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Bayesian learning



Outline of the lecture

This lecture introduces Bayes rule and Bayesian learning for linear 
models.

The goal is for you to:

� Learn how Bayes rule is derived.Learn how Bayes rule is derived.
� Learn to apply Bayes rule to simple examples.
� Learn how to apply Bayesian learning to linear models.
� Learn the mechanics of conjugate analysis.



Problem 1: Diagnoses

� The doctor has bad news and good news. 

� The bad news is that you tested positive for a 
serious disease, and that the test is 99% accurate 
(i.e., the probability of testing positive given that 
you have the disease is 0.99, as is the probability of you have the disease is 0.99, as is the probability of 
testing negative given that you don’t have the 
disease). 

� The good news is that this is a rare disease, 
striking only 1 in 10,000 people. 

� What are the chances that you actually have the 
disease? 



Bayes rule
Bayes rule enables us to reverse probabilities:

P(B|A)P(A)
P(B)

P(A|B) = 



Learning and Bayesian inference 
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Problem 1: Diagnoses

The test is 99% accurate:  P(T=1|D=1) = 0.99 and  P(T=0|D=0) = 0.99
Where T denotes test and D denotes disease.

The disease affects 1 in 10000:  P(D=1) = 0.0001



Speech recognition 

P(words| sound)   P(sound| words) P(words)
Final beliefs Likelihood of data Prior language model

eg mixture of Gaussians eg unigrams

Hidden Markov Model (HMM)

α

“Recognize speech” “Wreck a nice beach”



Bayesian learning for model parameters

Step 1: Given n data, D = x1:n = {x1, x2,…, xn }, write down the 
expression for the likelihood:

p( D |θ θ θ θ )

Step 3: Compute the posterior:

Step 2: Specify a prior: p(θ θ θ θ )

Step 3: Compute the posterior:

p(θ θ θ θ | D ) p( D |θ θ θ θ ) p(θ θ θ θ )
p( D )

=



Bayesian linear regression

The likelihood is a Gaussian, N (y|Xθ, σ2In). The conjugate prior is also
a Gaussian, which we will denote by p(θ) = N (θ|θ0,V0).N |

Using Bayes rule for Gaussians, the posterior is given by

p(θ|X,y, σ2) ∝ N (θ|θ0,V0)N (y|Xθ, σ
2In) = N (θ|θn,Vn)

θn = VnV
−1

0
θ0 +

1

σ2
VnX

Ty

Likelihood
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Bayesian linear regression



Bayesian linear regression



Consider the special case where θ0 = 0 andV0 = τ
2

0
Id, which is a spherical

Gaussian prior. Then the posterior mean reduces to

θn =
1

σ2
VNX

Ty =
1

σ2

(
1

τ2
0

Id +
1

σ2
XTX

)−1
XTy

=
(
λI +XTX

)−1
XTy

Bayesian linear regression

=
(
λId +X

TX
)−1

XTy

where we have defined λ := σ
2

τ2
0

. We have therefore recovered ridge re-

gression again!



Bayesian versus ML plugin prediction

To predict,  Bayesians marginalize over the posterior. Let x* be a new 
input. The prediction, given the training data D=( X , y ), is:

Posterior mean:        θθθθ n

Posterior variance:   Vn    = σ σ σ σ 2 
(
λId +X

TX
)−1

(

0

=
(
λId +X

TX
)−1

XTy

P(y| x* ,D, σ σ σ σ 2 ) = ∫∫∫∫N (y| x*
Tθθθθ , σ σ σ σ 2 )N (θ θ θ θ | θθθθ n , Vn ) dθθθθ

==== N (y| x*
T θθθθ n , σ σ σ σ 2  + x*

T Vn x* )

On the other hand, the ML plugin predictor is:

P(y| x* ,D, σ σ σ σ 2 )  =    N (y| x*
T θθθθ ML , σ σ σ σ 2 )



Bayesian versus ML plug-in prediction



Next lecture

In the next lecture, we extend Bayesian learning to 
nonlinear problems via a technique known as Gaussian 
processes.


