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Abstract

Random Forests (RF) and Dropout networks are currently two of the most ef-
fective machine learning algorithms available. However, so far a study directly
comparing the accuracy of both on the same dataset has not been performed. We
hope to fill this gap by testing the classification accuracy of both of these ensem-
ble methods on a novel dataset of American Sign Language (ASL) hand signs col-
lected using the Microsoft Kinect. Results show that dropout nets achieve a higher
gesture classification accuracy, particularly as the number of classification labels
increases. Further, a neural network trained with dropout outperforms the same
net without dropout, demonstrating the effectiveness of the technique. Individual
gesture recognition accuracy as well as computation times for both algorithms will
be presented.

1 Introduction

Before last year, Random Forests (RF) may have been the most effective machine learning technique.
A wide variety of problems have benefitted from the application of RFs, including identification of
DNA-binding proteins, classification of aerial images, predicting the population distributions of bird,
mammal, and vegetation species, language modeling, diagnosis of Alzheimer’s disease, and recog-
nition of handwritten digits [1]. They have also been employed commercially with great success,
allowing the Microsoft Kinect to recognize the spatial location of joints of a human body [2]. Ran-
dom forests have been praised for their computational speed, simplicity, and their ability to handle
large datasets and large feature spaces [3]. In 2006, a large-scale study compared the performance
of several of the most popular algorithms on binary classification with a variety of datasets, using
empirically chosen optimal parameter settings [4]. The results indicated that Random Forests outper-
formed other methods across measures such as accuracy, precision, recall, squared error, and area
under the ROC curve. While Artificial Neural Networks (ANN) also obtained impressive perfor-
mance, the authour referred to the results of the study as “a clean sweep for ensembles of trees” [4].

It has been hypothesized that the strength of random forests comes from aggregating the decisions of
many classifiers [5]. Random forests use both bagging (bootstrap aggregating) and random feature
selection to create many diverse hypotheses about how to classify the training data correctly. This
ensemble of trees is able to overcome the shortcomings which plague many learning techniques. For
example, in situations where the hypothesis space is large and there is too little training data, several
hypotheses may be consistent with the set of training examples, but it is impossible to determine
which will be better at predicting future data. Allowing several classifiers to cover this set of con-
sistent hypotheses and vote on the classification of future data makes ensemble methods robust [5].
Similarly, an individual classifier which uses heuristics may end up with a poor estimation of the
true function it is attempting to learn. For example, gradient descent (a learning method used in
training neural networks) can get stuck in local minima [5]; an ensemble, however, could solve this
problem.
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Using this line of reasoning, in 2012 Geoffrey Hinton proposed a technique called dropout that
allows a feed-forward artificial neural network to behave like an ensemble of networks [6], en-
hancing the already powerful, biologically inspired, neural network methodology. Hinton’s dropout
technique is important because it can reliably improve the performance of feed-forward ANNs [7],
which have already been employed in a wide variety of applications such as bankruptcy prediction,
medical diagnosis, speech recognition, and the recognition of handwritten digits [8]. Since it has
been shown that a neural network can approximate any function [8], and many advanced applica-
tions currently make use of neural networks [9], increasing the accuracy of this method advances
the state of the art in Machine Learning.

The idea behind dropout is simple: as each training example is presented, hidden neurons in the net
randomly “drop out” (and are not trained) with probability 0.5 [6]. Rather than training a single neu-
ral net with N hidden neurons, dropout essentially trains 2N different networks, each on a subset of
the data. It is essentially an extreme form of bagging, with the additional constraint that the networks
must share the same parameters [7]. Dropout prevents the hidden neurons from learning features
that only function in the context of other working neurons, prevents overfitting, and allows the net
to model multiple different hypotheses about how to classify the data [6]. It has been described as a
“model averaging technique”, because all neurons are used during testing, and dividing the result by
two gives the exact equivalent of the geometric mean of the predictions of all 2N networks [7]. In
keeping with the methodology of ensemble techniques like random forests, dropout can be further
improved by randomly omitting 20% of the input features at each training step. Using dropout, Hin-
ton was able to achieve groundbreaking results on such popular datasets as MNIST, which contains
28x28 pixel images of handwritten digits [6]. Other researchers have since employed dropout with
deep convolution networks to set the state-of-the-art in image classification [10].

The intent of this research is to directly compare the performance of random forests against dropout
nets, on a novel dataset collected using the Microsoft Kinect. The Kinect is a peripheral component
used to obtain 3D depth data about the user. By projecting a pattern of infra-red light and using
a corresponding infra-red sensor to detect distortions in the pattern, the Kinect can estimate the
distance of nearby objects [11]. Not only does it hold the Guinness World Record for the fastest
selling consumer electronic device, but the Kinect has been used extensively in computer science
research [11]. Because it allows the user to interact with a computer without the need to hold or
carry a peripheral device, it has attracted Human Computer Interaction (HCI) researchers who hope
to create the elusive Natural User Interface (NUI) [11]. These researchers are pursuing methods of
manipulating interface objects using only motions or hand signs, which leads naturally to research
on gesture recognition with the Kinect. Computer vision research has also made use of the Kinect,
because of its ability to easily perform background subtraction, and the invariance of the collected
depth images to changes in illumination [3]. This makes it an excellent tool for performing hand ges-
ture recognition, where the difficulty of recognizing hands of varying skin tones and distinguishing
them from the background has made camera images problematic [12].

This research will address recognizing the hand signs of the American Sign Language (ASL) al-
phabet from depth images collected with the Kinect. Sign language recognition can be a difficult
problem, because there is a great deal of individual difference in hand shape, size, dexterity, and
signing style [3]. However, both neural nets and random forests have previously been applied suc-
cessfully to ASL recognition. A two layer feed-forward neural network implementation achieved
over 99% accuracy recognizing ASL from camera images, but used a significant amount of image
preprocessing, including wavelet decomposition, application of the Sobel operator, and a genetic
algorithm to select the best transformation technique from gamma correction, Laplacian enhance-
ment, and a variety of filters [13]. Therefore these results cannot be used as an indication of the
ASL recognition accuracy of neural networks alone, nor the accuracy expected with Kinect depth
images [3]. Previous research on recognizing ASL from Kinect depth images achieved an accuracy
of 69% using random forests, with a dataset of 48,000 images collected from 5 subjects [3]. Since
random forests and neural networks have been usefully applied to the problem of sign language
recognition, we felt that this problem would make an ideal testing ground to compare the accuracy
of both.
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2 Method

2.1 Data collection and Preprocessing

We collected data from a total of 17 participants (8 female) taking a graduate level course at the
University of British Columbia. Subjects were asked to sit in front of the Kinect and form each ASL
symbol with their right hand for one minute, as the Kinect captured and saved depth images of the
hand at a rate of ten frames per second. We also asked that subjects rotate and tilt their hand while
maintaining the pose, to obtain a good variety of viewing angles (similar to the methodology dis-
cussed in [3]). It should be noted that there were many partial occlusions of signs during collection,
and that the dataset should be considered noisy. Since data collection is time consuming, we limited
the study to ten ASL signs: ‘2’, ‘7’, ‘5’, ‘A’, ‘C’, ‘H’, ‘I’, ‘L’, ‘Q’, and ‘Y’ (pictured in Figure 1).
We collected a total of 6000 images of each sign, resulting in a final dataset of 60,000 images of 10
signs. We chose this number based on the popular MNIST dataset of the same size, which has been
used to demonstrate the effectiveness of random forests, neural nets, and dropout nets [6].

Figure 1: ASL signs used in the study (above) and the cor-
responding Kinect depth images (below)

In order to obtain the depth images
from the Kinect, we used an open
source library called OFxKinect, part
of a larger package of C++ libraries
known as Open Frameworks [14].
The depth information is extracted
as a 256x256 grayscale image called
a depth map, in which pixel values
range from 255 (the closest possi-
ble depth) to 0 (farther away than
the Kinect can sense). Perform-
ing background subtraction using the
Kinect is trivial; we simply classify
any points more distant than a given
threshold as background. The thresh-
old was chosen to be approximately
arm’s length away from the Kinect
so that only hands would be part
of the foreground, but it could also
be set dynamically during data col-
lection using a keyboard command.
Background subtraction results in im-
ages of a hand silhouetted in white
against a black background (see fig-
ure 1). These images were shown
to the user during collection to allow
adjustment of the hand pose in real
time.

Since image preprocessing has been shown to be critically important for this type of problem [13],
we took steps to standardize the depth images. An obvious requirement was extracting only that
portion of the depth map which pertained to the hand sign, since when a person is standing three
metres away from the Kinect, the hand occupies a region that corresponds to less than 64x64 depth
pixels [15]. Open Frameworks provides the ability to extract the contours of an image, and the
bounding box which completely contains those contours. We used the OFxCVContour library to
find the precise location of the hand, and extract the bounding box (the pink lines shown in Figure
1). We added padding around this bounding box to form a region with a square aspect ratio, which
we then scaled down to 32x32 pixels and saved to a file. Thus, we obtained a final dataset of 60,000
32x32 greyscale images of silhouetted hands.

During training and testing, we were careful to ensure that gestures from the same individuals did
not occur in both the train and test set. In initial tests, we found that when the data was randomly
shuffled in such a way, we achieved approximately 99% accuracy. We felt this was an unrealistic
result, since in practice a gesture recognition system would likely be used to recognize the gestures
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of novel users, rather than those who had provided training data. Therefore when creating the train
and test sets, we ensured that all types of gesture were split evenly across both, but the images within
one gesture were kept in the original order obtained when collecting the data.

2.2 Random forests

Our implementation of random forests for classifying depth images closely followed that used by
Microsoft to perform skeletal joint recognition with the Kinect [2]. We treated each pixel in the
image as a feature, and randomly selected the features that could potentially be used for classification
in each node of each tree. As in [2], we found that a forest of only three deep trees performed best,
although we did test the effects of varying this parameter (see Section 3).

Our random forest implementation utilized a python library of machine learning scripts called Milk
[16]. All accuracy results were obtained using two fold cross validation. Tests were run using
an Amazon Web Services (AWS) Elastic Cloud Compute (EC2) High-CPU-Medium (c1.medium)
instance, which has 1.7GB memory, and two virtual cores which each have 2.5 EC2 compute units.
An EC2 compute unit is equivalent to a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor [17].

2.3 Dropout nets

Our implementation of dropout nets is based on the code generously provided by Misha Denil at
[18], which utilizes a python library designed for large scale scientific computing called Theano [19].
The code has been modified to work with our dataset, and the data was also modified to be within
the range [0, 1] in order to train the net. The neural net architecture used for the majority of the
tests consists of a 32x32 input layer, with one input neuron for each pixel in the depth image.
There are two hidden layers, each with 1200 hidden neurons, and one output layer with an output
neuron for each of the 10 classification labels. This 1024-1200-1200-10 architecture was based
on that described by Hinton for applying dropout to the similar MNIST dataset [6]. However, the
performance of neural networks can be sensitive to this type of architectural design choice [4], so
we also tested the results of two additional architectures proposed in [6]: 1024-800-800-10, and
1024-2000-2000-10. Greedy layer-wise training was used to deal with the multiple hidden layers,
as in [20]. All networks were trained using the backpropagation algorithm for 500 epochs.

Tests for dropout nets were initially run using the same type of AWS instance (c1.medium), but tests
with more than 6 gestures exhausted the available memory on this server. Therefore we were forced
to use an alternative high-memory AWS instance (m1.medium), which has 3.75GB of memory, but
only one virtual core with 2 EC2 compute units. For this reason, the times obtained for tests with
greater than 6 gestures are not comparable to those of random forests, although they took nearly
twice as long and clearly had a much higher memory footprint.

3 Results

3.1 Random Forests vs. Dropout

Our results indicate that dropout nets achieve a higher accuracy on this dataset. Figure 2 shows
the accuracy of both methods as the number of gestures being classified increases from two to
ten. When all ten gestures were included, our random forest implementation achieved an accuracy
of 67.27%, comparable to the 69% reported in another study of ASL recognition using random
forests applied to Kinect data [3]. Therefore we have reason to believe that the accuracy reported
for random forests is a realistic result for this problem. Dropout nets were able to surpass this
by a significant margin, achieving an accuracy of 81.34% when classifying ten gestures. Over all
nine trials where the number of gestures classified ranged from two to ten, random forests achieved
an average accuracy of 76.89% (SD = .075), while dropout nets achieved an average accuracy of
84.23% (SD = .028). Our results indicate that for this dataset, random forests are more sensitive
than dropout nets to increasing the number of classification labels, but actually slightly outperform
dropout nets for binary classification. This mirrors previous findings about the superiority of random
forests for binary classification, discussed in [4].
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Figure 2: The accuracy of dropout nets surpasses that of random forests, especially as the number
of gestures increases.

In order to ensure the validity of our design choices, we also varied the parameters of both dropout
nets and random forests and tested the resulting accuracy (shown in tables 1 and 2). The accuracies
reported in both tables refer to the problem of classifying ten gestures simultaneously. The results of
varying the number of trees in the random forest are shown in table 1. Accuracy does not appear to
vary with the number of trees, so we opted to use three trees for the rest of the tests; firstly because
it is suggested in the literature [2], and secondly because increasing the number of trees increases
the required computation time. It should be noted that if much larger numbers of trees were tested, a
pattern may have emerged. However, we found the computation time required to test a large number
of trees to be prohibitive. Table 2 shows how the accuracy of the dropout network was affected
by the architecture; that is, the number of neurons in the two hidden layers. The three architectures
shown here are those used by Hinton to test dropout on the MNIST dataset that is closest to our
own [6]. The choice of architecture did not significantly affect the resulting accuracy.

Table 1: Random Forests

Number of Trees Accuracy

3 67.27%
4 65.68%
5 67.24%
6 65.96%
7 67.91%

Table 2: Dropout Nets

Architecture Accuracy

1024-800-800-10 81.57%
1024-1200-1200-10 81.34%
1024-2000-2000-10 81.74%

3.2 Dropout Technique

In order to establish the usefulness of the dropout technique, we also tested the same neural net
architecture without dropout on the problem of classifying ten gestures. Without dropout, the neural
net produced a classification accuracy of 76.88%, compared to the 81.34% obtained with dropout.
According to these results, the dropout technique provided a significant improvement in accuracy
over the unmodified neural net, confirming the effectiveness of dropout as demonstrated in [6], [7],
and [10]. It is interesting to note that even without dropout, neural nets had higher accuracy on this
dataset than random forests (67.27%). The error rate for both the unmodified neural net and the
dropout net is shown in figure 3. The unmodified net achieves stability sooner than the dropout
net, since the unmodified version is training a single net with N nodes, while dropout is essentially
training 2N different nets.
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Figure 3: This chart shows the error rate of the same neural net architecture trained with and without
dropout over 500 epochs. Adding dropout reduces the error rate by a significant margin.

3.3 Gesture Accuracy

Figure 4: The accuracy obtained by random forests on each
of the ten gestures

The results from another study on
random forest ASL recognition with
the Kinect afford us an opportunity to
compare the results obtained with our
dataset directly to those in the litera-
ture [3]. Figure 4 shows the accuracy
random forests achieved on each of
the ten gestures. While some gestures
(such as ‘5’) appear to be distinctive,
and result in a high accuracy, other
gestures (such as ‘L’) are not easy to
recognize. Both our dataset and the
one described in [3] obtained nearly
identical accuracies on the letters ‘A’,
‘C’, ‘H’, and ‘I’, but our results for
the letters ‘L’, ‘Q’, and ‘Y’ were sig-
nificantly worse. Interestingly, [3]
achieved a recognition accuracy of
87% for the letter ‘L’, whereas our
random forest could only distinguish
the letter ‘L’ with a meager 45% ac-
curacy. This could be due to the fact
that the previous study didn’t include
number signs [3], and ‘L’ became confused with one of the numbers. Or, it could be due to the
noisiness and idiosyncrasies of our dataset; for example, the low accuracy obtained for the letter ‘Q’
is no surprise given the amount of difficulty many of the participants had with forming this hand
sign.

3.4 Computation Time

Although dropout nets did achieve far better results, obtaining these results also took much longer.
Figure 5 shows the computation time in minutes for random forests and dropout nets over each of the
ten trials. The greater accuracy of neural networks is paid for by a much longer computation time,
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as well as a heavier memory footprint. This increased computation time could become a concern for
a system that has to learn to classify gestures in real time [2].
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Figure 5: The computation time taken by each algorithm. Note that for 6-10 gestures dropout nets
were run using a different server, so these times should not be directly compared.

4 Future Work

Modifications to dropout networks have been proposed that could potentially make them even more
effective. One example is increasing the step sized used in stochastic gradient descent [7]. The
reasoning behind this proposal is that dropout actually trains many different networks, and each one
of these 2N configurations may only ever see one training example. Therefore, each update must
have a larger effect [7]. A further modification to dropout called maxout uses hidden neurons that
output the maximum of the inputs, and it has been shown that this technique further improves the
state of the art on several datasets, including MNIST [7]. Another way to increase the effectiveness
of dropout is to apply it to a deep Convolution Neural Network (CNN), a type of network adapted to
computer vision problems which contains layers specifically designed to perform filtering operations
[10], [20]. Deep networks such as these can model complex dependencies between features and
classification labels, and have been shown to outperform random forests in some computer vision
applications [20]. In terms of gesture recognition specifically, performing transformations to the
images to reduce the number of features from 32x32 pixels to something more compact could be
extremely helpful [13]. Using any of these techniques could potentially improve our classification
accuracy.

5 Conclusions

Our research tested the effectiveness of random forests against that of dropout nets on a gesture clas-
sification task. Silhouette images of ASL hand signs were obtained using the Microsoft Kinect, use-
ful for gesture recognition because of its robustness to variance in lighting and skin tone. Although
random forests have been employed commercially by Microsoft for classifying Kinect images [2],
the accuracy of random forests on our dataset was over 10% worse than that of dropout nets when
classifying ten gestures. Further, the accuracy of random forests showed signs of decreasing further
had more gestures been included, whereas the performance of dropout nets was more stable. The
addition of the dropout technique also significantly improved the performance of the baseline neural
net, demonstrating the effectiveness of dropout. However, the increased accuracy of dropout nets is
balanced by increased computation time required for training.
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[20] David Grangier, Léon Bottou, and Ronan Collobert. Deep convolutional networks for scene
parsing. In ICML 2009 Deep Learning Workshop, volume 3. Citeseer, 2009.

8

http://luispedro.org/software/milk
http://luispedro.org/software/milk
http://aws.amazon.com/ec2/
https://github.com/mdenil/dropout

	Introduction
	Method
	Data collection and Preprocessing
	Random forests
	Dropout nets

	Results
	Random Forests vs. Dropout
	Dropout Technique
	Gesture Accuracy
	Computation Time

	Future Work
	Conclusions

