
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Playing Quarto with Monte Carlo Tree Search

Anonymous Author(s)
Affiliation
Address
email

Abstract

The ability to plan ahead and strategize has been one of the major facets of ar-
tificial intelligence research since its inception. Games have often been used as
bench marks to assess the effectiveness, and efficiency of, techniques for planning
and strategy. Monte Carlo Tree Search is a method which is currently being used
to improve the play of computer programs across a wide variety of games. In this
paper we apply the technique of Upper Confidence Trees (one implementation of
Monte Carlo Tree Search) to the task of playing the game of Quarto. This was
found to be more effective than an algorithm which relied only on information
from the next couple of states.

1 Background

Since the beginning of the field of artificial intelligence there has been debate over what defines
intelligence. Some of the qualities which people associate with the term include planning, strategy,
and pattern recognition. It is these faculties that are used when humans play games, and so creating
a program that can play games has been a focus for many computer scientists.

There was a major breakthrough for the field when in 1997 IBM’s Deep Blue beat then world
champion Garry Kasparov 3 1

2 − 2 1
2 over a a six game match. This was the first time a computer had

beaten the world champion under tournament conditions. However there are several other popular
games, which are still played better by top humans than by top machines. One important example
of this is the game Go. Go is a much harder game to analyze, since each turn there are hundreds
of possible moves, and games take over a hundred moves. By comparison chess games are usually
finished in less than a hundred moves, with less than 40 moves available to a player, on average [5].
Note that as a game of chess progresses pieces are removed, and the number of moves to consider
rapidly decreases. In Go any unoccupied square is a valid move (with few exceptions), leading
to a much less drastic reduction in complexity as the game progresses. in order to deal with this
additional complexity inherent in the game of Go new techniques had to be created, which have
proven effect for many other games for which tradition tree search had proven intractable.

One technique which was introduced around 2006 is Monte Carlo Tree Search (MCTS). Using the
power of randomization the skill level of Go playing machines has been brought up to the ability
of highly ranked competitors (although not to the level of top players)[6]. Instead of trying to
deterministically calculate the best move, one uses random plays to approximate the strength of
a given move. This helps avoid wasting time on exploring bad moves, while providing enough
information to find the good moves. MTCS has helped improve results for computer programs to
play many other games. This includes the game Arimaa, which was specifically designed to be
difficult for machines to play [1].

Although the most obvious application of this technique is to other combinatorial board games, it has
been used in a wide variety of other applications. Some of these include single-player games, general
game players, non-deterministic games, real-time games, optimization, constraint satisfaction, and
planning [1][3].

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

1.1 Quarto

In this paper the technique of MCTS is applied to the game of Quarto. Quarto is a two player board
game which was published in 1991. It is played on a four by four grid with a set of sixteen distinct
pieces. Each piece corresponds to a specific permutations of four binary features. These features
are colour (dark or light), height (tall or short), shape (round or square), and top (flat or indented).
The goal of the game is to have produced a line of four pieces which all share a feature. Note that
the winner is the player who places the last piece in a row, it is irrelevant who placed the rest of
the pieces. Each turn a player places the next piece on the board, and then choose the piece their
opponent will play on their turn from the set of pieces that have not been played.

The impartiality of the pieces, and the choice of which piece your opponent will play, lead to much
deeper strategy than one might originally expect. In order to win a player must manoeuvre into a
position in which the opponent has no choice but to hand them a winning piece.

Figure 1: Picture of a free Quarto game for an Android phone.

1.2 Game Theory

In order play a game one must make decisions between a number of possible moves. These moves
take the game from it’s current state, to some other state. This process can be described in terms of a
directed tree. Each node represents the state of the game. The state of can contain many components,
in Quarto the important information is where which pieces are on the board, and which piece is to
be played next. An edge directed from one node to another indicates that there is a move that takes
the game from it’s current state to that next state. With most games there will be several terminal
states, which correspond to a player winning, or to a draw.

Playing a game can thus be thought of as the task of walking through this tree. Exploring the tree
can lead to insight into what next move is ideal. In order to do such a traversal you need to have
some way to evaluate the strength of each position in the tree. A simple way to do this is design
some kind of heuristic, which evaluates the strength of a given position. The program can then
generate all the possible states it can move to from the current state, and evaluate each of them with
the heuristic, then choose the best. This technique struggles in that it can be very hard to design
effective heuristics.

The only completely effective way to evaluate a position is to consider all the possible moves that
could be taken afterwards. It is important to keep in mind that there is an adversary taking half of

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

the moves through this tree. In order to play optimally you must assume your opponent will also
play optimally, and thus not offer them any good plays. That is you want the lowest valued response
to a move (the optimal state for your opponent to move to), to be as large as possible. The technique
that is used to do this kind of search is called minmax, because at each step you try to minimize
the maximum move your opponent can make. One assigns values to the terminal nodes based on
the result of the game, and then the values of the interior nodes can be recursively calculated [4].
This can be very expensive if the game tree is very large. Instead of starting at the leaves of the
tree, heuristics may be used to evaluate the strength of an interior node after expanding the tree to
the given depth. This value can then be used in the minmax algorithm to calculate the value of the
moves you are choosing between. If the tree has a high branching factor, it may be infeasible to
expand the tree to an appropriate depth. Thus more sophisticated techniques are necessary.

2 Monte Carlo Tree Search

Monte Carlo Tree Search is a tree search algorithm to use random plays to approximate the strength
of the positions you are deciding between. The specific variant which is being used in this paper
is known as Upper Confidence Trees. The main algorithm for determining a single move consists
of four stages, a tree search, an expansion of the tree, a ”random” play, and then updating the tree.
During this process you store a partial copy of the game tree, which is used throughout the entire
game. Each node that has been expanded contains a count of the number of times it has been visited,
and the number of times those plays have resulted in wins. Then the strength of a position can be
thought of as the win rate of it’s corresponding node.

During the first stage of the algorithm we want to walk from the root of the tree to a node which does
not have all it’s children expanded. At each step we go to the most promising child. Note that the
win rate at each level corresponds to the win rate of the player who makes that move, so we don’t
need to worry about changing our policy for the adversary. When we reach a node which does not
have all of it’s children in the tree, it is time for the second stage of the algorithm. A random child
of the node, which has not been expanded, is chosen to be added to the tree, and then is made the
next move. It is important that this random choice is made uniformly from the set of possible next
moves, since any sort of bias in the selection process may bias the score given to its parent.

For the third stage, the game is completed from the node we reached during the first stage using
a separate policy. This policy uses randomness to speed up decision making, and doesn’t rely on
knowledge about the game, other than recognizing which states represent wins, loses, or ties. In
the last stage the path taken my the initial tree search part of the algorithm is retraced, and the
information in each node is updated. For each one the visits counter is incremented, the wins counter
is updated based on whether or not the player making that move won the game (i.e. for ever other
node).

After a certain number of these iterations the program has to decide which child of the root is the
strongest. After making its choice the opponent will respond and whatever node they choose will
become the new root. Then the entire process starts over, although the tree stores all the results from
simulations in previous rounds.

The only choices the programmer has to make is determining the policies for the tree walk, the game
play, and which node to move to. Walking through the tree is an optimization problem, we want to
find the node which has the highest win rate. This win rate is something we cannot know with out
calculating the entire tree, but we can estimate it using the results of our trials as wi

vi
, where wi

is the number of wins in node i and vi is the number of visits to node i. There is an exploration,
exploitation trade off. Nodes that currently have a high win rate are probably good, but those nodes
which haven’t been visited as often may have a higher win rate than is evidenced by the simulations
completed so far.

There are several different ways to deal with this dilemma, one way to deal with it is to simply make
the best move with some probability, and otherwise make a random move, at each step. This is not
the most efficient way to deal with the trade-off, and may end causing the algorithm to waste time
on moves that have been shown to be quite impractical. A much better approach is to use an upper
confidence bound on the win rate as the score to be compared. This is why the technique is called

an Upper Confidence Tree. A good upper confidence bound is wi

vi
+C

√
ln(vP (i))

vi
where P (i) is the

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Figure 2: Diagram of the MCTS algorithm, taken from Monte-Carlo Tree Search: A New Framework
for Game AI [2]

parent of node i, and C is some constant [2]. The choice of the constant affects how much weight is
put on exploration in the algorithm. For large constants you get very even sampling of the children,
if the constant is small you focus more on which nodes have the highest win rate. For this paper the

exact formula used was wi

vi
+
√

ln(vP (i))

5vi
.

For the game policy it is important to keep it as simple as possible, so as to minimize the amount
of time the simulation takes, while simultaneously being intelligent enough to provide meaningful
data. The first game policy tried moved to a winning position if possible, and otherwise moved
randomly. This proved insufficient, as the probability of moving to a losing state proved very high,
and thus all nodes had a more or less even win rate. The game policy used was a slight modification.
The first step was checking if there’s a winning move and placing the piece at random if not, this
is the same as before. However, to choose the piece to give to the opponent to play next, a piece
was chosen at random from the set of pieces which would not allow the opponent a winning move,
instead of from all available pieces. If no such move existed, then the game was recorded as a loss.
This policy simulates a player who makes optimal moves, without looking beyond the next move.
This allowed the simulations to be played to a much greater depth, and improved the play skill.

The last policy choice that has to be made is which move is selected when it comes to making a
decision about which move to actually make, after all the simulations are done. To keep things
simple you can simply take the child node which has the largest number of visits. This can be better
than taking the node with the highest win rate, since the higher win rate may simply be due to not
being explored as thoroughly [2].

3 Results

To test the effectiveness of the UCT approach to playing Quarto it was necessary to test against
some opponent. Unfortunately it was not feasible to have it play a highly ranked player, since no
such player rankings exist for the game. There was also no easily accessible source code for strong
Quarto programs. As a result input and output to such a program would have been done manually.
Thus in order to test the strength of the UCT a second Quarto program was written. This program
followed the basic pattern of the game policy used to do the simulations for UCT program, with the
additional feature that if placing a piece in a certain square led to a losing situation for the player,
the other squares are tried. This second program performed well in a few test games against several
free online Quarto programs, and the author, hence it was deemed strong enough to test the UCT
program.

The test was done by running games between the two programs, half of which the UCT program
got to go first, the other half it went second. Four such sets were run, changing the number of

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Table 1: Results of Quarto UCT program trials with 10 simulations

Wins Draws Losses
Going First 304 0 196
Going Second 270 64 166
Total 574 64 362

Table 2: Results of Quarto UCT program trials with 100 simulations

Wins Draws Losses
Going First 410 0 90
Going Second 321 86 93
Total 731 86 183

simulations run by the UCT program at each step by the UCT program to calculate the top move.
The numbers of simulations used were were 10, 100, 1000, and 5000.

The results are summarized in tables 1-4. It is fairly obvious that the UCT program had the advantage
with a winrate above 2

3 in all but the test with only 10 simulations per move. This shows that the
information gained from doing random simulations in this manner is useful for determining the best
move to make, even when the number of simulations is small. Due to time constraints only 100
trials could be run with the 1000/5000 simulation programs, so it’s hard to tell if the decrease in the
number of loses when going from 100 simulations to a 1000 or more is significant. These results do
show there was some advantage to doing more simulations, and it seems that after 1000 there is not
very much advantage to adding more simulations.

There is a very direct trade-off between number of simulations and the processing time necessary
to run the program. While the processing time seems to increase linearly with the number of simu-
lations, the strength of the program seems to plateau. This may be due to the fact that as the game
length and branching factor are bounded, the game space is finite. If the number of simulations
approaches the total number of possible games it would be more efficient to simply solve the game
tree. Note that the branching factor for a certain turn in Quarto is the number of available spaces,
times the number of available pieces to choose for the next player, which is (16 − t + 1)(16 − t),
where t is the turn number. After 11 moves have been made (assuming there was no victor), there
are fewer than 2880 possible games left. A number of these will already have been explored by
earlier simulations, so there is no need to do 5000 more simulations. However as the time it takes to
do simulations also decreases significantly, the benefit to doing fewer simulations may be minimal.

Early on the branching factor is very high, ratio between the number of parent visits and child visits
being very large, since each child must be visited once before a child can be visited a second time.
This causes the number of visits to each of the roots children is relatively even. Thus each child only
has a small number of visits, probably less than its number of children. So it is highly probable that
the opponent will choose to move to a node that has not yet been expanded, thus none of the work
done for the simulations will carry over. It would save considerable processing time if the first two
or three moves were done without having to go through a full set of simulations.

The first few moves could be a approached in a few different ways. Moves could be made completely
at random until a certain turn. This would speed up the program significantly, since the first couple
of moves are the slowest. A more involved alternative is storing the results of previous games in
memory, and using those to build an initial tree. Simulations could then be run as normal, but
with a lot more information than could have been generated if previous information hadn’t been
loaded. When there are many more stored games than simulations played, the opening moves would
become stagnated. Therefore it would eventually be necessary to weigh games loaded from memory
differently from games played.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Table 3: Results of Quarto UCT program trials with 1000 simulations

Wins Draws Losses
Going First 44 0 6
Going Second 35 9 6
Total 79 9 12

Table 4: Results of Quarto UCT program trials with 5000 simulations

Wins Draws Losses
Going First 35 9 6
Going Second 31 13 6
Total 66 22 12

4 Future Work

This section contains questions which were left unanswered by my research.

1. In this paper it was show UCT can be used to create a fairly intelligent Quarto player, but
the opponent was not very strong. How would this technique handle more challenging
competition?

2. The constant in the upper confidence bound was chosen to strike a balance between explo-
ration and exploitation. How much could optimizing this parameter improve the effective-
ness of a UCT Quarto player?

3. Each node generated by the algorithm corresponds a specific sequence of moves in the
game tree, however multiple nodes share the same state, if certain moves are made in a
different sequence. Compiling the data from these nodes can create a clearer picture of a
nodes strength from fewer simulations, however it makes it harder to compute an upper
confidence bound if nodes may have multiple parents. Is there an effective way to use
redundancies in the tree to improve performance?

4. Similar to the point above, many game have symmetries. Positions, while technically dif-
ferent, may not have any practical differences. For example in Quarto you could replace
all the dark pieces with light pieces and vice-versa, and the analysis of the position would
be equivalent. You could merge the counts for symmetric states, similar to the way you
would merge equivalent states above, however this would be even more computationally
expensive. Is there an efficient way to calculate symmetries, and then use them to improve
the effectiveness of MCTS algorithms?

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

References

[1] Cameron B. Browne, Edward Powley, Daniel Whitehouse, Simon M. Lucas, Peter I. Cowling,
Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton.
A Survey of Monte Carlo Tree Search Methods. IEEE Transactions on Computational Intelli-
gence and AI in Games, 4(1):1–43, March 2012.

[2] G. Chaslot, S.C.J. Bakkes, I. Szita, and P.H.M. Spronck. Monte-Carlo tree search: A new
framework for game AI. Proceedings of the BNAIC 2008, the twentieth Belgian-Dutch Artificial
Intelligence Conference, pages 389–390, 2008.

[3] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In Proceedings of
the 17th European conference on Machine Learning, ECML’06, pages 282–293, Berlin, Hei-
delberg, 2006. Springer-Verlag.

[4] Stuart Russell and Peter Norvig. Artificial intelligence : A modern approach, 2009.
[5] Claude E. Shannon. Xxii. programming a computer for playing chess. Philosophical Magazine

Series 7, 41(314):256–275, 1950.
[6] Fabien Teytaud and Olivier Teytaud. On the huge benefit of decisive moves in Monte-Carlo Tree

Search algorithms. In Proceedings of the 2010 IEEE Conference on Computational Intelligence
and Games, pages 359–364. IEEE, August 2010.

7


