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Outline of the lecture

Thislecture discusses classification trees and how to incorporate then
Into an ensemble (random forest). It discusses:

d Random trees
1 Random forests
1 Object detection
1 Kinect



Classification tree \
Wl*.,’ﬂ Ls xi7le
) g/:},s:’;;catmn tree V } g I
/} <7 30

Mg 9

A generic data point is denoted by a vector v = (21,22, ,2q)
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[Criminisi et al, 2011]



Use information gain to decide splits

data before split

@ Before split
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Random Forests algorithm
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(a) Draw a hootatlap Hal ple% of size N from the training data.

i Fcub—ltoB

(b) Grow a random-forest tree 13 to the bootstrapped data, by re-
cursively repeating the following steps for each terminal node of
the tree, until the minimum node size n,,;, is reached.

| i. Select m variables al random [rom the p variablesg

ii. Pick the best variable/split-point among the m.&—

iii. Split the node into tv uokter nodes. &~

2. Output the ensemble of trees{T},} .

[From the book of Hastie, Friedman and Tibshirani]



Randomization

Randomized node optimization. If 7 is the entire set of all possi-
ble parameters @ then when training the 7™ node we only make avail-

able a small subset 7; C 7T of such values.

—T=

/
9;"-‘ — arg max I[;.
95;67}

[Criminisi et al, 2011]



Building aforest (ensemble)

In a forest with 7" trees we have t € {1,--- ,T'}. All trees are trained
independently (and possibly in parallel). During testing, each test point
v is simultaneously pushed through all trees (starting at_the root) until

1t reaches the corresponding leaves. N/ 4
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Text classification example

In news categorization, a possible term is Bill Clinton. A corresponding
weak learner (node) is: If theterm Bill Clinton appearsin the

document predict that the document bel OW
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Effect of forest size
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Effgct of more %sses and noISe—

Example 1 { two-clgbs spiral Example 2 / four-claps spiral Example 3/- noisier four-clasy/spiral

Training points

Testing posteriors

[Criminisi et al, 2011]




3 (underfitting)

15 (overfitting)

D=

Effect of tree depth (D)

Training points
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[Criminisi et al, 2011]



Randomized nod optimization (RNO)

Effect of bagging
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[Criminisi et al, 2011]



Application to face detection

Training Data

— 5000 faces

o All frontal

N
L
Q
S
=
o
=
=
o
m
-
S
N
|

* 9400 non-face images

[Violaand Jones, 2001]



Object detection

|dear Extract simple features from all 24 by 24 pixel patches x.. E.g., the
value of atwo-rectangle feature is the difference between the sum of the
pixels within two rectangular regions. Then compare the level of
activation (value of the feature f ) with respect to athreshold (theta).

IR [ 1iff(x)>8
E ﬁ (%) = { 0 otherwise

p.9fe's

Relevant feature Irrelevant feature




Object detection




Random Forests and the Kinect
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depth image = bodyparts = 3D joint proposals

[Jamie Shotton et al 2011]



Random Forests and the Kinect

L esson 1. Use computer graphicsto generate plenty of data.

[Jamie Shotton et al 2011]



Random Forests and the Kinect

L esson 2: Use simple depth features within random forests algorithm.

L For each pixel x, compute the feature:

foll,x) = di (x + d;l(lx)) i (X N df‘(w)

d (X) isthe depth at pixel x inimage |
Parameters 6= (u; v) describe offsets u and v.

dThe normalization of the offsets ensures the features are depth
Invariant: At agiven point on the body, a fixed world space offset will

result whether the pixel is close or far from the camera.
[Jamie Shotton et al 2011]



Tree algorithm

1. Randomly propose a set of splitting candidates ¢ =
(0, T) (feature parameters # and thresholds 7).

2. Partition the set of examples (Q = {(/,x)} into left
and right subsets by each ¢:

I,
Qo) = {(L,x)]foll.x) <7} U-x)
Q:(p) = Q\ Qi) tree 1
3. Compute the ¢ giving the largest gain in information:
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4. If the largest gain G(¢*) is sufficient, and the depth in
the tree is below a maximum, then recurse for left and
right subsets Q(¢*) and Q. (¢*).

[Jamie Shotton et al 2011]



Performance on train and test data
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[Jamie Shotton et al 2011]



Applications: Interfaces

[lason Oikonomidis et al 2011]



Treesfor regression

r Training data
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[Criminisi et al, 2011]



Leaf 1

Leaf 2

Regression trees

[Criminisi et al, 2011]



Regression forests

Training points Forest Fittedleaf models Learned trees
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Next lecture

On Thursday, we will embark on unconstrained optimization. This
technigue will enable usto train neural networks.



