
asymmetric lift. While ascending straight up is a fairly straightforward maneuver, moderate-
speed descent involves the helicopter entering into noisy, turbulent air; surprisingly, these
effects again disappear for a fast descent. Because of its asymmetric design, turning left
and turning right are also very different maneuvers.

In this chapter, we describe the successful application of reinforcement learning to

designing a controller for autonomous helicopter flight.

5.1 Introduction

In this section, we will begin by describing the helicopter hardware platform for
which we were interested in designing a controller. We also describe the helicopter’s instru-
mentation, its state space S, and its controls A. In Section 5.2, we then present how we
identified (fit) a model of the helicopter’s dynamics. Section 5.3 gives the policy class II we

chose for a controller to make the helicopter hover in place, and describes our application

107

Figure 5.1: Berkeley autonomous helicopter.

108

of reinforcement learning to this task. Section 5.4 then extends this work to making the
helicopter fly challenging maneuvers taken from an RC helicopter competition.

The helicopter used in all of our experiments was the Berkeley autonomous he-
licopter (Figure 5.1) [96]. This is a Yamaha R-50 helicopter, approximately 3.6m long
(including rotors), and carries a payload of up to about 20kg. The helicopter is instru-
mented with sensors and with a flight computer that is used to perform onboard control
and navigation.

If we imagine our helicopter to be a rigid object in 3-space, then its state is
characterized by 12 numbers: Its position (z,y, z), orientation (row ¢, pitch 0, yaw w),
velocity (z, 9, 2) and angular velocity (ng, 0, w). Thus, we may make take an initial definition
of the state space of the helicopter to be S = R!'2.3 (We will add more state variables later.)

A detailed description of the design and instrumentation of this helicopter is given
in Shim [96]. Briefly, it carries an Inertial Navigation System (INS) consisting of 3 ac-
celerometers and 3 rate gyroscopes installed in exactly orthogonal x, y, and z directions.
This gives estimates of linear accelerations and of turning rates. The helicopter is also
instrumented with differential GPS. This consists (roughly) of a GPS receiver operating on
the helicopter, and one operating on the ground at a precisely known location. By examin-
ing the (known) error of the GPS position estimate of the ground receiver and using that
to correct the estimate of the GPS unit on the helicopter, this gives position estimates with
a resolution of 2cm. A Kalman filter integrates the sensor information from the GPS, INS,

and a digital compass, and reports (at 50Hz) 12 numbers corresponding to the estimates of

8 Actually, the position and orientation of the helicopter would be more accurately modeled as lying in
R? x SO(3) since angles lie in a circle, etc. (E.g., see [74].) But for our purposes it suffices and is simpler to
model the state as described above.

109

each of the 12 state variables described above.
Most helicopters built in this single main-rotor, single tail-rotor configuration are

controlled via a 4-dimensional action space:

e a1,az: The longitudinal (front-back) and latitudinal (left-right) cyclic pitch controls.
The rotor plane is the plane through which the helicopters’ rotors rotate. These
controls tilt this plane either forwards/backwards or sideways, and by doing so cause

the helicopter to accelerate forward/backwards or sideways.

e a3: The (main rotor) collective pitch control. As the helicopter main-rotor’s blades
sweep through the air, they generate an amount of upward thrust that (generally) in-
creases with the angle at which the rotor blades are tilted. E.g., a “flat” /horizontally
oriented rotor blade slicing through the air generates no lift, whereas one tilted up-
wards would push air downwards and hence generate upward thrust. By varying the

tilt angle of the rotor blades, the cyclic pitch control affects the main rotor’s thrust.*

e a4: The tail rotor collective pitch control. Using a mechanism similar to the main

rotor collective pitch control, this controls the tail rotor’s thrust.

The range of the actions are bounded, and we may thus take our space of actions to be
A=[-1,1"

Readers interested in learning more about helicopters and helicopter dynamics may
refer to such texts as Seddon [93], Leishman [59], and Wagtendonk [105]. The first two of

these served as the author’s primary references, whereas the third, written mainly for pilots,

“The helicopter throttle, a 5th control channel, is also commanded as a pre-set, deterministic, monotonic
function of the cyclic pitch; we need not be concerned with it in the remainder of our discussion.

110

is less mathematical and more easily accessible. (For a general primer on aerodynamics, refer
to, e.g., [2, 3].) Readers interested in reading more about the development of autonomous
aerial vehicles may also see [96].

The hovering problem is as follows: Every 50th of a second, we obtain a new
estimate of the helicopter state. Our task is to return some 4-dimensional vector a € A, so

that by executing our controls, the helicopter stays stably in the air.

5.2 Model identification

To run our reinforcement learning algorithms, we required an accurate model of
the helicopter’s state transition dynamics Ps,(+). To fit such a model, we chose a data-driven
approach. We began by asking a human pilot to fly the helicopter for several minutes, and
recorded the 12-dimensional helicopter state and 4-dimensional helicopter control inputs as
it was flown. The pilot was asked to systematically perform frequency sweeps (this consists
of oscillating a control at slowly increasing frequencies) [70] in each of the four control
channels, while using the other three channels to stabilize the helicopter. In what follows,
339 seconds of flight data was used for fitting our model, with another 140 seconds of data
used for hold-out testing.

For the remainder of this discussion, let us augment the helicopter state vector s
with a constant 1 for notational convenience, so that s = [:Jc,y,z,¢,0,w,3'c,g),z",¢2,0.,w, 1].
We modeled the continuous dynamics of the helicopter as a discrete time system. Following
discussions with colleagues knowledgeable about helicopters, we decided to downsample

our 50Hz data to 10Hz, and identify our model at 10Hz, so that the elapsed time between

111

successive states (s; and s;11) was 1/10-th of a second.

5.2.1 Locally weighted regression

Since helicopters exhibit highly non-linear dynamics, we felt it was important
to use a model that can capture these nonlinearities. We chose locally weighted linear
regression (e.g., [6, 25]) as our main tool for fitting our model.

Locally weighted regression works as follows. Given a dataset {(z;,v;)}~, where
the x;’s are the vector-valued inputs and the y;’s are the real-valued outputs we are trying
to predict, let X denote the design matrix whose i-th row is z;, and let y be the vector of
y;’s. In response to a query at a new x,,1, standard (global) regression would perform a
least-squares fit to the data:

g=(XTx)"1xTy, (5.1)

and evaluate the resulting linear function (y = 7z) at = 5,41, yielding its prediction
BTz, 41 for the value of y,,,1. Locally weighted regression does something slightly different.
Specifically, it fits a linear function locally, using primarily the data close to the query
Tma1- Specifically, define w; = exp(—%(mmﬂ —2;) 'S Y (@me1 — 2;)) to be the weight of z;
(i =1,...,m). Thus, points close to the query z,,1 are given a large weight, and points far
away are given a small weight. Here, X!, a positive semi-definite matrix, controls how fast
the weights fall off with distance as we move away from z,,+1. Locally weighted regression

then weights the data while performing its regression, and calculates:
B=XTwx) ' xTwy (5.2)

Above, W is a diagonal matrix containing the w;’s. Finally, its prediction for y,,+1 is given

112

by ﬁTfEmH-

If we wish to use locally weighted regression to make a prediction at a new input
different from x,,+1, then we would first again reweight all the data, fit a linear function to
the data using those weights, and compute the prediction by evaluating the linear function
at the location of the new query. Note that, since this procedure chooses a different linear
function at every point, if we plot its predictions y as a function of the input query z, we
obtain a function that is not locally linear or locally affine, nor piecewise linear nor piecewise
affine. Instead, locally weighted regression is able to identify fully nonlinear models.

In our description above, ¥~!, which determines the scaling of the input space
controlling the weighting, still has to be specified. In our experiments, this was picked via
leave-one-out cross validation.’

By performing regression with the current state and control s; and a; playing the
role of the input x and, in turn, each variable of the next state s;11 (or, more precisely, the
change in the state s;11 — s;) playing the role of the output y, we obtain a nonlinear model
of our helicopter dynamics. Specifically, given s;, a;, we now have a model that predicts
what s;11 will be. However, to build a realistic model of the helicopter, we also need to
know the uncertainty in this estimate. In particular, we use the model y = 87z + ¢, where €

is distributed as a Gaussian with zero mean and variance o2. We used the estimator for the

noise variance o2 given in [25].6 This € term thus captures disturbances to the helicopter

% Actually, since we were fitting a model to a time-series, samples tend to be correlated in time, and
the presence of temporally close-by samples—which will be spatially close-by as well—may make data seem
more abundant than in reality (leading to bigger ©~! than might be optimal for test data). Thus, when
leaving out a sample in cross validation, we actually left out a large window (16 seconds) of data around
that sample, to diminish this bias.

6This is another estimator with a leave-one-out cross-validation flavor, and the windowing trick described
in the previous footnote was also applied here.

113

state due to external, random perturbations (such as wind, etc).

Lastly, we also modified our model to capture uncertainty in the model itself.
Specifically, if in certain areas of the state space we have very little data, then our local
fit for 8 will be based on very little data, and we should not be confident of our estimate
of the local 8 there. One standard way of capturing this uncertainty involves interpreting
the locally weighted regression that we have described as a Bayesian procedure, so that via
Bayes rule we can obtain a posterior distribution on f as p(8|data) o p(data|3)p(/), where
we choose p(f) is a noninformative (flat) prior. (See, e.g., Gelman et al. [37].) Briefly, this
method “pretends” that the outputs y; for datapoints far away from the query z,,; were
observed with very high variance, so that the optimal, Bayesian regression on this data will

automatically give them small weight. Armed with these posteriors, we thus have

Var(ymi1|tmy1) = Var(8' zmi1 +e) (5.3)

= Zhy1SpTm1 + 07, (5.4)

where Xz is the posterior covariance of pr."

Thus, to build our generative model or simulator for the helicopter—that is, a
function that, given s and a, samples s’ from Py, (-)—we write a function that, given s, a,
performs locally weighted regression, calculates Var(y;,+1|Zm+1) using the formula above
(where again y plays the role of, in turn, each coordinate of s’ — s and z,,1 plays the role of

s,a), and finally returns ¥, 11 = 87 x+¢, where € is sampled from a zero mean gaussian with

"The Bayesian setup given in [37] also gives a way of estimating the variance o as well, if that is unknown.
We note that it is important not to use that procedure if o2 is to be interpreted as the variance of € as in
our above description, since that estimator is hugely biased and will tend to significantly underestimate the
variance. Given our application, underestimating the noise of the process may mean policies that fly well
according to our model, but crash in real life, and is thus dangerous and unacceptable. Thus, we actually
used the estimator for o described earlier.

114

the variance computed by Equation (5.4). To build a deterministic simulative model, we
can use g(s,a,p) = [g1(8,a,p1), -, 9ds (8,a,pas)]’, where each of the coordinate functions

g; is given by

gi(s,a,p) = s+ (sh—s;) (5.5)

= si+ B 2+ F,,(p). (5.6)

Here, Fs_,a1 is the inverse cdf of a gaussian with zero mean and variance as given by Equa-
tion (5.4).%

This completes our description of our main tool of locally weighted regression
used to build our generative model. While locally weighted regression could, in principle,
be applied straightforwardly to our raw training data to obtain a model of the helicopter
dynamics, in the next section we will also see how this can significantly be improved on.

Readers interested in learning more about locally weighted regression may also

see, e.g., the survey by Atkeson et al. [6] and the references therein.

5.2.2 Model selection and incorporating prior knowledge

In this section, we describe some of the choices we made in our attempts to design
a high-fidelity model for the helicopter, and some of the rationales for them. In incorpo-
rating certain forms of prior knowledge into the model, our work also builds on that of
Shim [96] (who, in turn, incorporated a number of ideas from Mettler et al. [71]), who built

a deterministic, globally linear model for a helicopter.

8 Actually, it would be easier to change the definitions of the p’s from that given in Chapter 4 to be
p ~ Normal(0,1), and to instead use g;(s,a,p) = BT« + p, where 72 is the variance computed using
Equation (5.4).

115

There are many natural symmetries in helicopter flight. For instance, suppose we
command a helicopter at position (10,10,50) facing east to move forward. This is related
only by a translation and rotation to one at position (20,20,30) facing north that is issued
the same command. Thus, it seems inefficient and unnecessary to try to learn different
models for these two parts of the state space, which is what locally weighted regression
would naively do if we were to give it the raw training data we had collected. Specifically, it
seems more reasonable encode this type of symmetry into the model, rather than force our
algorithms to learn them from scratch. In this example, this means we would like to learn
what a helicopter will do if it is commanded to go forward, and then “apply” this single
model to both the helicopter at (10,10,50) and the one at (20,20,30).

Thus, in system identification, it is standard to fit a model not in spatial (world)
coordinates, but in the helicopter body coordinates. In this coordinate frame, the z, y, and
z axes are forwards, sideways, and down relative to the current position of the helicopter.
Where there is risk of confusion, we will use superscript s and b subscripts to distinguish be-
tween spatial and body coordinates; thus, 4° is forward velocity, regardless of the orientation
of the helicopter. Our model is identified in the body coordinates s’ = [¢, 8, 2°, 7, 2, .0, w]
which has four fewer variables than s®. The equations transforming between spatial and
body coordinates are easily derived (e.g., see [96]). As before, we can thus apply locally
weighted regression to predict the one-step differences s’ 1~ s? to build our model. It
should also be clear that, given a model or simulator expressed in terms of body coordi-
nates, we can easily obtain a simulator expressed in the original, spatial coordinates via an

appropriate transformation of the variables (and it is the latter model that will be used by

116

our learning algorithms).

Apart from switching to body coordinates, we also considered several other ways
of incorporating prior knowledge into the model.

First, we previously said that the cyclic pitch controls tilt the rotor plane and
causes the helicopter to accelerate in a certain direction. But because of a mechanical
damper (“a Bell-Hiller stabilizer”), the effects of this are not instantaneous, and there is
significant latency between when the cyclic pitch controls are changed and when the rotor
plane is tilted. Following [96], we also added two state variables a;s, b1 capturing orientation
of the rotor-plane. Since rotor-plane tilt is not directly observed, however, we could not use
locally weighted regression to directly fit a model to it, and thus instead used the model
for a1, and by, identified by [96]. Similarly, another state variable wy, was also added to
model the latency in w caused by a yaw-rate gyro feedback mechanism. On our held-out
test data, these changes resulted in small but statistically significant increases in prediction
accuracy, and were thus included in the final model.

In addition, similar to how using body coordinates exploits certain symmetries,
there are other symmetries that can be incorporated into the model. For instance, since
both ¢, and ¢; are state variables, and we know that (at 10Hz) ¢p11 =~ ¢y + ¢3t/10, there
is no need to carry out a regression for ¢. Similarly, we know that the row angle ¢ of the
helicopter should have no direct effect on forward velocity . So, when performing regression
to estimate 2, the coefficient in 8 corresponding to ¢ can be set to 0. This thus allows us to
reduce the number of parameters that have to be fit by our regression. There are many other

examples of these effects, and briefly, we ended up using the “template” given in Equation

117

(2.66-2.67) of [96] (plus adding a constant/bias term so that our regression doesn’t have to
intersect y = 0 at = 0). Thus, coefficients in § were set to the constants to 0, £1, or g
(gravity) if dictated so by the template, and left as a variable to be fit by the regression
otherwise.

Briefly, some of the (other) choices that we considered in selecting a model include
whether to use the ais, bis and/or wyp terms; whether to include intercept terms in the
regression; whether to identify the model at 5, 10, 25 or 50Hz; whether to set/hardwire
certain coefficients as described earlier; and whether to use a globally linear regression or
locally weighted regression.

Our main tool for choosing among the possible models was plots such as shown
in Figure 5.2a, which we plotted for various state variables. (See figure caption.) We were
particularly interested in checking how accurate a model is not just for predicting s;y1 from
¢, ag, but how accurate the model is at longer time scales. (In the following paragraph
and in footnote 9, we describe some of our motivations for examining different time scales.)
Each of the panels in Figure 5.2a shows, for a model, the mean-squared error (as measured
on test data) between the helicopter’s true position and the estimated position at a certain
time in the future (indicated on the z-axis), assuming the state estimate at time 0 is perfect.

Note also that, even though we previously discussed how certain coefficients of
can be set to zero so that certain coordinates of s,y depend only on a sub-vector of sy, at
larger time scales many more of the state variables become coupled. (E.g., for a single-step
transition in the MDP, only ng affects ¢; but at longer time scales, other variables now have

time to affect ng and hence ¢.) Thus, each of these plots to some degree tests the models

o
©

o
o

mean squared error

o
(N

o
w

mean squared error
o
N

o
AN

xdot

o
~

0.2

0.4 0.6 0.8 1

seconds

xdot

o
i

0.4 0.6 0.8 1

seconds

mean squared error

o
ol

o
i

o
()

mean squared error

©
[

118

xdot

o
()

0.2 0.4 0.6 0.8 1
seconds

thetadot

0.2 0.4 0.6 0.8 1
seconds

Figure 5.2: Examples of plots comparing a (globally) linear model fit using the parameteri-
zation described in the text (solid lines) to some other models (dash-dot lines). Each point
plotted shows the mean-squared error between the predicted value of a state variable—
when a model (ignoring model noise) is used to the simulate the helicopter’s dynamics for
a certain duration indicated on the z-axis—and the true value of that state variable (as
measured on test data) after the same duration. Top left: Comparison of Z-error to model
not using extra as, etc. variables. Top right: Comparison of z-error to a model that omits
the intercept (bias) term. Bottom: Comparison of % and 0 to linear deterministic model
identified by [96].

119

1.5 T T T T T T T T T

ydot

-3]]]]]]] |]

0 1 2 3 4 5 6 7 8 9 10
time

Figure 5.3: The solid line is the true helicopter y state on 10s of test data. The dash-dot line
is the helicopter state predicted by our model, given the initial state at time 0 and all the
intermediate control inputs. The dotted lines show 2 standard deviations in the estimated
state. (Calculating these on a stochastic non-linear model is actually intractable, so these
were estimated using an extended Kalman filter, and using a diagonal approximation to all
the covariances as in [67, 21].) Every two seconds, the estimated state is “reset” to the true
state, and the track starts again with zero error. Note that the estimated state is of the
full, high-dimensional state of the helicopter, but only ¢ is shown here.

120

for all the state variables, not just that of the variable whose error is being plotted. By
generating these plots for different state variables, we learn how good the various models
are at predicting the helicopter’s dynamics at different time scales.

The blade-tip of the helicopter moves at over 1/3 of the speed of sound. Safety
is a critical issue, and an accident could easily result in death or dismemberment for a
person. Thus, having constructed a model, we felt it was important to make significant
effort to verify that our stochastic model captures the dynamics well, so that we might be
reasonably confident that a policy tested successfully in simulation will also be safe in real
life. One of our main concerns was the possibility of unmodeled correlations in the € noise
terms (either across time or across the different state variables). Specifically, unmodeled
correlations could mean that actual noise variance of the dynamics is much larger than that
predicted by the model,” which would make it dangerous to fly a control policy that has
been tested successfully only in simulation. To check against this, we examined many plots
such as the one in Figure 5.3, to verify that the helicopter state “rarely” goes outside the
error bars predicted by our model at various time scales (see caption).

Finally, we also used a simple trick to speed up our simulation. Recall that here
we are using a discrete-time model to approximate a continuous time process, and the
time-scale of the model was a parameter chosen by us. Specifically, if we have a model

St41 = St+f (8¢, ar)+e€ identified at 10Hz, we may obtain a 50Hz model via the approximation

9Consider: Under the process z:+1 = x: + €, if the €;’s are strongly correlated in time, then in T' time
steps, z; can easily drift O(T) distance; but if the €,’s are modeled as uncorrelated, the model would predict
it drifting only O(v/T) distance (the standard deviation of the sum of T independent random variables).
Similarly, biases or errors in the model may also result in unmodeled, correlated errors: If in reality x;+1 =
0.99z: + €, but our model is z;y1 = 0.9x; + € (perhaps because of oversmoothing), then successive errors
(e = x¢+1 — 0.92¢) in time will either all tend to be all larger or all smaller than zero (depending on the sign
of $t).

121

St41 = S¢ + f(st,a4) /5 + €', where the variance of € is 1/5 that of e. Assuming that most
of the dynamics of the helicopter are slower than 10Hz, both of these models would give
about the same answers. Because the dynamics of some of the hidden state variables (aqs,
b1s) were quite fast, and because we anticipated controlling the actual helicopter at 50Hz,
we actually chose to use a 50Hz simulation. However, this also means needing 50 instead
of 10 steps in the MDP to simulate one second of actual flight time, and hence a simulator
that is five times slower.'® However, the bottleneck turns out to be the fitting of the locally
linear regressions to obtain 8. As a compromise, we therefore decided to run the simulation
at 50Hz, but to “refit” the linearity at 10Hz. Thus, every 5 steps in the simulation, we
would examine the helicopter state and use its current location to refit a locally weighted
regression to obtain J; then, for the next 5 steps, we will let the helicopter’s dynamics
evolve according to that same . This approximation introduced negligible additional error
into our model, and we felt represented a good compromise between having a fast simulator
and being true to the 50Hz controller that we will be flying. (For another way of speeding
up locally-weighted models, also see Moore et al. [73]. While an excellent choice for many
applications, we chose not to use the ideas there because they can introduce unwanted

discontinuities into the model of the dynamics.)

5.3 Learning to Hover

Armed with our simulator for the helicopter, we proceeded to use reinforcement

learning to learn a controller to make the helicopter hover stably.

0By downsampling our training data from 50Hz to 10Hz, we also obtained almost a 5-fold speedup, since
our training set became 1/5 as large and hence the locally weighted regression only needed to examine 1/5
as much data.

122

As discussed earlier, helicopter control is a challenging task. The only other at-
tempt to use an automatic learning algorithm on the Berkeley autonomous helicopter was
via p-synthesis [11] (which, very informally, can be thought of as a “robust” version of
H-control). This succeeded in flying the helicopter in simulation, but not on the actual
helicopter. [95] Similarly, preliminary experiments using Hy and H,, controllers to fly a
similar helicopter were also unsuccessful. [7] Of course, these comments should not be taken
as criticism of any of these methods, all of which have succeeded on many difficult problems;
rather, we take them to be indicative of the difficulty and subtlety involved in learning a
helicopter controller.

We began by first learning a policy to keep the helicopter hovering in place. We
proceeded by first specifying a policy class II for hovering. In a way reminiscent of the
discussion in Section 5.2.2 on model identification, there are many symmetries of which we
can take advantage. For instance, if the helicopter is one meter to the left of the position
(z*,y*, z*) where we want it to hover, then the action we should take to move it a meter
rightwards probably does not depend on whether the desired (z*,y*,2*) is (10,10,50) or
(20,20,30).

For our policy class, we chose the simple neural network depicted in Figure 5.4. We
want a controller that, given the current helicopter state and a desired hovering position
and orientation (z*,y*,z*,w*), computes controls a € [—1,1]* to make it hover stably
there. Each of the edges in the figure represents a weight, and the connections were chosen
via simple reasoning about which control channel should be used to control which state

variables. For instance, consider the control a; for the longitudinal (forward/backward)

123

+1 - /@\@ .

erry

o, R

y
¢

ar, — z/@\@ae

z
er(,: I ad @\@ a

Figure 5.4: Policy class II used to learn a controller for hovering. The pictures inside the
circles indicate whether each node computes and outputs the sum of its inputs, or the tanh
of its input. Each edge with an arrow in the picture denotes a tunable parameter.

124

cyclic pitch control. This causes the rotor plane to tilt forward/backward, thus causing the
helicopter to pitch (and/or accelerate) forward or backward. From Figure 5.4, we can read

off the cyclic pitch control to be given by

t1 = w; + wyerry + ws tanh(wgerry) + wsi’ 4+ weh, (5.7)
a; = wy tanh(wgtl) + wgtq. (58)

Here, the w;’s are the tunable parameters (weights) of the network, and err, = 2 — 20 . .4

is defined to be the error in the z-position (forward direction, in body coordinates) between
where the helicopter currently is and where we wish it to hover. Thus, whether the helicopter
moves forwards or backwards is affected by the current error in the forward/backward
direction, by the forward velocity, and by the forward pitch angle.!!

For the reward function, we chose a (LQR/LQG [1] style) quadratic cost function

on the (spatial representation of the) state, where!'?

R(s) = —(aw(z—2") +ayly —y") +a(y —y)°

+aii? 4+ ayf? + oz + oy (w — w*)?). (5.9)

This encourages the helicopter to hover near (z*,y*, z*, w*), while also keeping the velocity
small and not making abrupt movements. The weights «a,,ay, etc. (distinct from, and
not to be confused with, the weights w; parameterizing our policy class) were chosen using
crude guesses on the “typical” magnitudes of each term, so as to scale them to be roughly

the same order of magnitude. (This is a standard heuristic for choosing these weights. [1])

We also considered letting the pitch-rate 6 be an input to a1 (and the roll-rate ¢ be an input to a2),
but decided against it for safety reasons because we were not confident that the Kalman filter could return
consistently accurate estimates of these quantities.

12The w —w* error term is computed with appropriate wrapping about 27 rad, so that if we want to hover
facing 0.01 rad, and the helicopter is currently facing 27 — 0.01 rad, the error is 0.02, not 2w — 0.02 rad.

125

To encourage small actions and smooth control of the helicopter, we also used a quadratic
penalty for actions:

R(a) = — (g, a% + aa2a§ + ozaga% + aa4ai), (5.10)

and the overall reward was R(s,a) = R(s) + R(a).

We now have a well-defined reinforcement learning problem. Specifically, the model
we identified in Section 5.2 gives us the deterministic simulative model g, which with the
reward function can then be used by the PEGASUS method to define approximations (7(7r)
to the utilities of policies. Since policies are smoothly parameterized in the weights, and
the dynamics are themselves continuous in the actions, the estimates of utilities are also
continuous in the weights.'> We may thus apply standard hillclimbing algorithms to search
for a good setting of the weights. We tried both a gradient ascent algorithm, in which
we numerically evaluate the derivative of U(?T) with respect to the weights and then take
a step in the indicated direction, and a random-walk algorithm in which we propose a
random perturbation to the weights, and move there if it increases U(w) Both of these
algorithms worked well, though with the gradient ascent method, it was important to scale
the derivatives appropriately, since the estimates of the derivatives were sometimes numer-
ically unstable.'* It was also important to apply some standard heuristics to prevent its

solutions from diverging (such as verifying after each step that we did indeed take a step

13 Actually, this is not quite true. One last component of the reward that we did not mention earlier was
that, if in performing the locally weighted regression, the matrix X” W X is singular to numerical precision,
then we declare the helicopter to have “crashed,” terminate the simulation, and give it a huge negative
(-50000) reward. The rationale is that, if X7 W X is singular, then Y3 should be infinite in some direction,
and hence the posterior variance of the state should also be (in general) infinite in some direction, thus
incurring an “infinite” penalty via Equation (5.9). But because the test that checks if X7 WX is singular
to numerical precision must necessarily return either 1 or 0, this means U(ﬂ') has a discontinuity between
“crash” and “not-crash.”

14 A problem which seemed to be exacerbated significantly by the discontinuities described in the preceding
footnote.

126

Figure 5.5: Helicopter hovering under control of learned policy.

uphill on the objective U, and undoing/redoing the step using a smaller stepsize if this was
not the case).

Lastly, we also found that, while performing policy search, the key computational
step was the repeated Monte Carlo evaluation to obtain U(W) While we could have run
our algorithms on a single computer, such operations are easily parallelized. Specifically, we
can run Monte Carlo evaluations using different scenarios on different computers, and then
aggregate the results centrally to obtain (7(77) Using the Millennium cluster at Berkeley [84],

we were thus able to use a parallel implementation to speed up policy search.

127

x-velocity (m/s)
15 ‘ ;

30
0 5 10 15 20 25 30
z-velocity (m/s)
1 ‘ ‘
05 5 10 15 20 25 30

Figure 5.6: Comparison of hovering performance of learned controller (blue solid line; colors
where available) vs. trained human pilot (red dashed line). Shown here are the z°,y” and
2" (body coordinate) velocities.

128

X—position (m)
66

65.5‘7‘ 1
65 W |
64.51 ., 1
64) O . 1

6350 S :

625" Co)]

0 5 10 15 20 25 30

6.5r 1

-
v \ / N

4.5 Il Il Il Il Il
0 5 10 15 20 25 30

Figure 5.7: Comparison of hovering performance of learned controller (blue solid line; colors
where available) vs. trained human pilot (red dashed line). Shown here are the z,y and z
(world coordinate) positions.

129

We ran PEGASUS using 30 scenarios of 35 seconds of flying time each, and a
discount of v = 0.9995. Figure 5.5 shows the result of implementing and running the
resulting policy on the helicopter. On its maiden flight, our learned policy was successful
in keeping the helicopter stabilized in the air. We note that [8] was also successful at
modeling and using our PEGASUS algorithm to control a subset (the cyclic pitch controls)
of a helicopter’s dynamics.

We also compare against the performance of our learned policy against that of our
human pilot trained and licensed by Yamaha to fly the R-50 helicopter. Figures 5.6 and 5.7
shows the velocities and positions of the helicopter under our learned policy and under the
human pilot’s control. As we see, our controller was able to keep the helicopter flying more

stably than was a human pilot.

5.4 Flying competition maneuvers

Having succeeded at learning to hover, we were next interested in making the
helicopter automatically learn to fly several challenging maneuvers.

The Academy of Model Aeronautics (AMA) [79] organizes an annual RC helicopter
competition. (The AMA boasts of a membership of over 170,000, and is to our knowledge
by far the largest organization of this sort; it is also self-described as “The world’s largest
sport aviation organization.”) In this competition, the helicopter has to be accurately flown
through a number of maneuvers. The competition is organized into Class I (for beginners,
with the easiest maneuvers) through Class III (with the most difficult maneuvers, for the

most advanced pilots). We took the first three maneuvers from the most challenging, Class

130

111, segment of their competition.

Figure 5.8 shows maneuver diagrams from the web site of the AMA [79]. In the
first of these maneuvers (III.1), the helicopter starts from the middle of the base of a
triangle, flies backwards to the lower-right corner, performs a 180° pirouette (turning in
place), flies backwards up an edge of the triangle, backwards down the other edge, performs
another 180° pirouette, and lastly flies backwards to return to where it started. Flying a
helicopter backwards is a significantly less stable maneuver than flying it forwards, which
makes this maneuver interesting and challenging. In the second of these maneuvers (IIL.2),
the helicopter has to perform a nose-in turn, in which it flies backwards out to the edge of
a circle, pauses, and then accelerates into a trajectory that forms a full circle, but always
keeping the nose of the helicopter pointed at center of rotation. This continues until the
helicopter returns to where it had started circling, and it lastly flies forward back to the
center of the circle. Many human pilots seem to find this second maneuver particularly
challenging to fly. Lastly, maneuver III.3 involves flying the helicopter in a vertical rectangle,
with two 360° pirouettes in opposite directions halfway along the vertical segments of the
rectangle.

How does one design a controller for making a helicopter fly trajectories? Given
a controller for keeping a system’s state at a point (z*,y*,2z*,w*), one standard way to
make the system move through a particular trajectory is to slowly vary (z*,y*, z*, w*)
along a sequence of set points on that trajectory. (E.g., see [33].) For instance, if we
ask our helicopter to hover at (0,0,0,0), then a fraction of a second later ask it to hover

at (0.01,0,0,0), then at (0.02,0,0,0) and so on, our helicopter will slowly fly in the z*-

131

Class III

1. Vertical Triangle
with 180 Degree Pirouettes

2 C

2. Nose in Circle

3. Vertical Rectangle
with 360 Degree Pirouettes

-
N ~
O} (O
- b

Figure 5.8: Diagrams of maneuvers from the Class III segment of an RC helicopter compe-
tition organized by the Academy of Model Aeronautics. [Source: www.modelaircraft.org]

132

+1 - /@\@ .

€y

/

W A/ ///
errwm a4

Figure 5.9: Policy class II used to learn a controller for flying competition maneuvers. The
dashed arrows show the newly-added edges.

direction. As in [96], to make the helicopter fly a particular trajectory, we thus made
(x*,y*, 2%, w*) accelerate smoothly along the desired trajectory up to the speed limit, and
decelerate smoothly at the end of the trajectory. By taking this procedure and “wrapping”
it around our old policy class from Figure 5.4, we thus obtain a computer program—that
is, a new policy class—not just for hovering, but also for flying arbitrary trajectories. Le.,
we now have a family of policies that take as input a trajectory, and that attempt to make
the helicopter fly that trajectory. Moreover, we can now also retrain the policy’s parameters
for accurate trajectory following, not just hovering.

Because we are now flying trajectories and not only hovering, we also augmented

133

the policy class to take into account more of the coupling between the helicopter’s different
subdynamics. For instance, the “straightforward” way to turn is to change the tail rotor
collective pitch/thrust, so that it yaws either left or right. For small corrections to direction,
this works well; but for larger turns, the thrust from the tail rotor also tends to cause the
helicopter to drift sideways. Turning left this way causes the helicopter to drift rightwards,
and turning right causes it to drift leftwards. To correct for it, we enriched the policy class
to allow it to correct for this drift by applying the appropriate collective pitch controls
(which, we recall, can be used to make the helicopter accelerate sideways/in the direction
opposite to the drift). Also, having a helicopter climb or descend changes the amount of
work done by the main rotor, and hence the amount of torque/anti-torque generated, which
can cause the helicopter to enter an unwanted turn. To allow the policy class to correct for
this, we also added a link between the collective pitch control a3 and the tail rotor collective
pitch control a4. The result of these modifications to the policy are shown in Figure 5.9.
To apply our reinforcement learning algorithms, we also needed a reward function.
One simple choice for R would have been to use Equation (5.9) with the newly-defined
(time-varying) (z*, y*, z*,w*). But we did not consider this to be a good choice. Specifically,
consider making the helicopter fly in the increasing z-direction, so that (z*, y*, z*, w*) starts
off as (0,0,0,0) (say), and has its first coordinate z* slowly increased over time. Then,
while the actual helicopter position z® will indeed increase, it will also almost certainly lag
consistently behind z*. This is because the hovering controller is always trying to “catch
up” to the moving (z*,y*, z*,w*). Thus, x — z* may remain large, and the helicopter will

continuously incur a x — x* cost, even if it is in fact flying a very straight and accurate

134

trajectory in the increasing z-direction exactly as desired. It would be undesirable to have
the helicopter risk trying to fly more aggressively to reduce this fake “error,” particularly if it
is at the cost of increased error in the other coordinates. So, we changed the reward function
to penalize deviation not from (z*,y*, 2*,w*), but instead deviation from (z,,yp, 2p, wp),
where (z,,Yp, 2p,wp) is the “projection” of the helicopter’s actual position onto the path
of the idealized, desired trajectory. (In our example of flying in a straight line, for a
helicopter at (z,y, z,w), we easily see (zp,yp, 2p,wp) = (2,0,0,0).) Thus, we imagine an
“external observer” that looks at the actual helicopter state and estimates which part of the
idealized trajectory the helicopter is trying to fly through (taking care not to be confused
if a trajectory loops back on itself, such as in maneuver II1.2), and the learning algorithm
pays a penalty that is quadratic between the actual position and the “tracked” position on
the idealized trajectory.

We also needed to make sure the helicopter is rewarded for actually making
progress along the trajectory (as opposed to, say, staying at its initial position and not
moving anywhere). To accomplish this, we used the shaping rewards of Chapter 3. Specifi-
cally, since we were already tracking where along the desired trajectory the helicopter was,
we could then easily choose a potential function ® that increases gradually along the de-
sired trajectory. Thus, whenever the helicopter’s “tracked” position (z,,yp, 2y, w,) makes
forward progress along this trajectory, it would be climbing up the potential function, and
hence receive positive ®(s') — ®(s) reward (ignoring 7 in this discussion).

Finally, our modifications have decoupled our definition of the reward function

from (z*,y*, z*,w*) and the evolution of (z*,y*, z*,w*) in time. So, we are now also free

135

to consider allowing (z*,y*, z*,w*) to evolve in a way that is different from the path of
the desired trajectory, but nonetheless in way that hopefully allows the helicopter to follow
the actual, desired trajectory more accurately. (In control theory, there is also a related
practice of using the inverse dynamics to obtain better tracking behavior.) We considered a
few alternatives, such as allowing (z*, y*, z*, w*) to follow a larger or smaller circle than the
desired one in maneuver II1.2, but the main one that we used ended up being a modification
to how we fly trajectories that have both a vertical and a horizontal component (such as
along the two upper edges of the triangle in III.1). Specifically, it turns out that the z
(vertical)-response of the helicopter is very fast: For example, to climb, we need only increase
the cyclic pitch control, which almost immediately affects thrust, so that the helicopter starts
accelerating upwards very quickly. In contrast, the z and y responses seem much slower.
Thus, if (z*,y*, 2", w") moves at 45° upwards (say) as in maneuver III.1, the helicopter will
tend to track the z-component of the trajectory much more quickly, so that, rather than
flying in a straight line, it will tend to initially accelerate into a climb steeper than 45°,
resulting in a “bowed-out” trajectory. Similarly concerns also apply for an angled descent,
resulting in a “bowed-in” trajectory. To correct for this, we therefore artificially slowed
down the z-response. In particular, when (z*,y*, z*,w*) is moving into an angled climb
or descent, the (z*,y*,w*) portion will evolve normally with time, but the changes to z*
will be delayed by ¢ seconds, where ¢ here is another parameter in our policy class, to be
automatically learned by our algorithm.

Using this setup and retraining our policy class’ parameters for accurate trajectory

following, we were able to learn a policy that flies all three of the competition maneuvers

136

Figure 5.10: Plots of example helicopter trajectories (as recorded by the onboard telemetry)
flying the three competition maneuvers.

137

fairly accurately. Figure 5.10 shows actual trajectories taken by the helicopter while flying

these maneuvers.

138

Chapter 6

Conclusions

Recent years have seen numerous successes of reinforcement learning approaches
to control and decision making under uncertainty. [99, 85, 64, 20, 26, 47] Yet, many issues
pertaining to the practical application of reinforcement learning algorithms remain. In this
dissertation, we presented some methods for reinforcement learning that sought to address
some of these issues.

One of these issues was that of specifying the task description, or reward func-
tion. Specifically, shaping rewards are often used to provide necessary hints to a learning
algorithm to enable it to learn in a reasonable amount of time. But, poorly chosen shaping
rewards can result in poor policies being learned, in which case some amount of human
trial and error is typically needed to design better shaping rewards. In Chapter 3, we char-
acterized necessary and sufficient conditions under which shaping rewards may be proved
to guarantee optimal policies being learned. Our analysis also gave guidelines for choosing

shaping rewards. We then showed that shaping can permit learning algorithms using a

139

reduced horizon-time to learn well, and thus in some sense formally reduces the “difficulty”
of a reinforcement learning problem for these (myopic) algorithms. The form of the shaping
rewards proposed were also demonstrated to work well on some problems.

In Chapter 4, we considered the policy search problem, and saw that a key issue
in policy search was obtaining uniformly good estimates of policies’ utilities. We saw that
simple Monte Carlo methods cannot accomplish this, and also discussed the trajectory
tree method, which obtains uniformly good estimates but at a prohibitively (exponentially)
large computational cost. We then showed that all reinforcement learning problems can be
reduced to ones in which all the state transitions are deterministic. This was used to derive
the PEGASUS algorithm, which guaranteed uniformly good estimates of policies’ utilities,
and had at most a polynomial sample complexity. In presenting these results, we also used a
generalization of the familiar ideas of VC dimension and sample complexity from the setting
of supervised learning to that of reinforcement learning, thus putting the two problems on
a more equal footing.

In Chapter 5, these ideas were combined to design a controller for an autonomous
helicopter. Autonomous control of helicopters is widely considered a challenging problem,
but using these algorithms, we were able to automatically design a very stable hovering
controller, as well as fly a number of maneuvers taken from an RC helicopter competition.

This dissertation also provides the ground work, and suggests some directions, for
future work in reinforcement learning and adaptive control. Many pressing problems still

remain; some of them are:

e Specification of reward function. While we have given a method for specifying

140

shaping rewards, we view the problem of specifying rewards in general as still a very
difficult one. Specifically, consider the task of learning to drive on a highway. Here,
we might want to trade off many factors such as maintaining a safe following distance,
keeping a safe distance from the curb, maintaining a reasonable speed, avoiding pedes-
trians, avoiding jerky starts and stops, preferring driving in the middle lane, and so
on. However, it is very difficult to sit down and write out a reward function captur-
ing exactly how much weight to give to each of these things and exactly how these
things should be traded off against each other. Is there a better way to specify reward
functions? We think inverse reinforcement learning algorithms [78] might provide one

alternative if a teacher is available to demonstrate driving, but are the other ways?

Safety and robustness. While our results guarantee that we can trust the estimated
utilities of policies to be close to the true utilities, traditional control theory also
defines notions such as the stability and robustness of a policy. For instance, if our
model for the MDP were slightly incorrect, can we still guarantee good performance?
In safety-critical applications including helicopter flight, it would be also desirable
to give guarantees in terms of the traditional notions of stability and robustness.
Some of the ideas in this dissertation can be applied to these problems, and we think
safety guarantees is an important issue for broad acceptance of reinforcement learning
in safety-critical applications. More broadly, fairly different problems and problem
formulations have traditionally been considered in the reinforcement learning and in
the classical control literatures, and we believe it will be a fruitful endeavor to explore

connections that may bring the two fields closer together.

141

e Multi-agent systems. Throughout this dissertation, we have discussed reinforce-
ment learning for a single agent. But a number of applications require multiple,
perhaps distributed, agents, where sometimes the agents have limited communication
bandwidth. One example is that of distributed nodes controlling a power-grid [92].
Another example is multiple economic agents acting in a market [36]. If the agents
do not have necessarily identical goals, then the characterization of the agents’ be-
haviors fall into the purview of game theory [80, 35]. How can reinforcement learning

algorithms be adapted to these settings?

e Unsupervised learning. In Chapter 1, we gave a comparison between supervised
learning and reinforcement learning, in which we said that some properties of the
latter that distinguish it from supervised learning and that make it difficult are the
sequential nature of the decision making problem, and the issue of delayed rewards
and consequences. In this dissertation, we applied some ideas familiar from supervised
learning, such as VC dimension and sample complexity, to the reinforcement learning
setting. In Artificial Intelligence, there is also the unsupervised learning problem,
in which our algorithms are given data and asked to find interesting “structure”
in the data, rather asked to learn to perform a specific (supervised) classification
or regression task. By analogy, we believe it would also be interesting to explored
“unsupervised” sequential decision making problems, in which rather than learning
to maximize a particular reward function, our algorithms are asked only to discover

interesting structure in a problem.

This dissertation has presented methods and theory for reinforcement learning

142

that we believe will be useful for many problems. And, despite the many successes that
reinforcement learning has seen, many interesting and important problems in learning and
adaptive control remain. We believe that further efforts to study these problems will pay

off richly.

143

Bibliography

[1]

B. D. O. Anderson and J. B. Moore. Optimal Control: Linear Quadratic Methods.

Prentice-Hall, 1989.

John D. Anderson. Fundamentals of Aerodynamics, 3rd ed. McGraw-Hill, 2001.

John D. Anderson. Introduction to Flight, 4th ed. McGraw-Hill, 2001.

David Andre and Stuart Russell. Programmable reinforcement learning agents. In
Proceedings of the 13th Conference on Neural Information Processing Systems, pages

1019-1025, 2001.

M. Anthony and P. Bartlett. Neural Network Learning: Theoretical Foundations.

Cambridge University Press, 1999.

C. Atkeson, S. Schaal, and A. Moore. Locally weighted learning. AI Review, 11, 1997.

J. Bagnell, 2001. Pers. Comm.

J. Bagnell and J. Schneider. Autonomous helicopter control using reinforcement learn-
ing policy search methods. In Proceedings of the International Conference on Robotics

and Automation. IEEE, 2001.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

144

L. Baird and A.W. Moore. Gradient descent for general Reinforcement Learning. In

NIPS 11, 1999.

Leemon C. Baird. Reinforcement Learning in continuous time: Advantage updating.

In Proceedings of the International Conference on Neural Networks, 1994.

G. Balas, J. Doyle, K. Glover, A. Packard, and R. Smith. p-analysis and synthesis

toolbox user’s guide, 1995.

J. Baxter and P. Bartlett. Infinite-horizon policy-gradient estimation. Journal of

Artificial Intelligence Research, 15:319-350, 2001.

R. Bellman. Adaptive Control Processes: A Guided Tour. Princeton University Press,

1961.

Richard E. Bellman. Dynamic Programming. Princeton University Press, Princeton,

NJ, 1957.

Dimitri P. Bertsekas. Dynamic Programming and Optimal Control, Volume I. Athena

Scientific, 1995.

Dimitri P. Bertsekas. Dynamic Programming and Optimal Control, Volume II. Athena

Scientific, 1995.

Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-dynamic Programming. Athena

Scientific, 1996.

John R. Birge and Francois Louveaux. Introduction to Stochastic Programming.

Springer, 1997.

[19]

[20]

21]

[22]

23]

[24]

[25]

[26]

[27]

145

D. Blackwell. Discrete dynamic programming. Annals of Mathematical Statistics,

33:719-726, 1962.

Justin A. Boyan and Michael L. Littman. Packet routing in dynamically changing
networks: A reinforcement learning approach. In Advances in Neural Information

Processing Systems 6, pages 671-678, 1993.

X. Boyen and D. Koller. Tractable inference for complex stochastic processes. In

Proc. UAI pages 33-42, 1998.

A. Cassandra. FEzact and approzimate algorithms for partially observable Markov

decision processes. PhD thesis, Brown University, 1998.

A. Cassandra, L. Kaelbling, and M. Littman. Efficient dynamic-programming updates
in partially observable Markov decision processes. Technical Report CS-95-19, Brown

University, 1995.

Anthony R. Cassandra, Leslie Pack Kaelbling, and Michael L. Littman. Acting op-
timally in partially observable stochastic domains. In Proceedings of the Twelfth

National Conference on Artificial Intelligence, 1994.

W. Cleveland. Robust locally weighted regression and smoothing scatterplots. .J.

Amer. Stat. Assoc, 74, 1979.

R. Crites and A. Barto. Improving elevator performance using reinforcement learning.

In Advances in Neural Information Processing Systems 8, pages 1017-1023, 1996.

Daniela Pucci de Farias. The linear programming approach to approximate dynamic

[28]

[29]

[30]

31]

[32]

[33]

[34]

[35]

[36]

[37]

146

programming: Theory and application. PhD thesis, Department of Management Sci-

ence and Engineering, Stanford University, 2002.

T. G. Dietterich and X. Wang. Batch value function approximation via support

vectors. In Advances in Neural Information Processing Systems 1/, 2002.

M. Dorigo and M. Colombetti. Robot shaping: Developing autonomous agents

through learning. Artificial Intelligence, 71(2):321-370, 1994.

R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. Wiley and

Sons, 1973.

Richard Durrett. Probability : Theory and Ezamples, 2nd edition. Duxbury, 1996.

Michael Evans and Tim Swartz. Approzimating integrals via Monte Carlo and deter-
ministic methods. Number 20 in Oxford Statistical Science Series. Oxford University

Press, 2000.

Gene F. Franklin, J. David Powell, and Abbas Emani-Naeini. Feedback Control of

Dynamic Systems. Addison-Wesley, 1995.

M. Fu and J. Hu. Conditional Monte Carlo. Kluwer Academic Publishers, 1997.

D. Fudenberg and J. Tirole. Game Theory. MIT Press, 1991.

Drew Fudenberg and David K. Levine. The Theory of Learning in Games. MIT Press,

1998.

A. Gelman, J. Carlin, H. Stern, and D. Rubin. Bayesian Data Analysis. Chapman &

Hall/CRC, 2000. Chapter 8.

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

147

Curtis F. Geralk and Patrick O. Wheatley. Applied Numerical Analysis (4th Ed.).

Addison-Wesley, 1989.

P. Glasserman. Gradient estimation via pertubation analysis. Kluwer Academic Pub-

lishers, 1991.

P. W. Goldberg and M. R. Jerrum. Bounding the Vapnik-Chervonenkis dimension of

concept classes parameterized by real numbers. Machine Learning, 18:131-148, 1995.

Geoffrey Gordon. Approximate Solutions to Markov Decision Processes. PhD thesis,

School of Computer Science, Carnegie Mellon University, 1999.

Carlos Guestrin, Daphne Koller, and Ronald Parr. Max-norm projections for factored
mdps. In Proceedings of the Seventeenth International Joint Conference on Artificial

Intelligence, 2001.

M. E. Harmon and L. C. Baird. Spurious solutions to the bellman equation. Technical
Report WL-TR-96-"To Be Assigned’, Wright-Patterson Air Force Base Ohio: Wright

Laboratory, 1996.

D. Haussler. Decision-theoretic generalizations of the PAC model for neural networks

and other applications. Information and Computation, 100:78-150, 1992.

O. Herndndez-Lerma. Adaptive Markov Control Processes. Number 79 in Applied

Mathematical Sciences. Springer-Verlag, 1989.

Y. Ho and X. Cao. Pertubation analysis of discrete event dynamic systems. Kluwer

Academic Publishers, 1991.

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

148

T. Joachims, D. Freitag, and T. Mitchell. Webwatcher: A tour guide for the world
wide web. In Proceedings of the Fifteenth International Joint Conference on Artificial

Intelligence, 1997.

L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey.

Journal of Artificial Intelligence Research, 4:237-285, 1996.

Sham Kakade and John Langford. Approximately optimal approximate reinforce-
ment learning. In Proceedings of the Nineteenth International Conference on Machine

Learning, 2002.

Michael Kearns, Yishay Mansour, and Andrew Y. Ng. Approximate planning in large

POMDPs via reusable trajectories. (extended version of paper in NIPS 12), 1999.

Michael Kearns, Yishay Mansour, and Andrew Y. Ng. A sparse sampling algorithm
for near-optimal planning in large Markov decision processes. In Proceedings of the

Sizteenth International Joint Conference on Artificial Intelligence, 1999.

Michael Kearns, Robert Schapire, and Linda Sellie. Towards efficient agnostic learn-

ing. Machine Learning, 17:115-141, 1994.

Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in poly-
nomial time. In Proceedings of the Fifteenth International Conference on Machine

Learning, 1998.

Michael J. Kearns and Umesh V. Vazirani. An Introduction to Computational Learn-

ing Theory. MIT Press, Cambridge, Massachusetts, 1994.

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

149

J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of a regression

function. Annals of Mathematical Statistics, 23:462-466, 1952.

Hyounjin Kim and Andrew Y. Ng. Policy search, robust control, and linear quadratic

regulators. (In preparation), 2002.

H. Kimura, M. Yamamura, and S. Kobayashi. Reinforcement learning by stochas-
tic hill climbing on discounted reward. In Proceedings of the Twelfth International

Conference on Machine Learning, 1995.

Daphne Koller and Ronald Parr. Policy iteration for factored mdps. In Uncertainty

in Artificial Intelligence, Proceedings of the Sizteenth Conference, 2000.

J. Gordan Leishman. Principles of Helicopter Aerodynamics. Cambridge Aerospace

Series. Cambridge University Press, 2000.

M. Littman, T. Dean, and L. Kaelbling. On the complexity of solving Markov decision
problems. In Proceedings of the 11th Annual Conference on Uncertainty in Artificial

Intelligence, pages 394-402, 1995.

W. Lovejob. A survey of algorithmic methods for partially observed Markov decision

processes. Annals of Operations Research, 28:47-65, 1991.

W. Lovejoy. Computationally feasible bounds for partially observed Markov decision

process. Operations Research, 39, 1991.

Christopher Lusena, Martin Mundhenk, and Judy Goldsmith. Nonapproximability

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

150

results for partially observable markov decision processes. Journal of AI Research,

14:83-103, 2001.

S. Mahadevan, N. Marchalleck, T. Das, and G. Abhihit. Self improving factory sim-
ulation using continuous-time reinforcement learning. In Proceedings of the 14th In-

ternational Conference on Machine Learning, pages 202-210, 1997.

A. Manne. Linear programming and sequential decisions. Management Science, 6:259—

267, 1960.

Maja J Mataric. Reward functions for accelerated learning. In Proceedings of the

Eleventh International Conference on Machine Learning. Morgan Kaufmann, 1994.

P. S. Maybeck. Stochastic models, estimation and control. Academic Press, 1982.

D. McAllester and S. Singh. Approximate planning for factored POMDPs using
simplified belief states. In Proceedings of the 15th Conference on Uncertainty in

Artificial Intelligence, 1999.

J. L. McClelland and D. E. Rumelhart. Parallel Distributed Processing. MIT Press,

1986.

B. Mettler, M. Tischler, and T. Kanade. System identification of small-size unmanned

helicopter dynamics. In American Helicopter Society, 55th Forum, 1999.

Bernard Mettler, Mark Tischler, and Takeo Kanade. System identification of a model-
scale helicopter. Technical Report CMU-RI-TR-00-03, Robotics Institute, Carnegie

Mellon University, Pittsburgh, PA, 2000.

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

151

N. Meuleau, L. Peshkin, K-E. Kim, and L.P. Kaelbling. Learning finite-state con-
trollers for partially observable environments. In Uncertainty in Artificial Intelligence,

Proceedings of the Fifteenth conference, 1999.

A. W. Moore, J. Schneider, and K. Deng. Efficient locally weighted polynomial re-
gression predictions. In Proceedings of the 1997 International Machine Learning Con-

ference. Morgan Kaufmann Publishers, 1997.

Richard M. Murray, Zexiang Li, and S. Shankar Sastry. A Mathematical Introduction

to Robotic Manipulation. CRC Press, 1994.

Andrew Y. Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward
transformations: Theory and application to reward shaping. In Proceedings of the Siz-
teenth International Conference on Machine Learning, pages 278-287, Bled, Slovenia,

July 1999. Morgan Kaufmann.

Andrew Y. Ng and Michael I. Jordan. PEGASUS: A policy search method for large
MDPs and POMDPs. In Uncertainty in Artificial Intelligence, Proceedings of the

Sixzteenth Conference, pages 406-415, 2000.

Andrew Y. Ng, Ronald Parr, and Daphne Koller. Policy search via density estimation.

Advances in Neural Information Processing Systems 12, 1999.

Andrew Y. Ng and Stuart Russell. Algorithms for inverse reinforcement learning. In

Proceedings of the Seventeenth International Conference on Machine Learning, 2000.

Academy of Model Aeronautics. http://www.modelaircraft.org.

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[83]

[89]

152

G. Owen. Game Theory. Academic Press, 1995.

Ronald Parr. Hierarchical Control and Learning in Markov Decision Processes. PhD

thesis, Computer Science Division, University of California, Berkeley, 1998.

D. Pollard. Empirical Processes: Theory and Applications. NSF-CBMS Regional
Conference Series in Probability and Statistics, Vol. 2. Inst. of Mathematical Statistics

and American Statistical Assoc., 1990.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian Flannery.

Numerical Recipes in C. Cambridge University Press, 1992.

UC Berkeley Millennium Project. http://www.millennium.berkeley.edu.

M. Puterman. Markov Decision Processes. Wiley, 1994.

J. Randlgv and P. Alstrgm. Learning to drive a bicycle using reinforcement learning
and shaping. In Proceedings of the Fifteenth International Conference on Machine

Learning, 1998.

Herbert Robbins and Sutton Monro. A stochastic approximation method. Annals of

Mathematical Statistics, 22:40-407, 1951.

Benjamin Van Roy. Learning and Value Function Approzimation in Complex Decision

Processes. PhD thesis, Massachusetts Institute of Technology, 1998.

Stuart Russell and Eric Wefald. Do the right thing : studies in limited rationality.

Artificial intelligence. MIT Press, Cambridge, Mass, 1991.

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

153

John Rust. Do people behave according to Bellman’s principal of optimality? Sub-

mitted to Journal of Economic Perspectives, 1994.

L.M. Saksida, S.M. Raymond, and D.S. Touretzky. Shaping robot behavior using
principles from instrumental conditioning. Robotics and Autonomous Systems, 22(3—

4):231-249, 1997.

Jeff Schneider, Weng-Keen Wong, Andrew Moore, and Martin Riedmiller. Distributed
value functions. In Proceedings of the Sizteenth International Conference on Machine

Learning, 1999.

J. Seddon. Basic Helicopter Aerodynamics. AIAA Education Series. America Institute

of Aeronautics and Astronautics, 1990.

Christian R. Shelton. Policy improvement for pomdps using normalized importance
sampling. In Proceedings of the Seventeenth International Conference on Uncertainty

in Artificial Intelligence, pages 496-503, 2001.

D. Shim, 2001. Pers. Comm.

Hyunchul Shim. Hierarchical Flight Contorl System Synthesis for Rotorcraft-based
Unmanned Aerial Vehicles. PhD thesis, Mechanical Engineering, University of Cali-

fornia, Berkeley, 2000.

Satinder Singh and Richard Yee. An upper bound on the loss from approximate

optimal-value functions. Machine Learning, 16:227-233, 1994.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning. MIT Press, 1998.

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

107]

[108]

154

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.

MIT Press, 1998.

Sebastian Thrun. A framework for programming embedded systems: Initial design
and results. Technical Report CMU-CS-98-142, School of Computer Science, Carnegie

Mellon University, 1998.

Joseph F. Traub and Arthur G. Werschulz. Complezity and information. Lezioni

Lincee, Accademia Nazionale dei Lincei. Cambridge University Press, 1999.

V. N. Vapnik. Statistical Learning Theory. John Wiley & Sons, 1998.

V.N. Vapnik. FEstimation of Dependences Based on Empirical Data. Springer-Verlag,

1982.

John von Neumann and Oskar Morgenstern. Theory of Games and Economic Behav-

tor. Princeton University Press, Princeton, New Jersey, first edition, 1944.

W. J. Wagtendonk. Principles of Helicopter Flight. Aviation Supplies and Academics,

1996.

C. J. C. H. Watkins. Learning from delayed rewards. PhD thesis, Cambridge Univer-

sity, 1989.

C. White. Partially observed Markov decision processes: A survey. Annals of Opera-

tions Research, 32, 1991.

J.K. Williams and S. Singh. Experiments with an algorithm which learns stochastic

memoryless policies for POMDPs. In NIPS 11, 1999.

155

[109] Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist

reinforcement learning. Machine Learning, 8:229-256, 1992.

[110] Ronald J. Williams and Leemon C. Baird. Tight performance bounds on greedy
policies based on imperfect value functions. In Proceedings of the Tenth Yale Workshop

on Adaptive and Learning Systems, 1994.

[111] N. Zhang, S. Lee, and W. Zhang. A method for speeding up value iteration in par-
tially observable Markov decision processes. In Proceedings of the 15th Conference on

Uncertainty in Artificial Intelligence, 1999.

