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Abstract

This paper presents an automatic pathology (AutoPath) approach to prostate can-
cer detection based on the morphological features of the whole mount histopathol-
ogy images of the prostate. To extract the features, the gland and nuclei regions
of the images have been automatically segmented exploiting the color informa-
tion and linear discriminant classifier. The extracted features include the size of
the glands, epithelial layer density and nuclei density. We have proposed ran-
dom forest classifier for the classification of malignant and benign regions in
the histopathology images. Our algorithm has been tested on eight images and
achieved average accuracy, specificity and sensitivity of 0.95± 0.03, 0.97± 0.02,
and 0.65± 0.2, respectively with a leave-one-out cross validation. A comparative
performance evaluation of the proposed technique with other benchmark classi-
fiers such as Support Vector Machine and Linear Discriminant Analysis has also
been presented in this paper. The experimental result corroborates that the Ran-
dom Forest classifier is the most effective technique in classifying benign and ma-
lignant glands. The effectiveness of the proposed algorithm has also been demon-
strated qualitatively in this paper.

1 Introduction

Prostate cancer is one of the most frequently diagnosed cancer and ranks second among the cancer
related deaths of men worldwide [1]. Analysis of the histopathology specimens of prostate is an
important step for prostate cancer diagnosis and treatment planning.

The tissue features of these histopathology images are the key indicators of prostate cancer. Among
the different types of prostate cancer, the most common one is the prostatic adenocarcinoma, cancer
pertaining to the gland units of the prostate. Pathologists determine the extent of this cancer by
carefully evaluating the changes in the gland morphology. The gland is the main histopathological
structural unit in prostate. Fig. 1 shows the structure of a normal gland unit. It mainly comprises a
lumina of irregular shape, a layer of epithelial cells, and nuclei surrounding the lumina. The unit is
supported by a surrounding fibro-muscular stroma. When the slides are stained using a Hematoxylin
and Eosin (H&E) solution, the nuclei turn dark blue and the epithelial layer and stroma turn into
different shades of purple to pink.

In the last few years there have been quite a number of AutoPath reports, that focus on the works are
to computationally analyzing the pathology features and predicting the diagnostic decision based
on these features. A method to distinguish the intermediate and high grade cancerous lesions of
prostate tissues was presented in [2]. The decision was based on a number of features obtained
from the shape and texture of the glands. The nuclear roundness factor analysis (NRF) was pro-
posed in [3] to predict the behavior of low grade samples. Since this technique requires manual
nuclear tracing, it is time consuming and tedious. Jafari-Khoujani et. al. [4] proposed a method for
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Figure 1: Graphical description of all the histopathology components associated with a complete
gland unit: 1. Lumen, 2. Epithelial layer, 3. Nuclei, and 4. Stroma.

Table 1: Literature review

Authors Dataset size Classes Accuracy
Doyle et.al. 2006 [4] 22 (40x) cancer/non-cancer 88%
Tabesh et.al. 2007 [6] 268 (20x) Low/High grade 81%
Naik et.al. 2008 [7] 44 (40x) Benign, Grade-3, Grade-4, Grade-5 90%
Tai et.al. [5]2010 1000 (40x) Benign, Grade-3, Grade-4, Grade-5 86%

Nguyen et.al.[8] 2011 82 ROI (10x) Benign, Grade-3, Grade-4 85%

grading the pathological images of prostate biopsy samples by using energy and entropy features
calculated from multiwavelet coefficients of an image. These multiwavelet features were used by
k-nearest neighborhood classifier for classification and a leave-one-out procedure was applied to
estimate the error rate. Again, there have been some works on prostate cancer grading using fractal
dimension analysis [5]. In [5], the authors proposed fractal dimension (FD)-based texture features.
These features were extracted by using a differential box counting method and an entropy-based
fractal dimension estimation method. The feature were then combined them together as a FD-based
feature set to analyze pathological images of prostate carcinoma. However this work focuses only
on the separation of the different grades on manually detected cancerous regions. Tabesh et. al. [6]
proposed an automatic two stage system for prostate cancer diagnosis and Gleason grading. The
color, morphometric and texture features were extracted from the tissue images. Then, linear and
quadratic Gaussian classifiers were used to classify images into cancer/noncancer classes and then
further into low and high grade classes. Naik et. al. recently proposed an automatic gland seg-
mentation algorithm recently [7]. A Bayesian classifier is used to detect candidate gland regions by
utilizing low-level image features to find the lumen, epithelial cell cytoplasm, and epithelial nuclei
of the tissue. Then, the features calculated from the boundaries of the gland that characterize the
morphology of the lumen and gland region have been used to grade the cancer tissue. Another work
based on gland segmentation has been proposed by Nguyen et. al. [8], which provides a competitive
performance indices compared to other contemporary algorithms on the same topic but at a much
lower magnification. These recent articles on biopsy specimen have been summarized in Table I. As
can be observed from the table, among the recently published results Naik et.al.[7] gives the best
accuracy.

By contrast, there have been much fewer reports of analysis of whole mount (WM) pathology im-
ages. Monaco et.al. [9] proposed an algorithm for detecting cancerous regions from whole mount
slides using gland features. The information on gland proximity is modeled using a Markov Ran-
dom field. The reported algorithm was applied to 40 images, among which 13 were from the same
dataset that we analyze and report here. The authors report a sensitivity of 0.87 and a specificity
of 0.90. Compared to these reported techniques, our proposed algorithm has been able to achieve a
much higher accuracy of 0.95± 0.03.
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The proposed algorithm performs automatic cancer classification on WM prostate slides based on
gland features. The technique works in three steps: I) automatic segmentation of gland units, II)
extraction of gland features, and III) detection of cancerous regions based on the features. The
segmentation of gland units involve labeling of pixels in different histological objects using linear
discriminant analysis. It will be discussed in detail in section II. In order to differentiate between
cancerous and non-cancerous tissue the algorithm uses Random Foret classifier technique. This
paper is organized as follows. Materials and methods of the complete cancer detection and grading
algorithm are presented in Section II under three subsections: segmentation of gland units, feature
extraction, and detection of cancerous region. In Section III, the AutoPath algorithm performance is
evaluated on eight WM images. Finally, Section IV presents concluding remarks and suggestion for
future work.

2 Materials and Methods

The whole mount histopathology sections were Hematoxylin and Eosin (H & E) stained and scanned
into the computer at high resolution with a whole slide scanner. The original images are acquired
at 20x magnification. In the proposed algorithm only the 5x magnification level has been used.
Since the features distinguishing cancerous regions are quite clear at this lower resolution level, the
analysis at the highest magnification is redundant here. For higher level analysis such as grading or
staging, the highest magnification might be necessary. The lower resolution makes the image size
much smaller and helps in achieving a faster implementation of the algorithm. At this resolution,
the actual image scale is 8µm per pixel.

To extract the image features, the entire image is first divided into smaller subregions. A sample
subregion is shown in Fig.2(a) The size of each sub-region is chosen to be 4mm × 4mm. In
each sub-region, the gland units have been segmented and corresponding gland features has been
extracted. Then based on the features, these sub-regions have been labeled as either cancerous or
non-cancerous.

2.1 Segmentation of gland unit

The segmentation algorithm has been partially adopted from the work of Nguyen et.al. [8]. In the
first step, labeling of pixels in each subregion has been performed. Each pixel has been labeled into
one of these 5 categories, i.e., i) Gland lumen/lumina, ii) Epithelial layer, iii) Nuclei, iv) Stroma,
and v) Annotation mark. We denote the class index by k where, k ∈ {1, 2, 3, 4, 5} representing the
5 classes respectively. The first four classes are the histological objects that comprise a WM image.
The fifth class is the cancer annotation that was performed on the WM slides before digitization.
Some training patches of each class have been selected to train the classifier for pixel labeling The
classification is based on the color information of these histological objects in Lab color space. In
the RGB color space the lighting information and the color information is blended together. By
converting to Lab color space the lighting information is confined into only one channel, ‘L’. The
Lab space consists of a luminosity layer ‘L’, chromaticity-layer ‘a’ indicating where color falls along
the red-green axis, and chromaticity-layer ‘b’ indicating where the color falls along the blue-yellow
axis. Hence, each pixel to be labeled in the sub-region is now represented by three coordinates in
Lab color space. Training pixels have also been converted to the Lab color space in similar way. The
nth pixel in either the test data or the training data, is represented as Dn,j where n ∈ {1, 2, ..., N}.
N is the number of data points and j = {1, 2, 3}, for the three channel variables in the Lab color
space.

The classification algorithm uses a linear discriminant analysis to label the testing pixels [10]. In the
first step, for each class k the mean D̄k,j is computed as,

D̄k,j =
1

Nk

∑
n∈Nk

Dn,j ; (1)

where, n ∈ Nk, Nk is the number of elements in the group k, and Nk denotes {1, 2, ..., Nk}.
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Figure 2: Gland segmentation. a) A sample subregion of WM slide, b) Labeled image of the subre-
gion, c) Lumen objects, d) Epithelial layer-nuclei object, and e) segmented gland unit after consoli-
dating surrounding epithelial layer-nuclei object with gland lumen.

Then the covariance matrix S for each class has been calculated. Here, S is considered to be equal
for each class and estimated as single pooled estimate with entries

Si,j =
1

N −K

N∑
n=1

(
xn;i − x̄kn;i

)(
xn;j − x̄kn;j

)
, (2)

where x̄kn;i means the ith component of the mean vector for whichever class the data point n belongs
to, kn. N is the total number of data points and K is the total number of classes.

Then the squared Mahalanobis distance from a test data vector x to the mean of group of k is given
by

z2k = (x− x̄k)
′
S−1(x− x̄k). (3)

Now the Bayes’ formula for estimating posterior probability of data vector x to class k is,

Pk(x) =
qk|Sk|−0.5exp[−0.5z2k]∑K
l=1 ql|Sl|−.5exp[−0.5z2l ]

. (4)

As a result of single pooled estimate of covariance matrix, all the determinants of covariance estimate
are equal, i.e., |Sk| for all class {k|k ∈ 1, 2, ...,K} is equal and hence the Bayes’ formula reduces
to a much simpler form,

Pk(x) =
qkexp[−0.5z2k]∑K
l=1 qlexp[−0.5z2l ]

. (5)

Then the data vector x is assigned to the class with which it has maximum posterior probability.
Lets assume the data vector x corresponds to the nth point in the subregion of interest, then the
corresponding pixel label, kn will be the kn = arg maxk(Pk(x)).

Fig. 2(b) shows the labeled image generated after applying the pixel classification algorithm.

2.1.1 Consolidation of labeled pixels into gland unit

After having the labeled image, first we group together the lumen pixels using a connected-
components algorithm which uses the eight-connectivity property. Around each lumen object, a
lumen boundary is extracted. This is considered as the primary gland boundary (see Fig. 2(c)).
As stated earlier in the introduction section, a complete gland unit consists of the lumina and its
surrounding layer of epithelial cells and nuclei. Therefore, to segment out a complete gland unit
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we consolidate the surrounding epithelial layer and nuclei with the lumina. Fig. 2(e) illustrates the
resultant segmented gland units.

Several modifications to adopting the approach of Ngyuen et. al. [8] is necessitated because of the
different nature of the data sets. The classification approach employed here is completely different
from the reported algorithm [8]. The reported work used Voronoi tessellation based nearest neigh-
borhood approach to classify each pixel. The main drawback of this approach is, when the number
of training samples is large, the classification time for each testing data point is very high compared
to linear discriminant analysis [10]. Therefore, when the number of testing samples are very large
the reported nearest neighborhood approach will be very expensive in terms of computational time.
In the work of Nyguen et.al. [8], they used their approach on biopsy specimens which are much
smaller in size than the whole mount slides used in this project. Therefore, taking consideration of
the huge size of images in this case, linear discriminant analysis has been adopted as classification
approach instead of the nearest neighborhood approach.

2.2 Feature extraction

The main characteristic features of cancerous regions in the WM slides of prostate include high
nuclear density, thick epithelial layers surrounding glands and smaller gland lumina. The proposed
algorithm extracts these three features for each of the subregions and then classifies the subregions
as either cancerous or noncancerous. The first feature is the nuclear density,ND, which is evaluated
as ratio of the area of nuclei in the sub-region to the total area of sub-region. In the same way, the
second feature the epithelial layer density, ED is evaluated. The third feature is the area of gland
lumen, LA. It is computed as the average area of all the lumens in the sub-region.

2.3 Detection of cancerous region

Here we have employed random forest classifier for labeling each subregion as cancerous or non-
cancerous . Each tree of random forest ensemble has been trained by bootstrapping two thirds of
the features each time with replacement. In this experiment we have 100 trees in the ensemble. The
factors affecting the parameter number of trees is the computational complexity and out-of-the-bag
error. We plotted the out-of-the-bag error against total number of trees and observed that the error
gets minimized as the number of grown trees get larger (Fig. 4). As can be observed from the
figure, with the 100 trees we get as low as 0.05 out-of-the-bag error.

After the classification, the sub-regions that are labeled as cancerous are grouped together to form a
continuous area. Any isolated detected subregion that are not in proximity of group of subregions
have been discarded as false positives. The gland boundaries in the peripheral sub-regions of have
been connected together to form the boundary around the group of subregions. The detected cancer-
ous regions are then compared by overlaying the finer annotation by a second pathologist. Fig. 4(b)
demonstrates strong agreement between the pathologist’s annotation and experimental result.

3 Experimental result

The proposed algorithm has been evaluated on eight whole mount images. These whole mount
histopathology images are digitized at 20× magnification (0.5 µm per pixel) with an Aperio scan-
ner. Fig 5 shows 4 example cases for qualitative evaluation. The black annotation mark has been
done by the pathologist on the glass slide before digitization and does not provide a very good
ground truth for performance evaluation of the proposed work. Therefore, a much finer annotation
by a second pathologist on the digitized images has been obtained to provide a better ground truth.
This is marked in blue. The green mark represents the detected cancerous region from the pro-
posed algorithm. In all of the cases, both the detected region and the finer annotation shows strong
agreement.

We quantitatively evaluate the performance of the proposed technique by doing leave-one-out cross
validation among the eight images. Fig. 6 illustrates the graphical representation of the performance
indices, sensitivity, specificity, and accuracy obtained by the proposed algorithm. We obtained aver-
age accuracy, specificity and sensitivity are 0.95 ± 0.03, 0.97 ± 0.02, and 0.65 ± 0.2, respectively.
We have also tested the performance of the proposed technique with other benchmark classification
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Figure 3: Out-of-bag error plot against nomber of grown trees, demonstrating that with an increase
of number of trees the error gets minimized.

b)a)

Figure 4: a) The green squares indicate the detected malignant sub-regions and b) consolidation
of the subregions into a continuous region. he green annotation mark is the output of the proposed
cancer detection algorithm. The blue mark is the finer annotation performed by a second pathologist.
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Figure 5: Performance of the proposed algorithm on 4 sample images. The green annotation mark
is the output of the proposed cancer detection algorithm. The blue mark is the finer annotation
performed by a second pathologist.
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Figure 6: Comparison of accuracies of the proposed algorithm using Random Forest classifier with
that of using other benchmark techniques such as Support Vector Machine and Linear Discriminant
Analysis
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techniques, i.e.., Support Vector Machine (SVM) and Linear Discriminant Analysis (LDA). For both
the cases the achieved accuracy is lower than the random forest classifier. Fig. 6 shows a comparative
bar chart of the three classification technique.

Among the few works on cancer detection from whole mount histology of cancer, one of the most
recent ones is by Monaco et.al. [9]. They perform the classification of benign and malignant regions
based on the probabilistic pairwise markov model. They reported a sensitivity and specificity of
0.87 and 0.90, respectively on a dataset of 40 images among which 13 were of the same dataset used
here. Compared to that work, our proposed technique achieves much higher sensitivity with cost of
reduced specificity.

4 Conclusion

In this project, we have proposed a pathological diagnostic system AutoPath for automatic detection
of cancerous region exploiting the morphological and architectural tissue features. We have used
Random Forest as the automatic classifier and have shown that it performs better than the other
benchmark techniques such as SVM and LDA. As part of the system, automatic gland segmentation
have been performed. Apart from having application in cancer detection, the gland segmentation
may have application in other fields also, as for example the segmented glands might be used as a
landmark for registering between different slides of same patients. Depending on very few num-
ber of features compared to other reported techniques, the proposed system has demonstrated very
high level of specificity and sensitivity which corroborates he effectiveness and robustness of the
proposed algorithm.
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