

CPSC540

Bayesian learning

Nando de Freitas January, 2013 University of British Columbia

Outline of the lecture

This lecture introduces **Bayes rule** and Bayesian learning for linear models.

The goal is for you to:

Learn how Bayes rule is derived.

□ Learn to apply Bayes rule to simple examples.

- Learn how to apply Bayesian learning to linear models.
- Learn the mechanics of conjugate analysis.

Problem 1: Diagnoses

 \Box The doctor has bad news and good news.

□ The bad news is that you tested positive for a serious disease, and that **the test is 99% accurate** (i.e., the probability of testing positive given that you have the disease is 0.99, as is the probability of testing negative given that you don't have the disease).

 \Box The good news is that this is a rare disease, striking only 1 in 10,000 people.

□ What are the chances that you actually have the disease?

Bayes rule

Bayes rule enables us to reverse probabilities:

$$\frac{P(A|B)}{P(B)} = \frac{P(B|A)P(A)}{P(B)}$$

Learning and Bayesian inference

Problem 1: Diagnoses

The test is 99% accurate: P(T=1|D=1) = 0.99 and P(T=0|D=0) = 0.99Where T denotes test and D denotes disease.

~

The disease affects 1 in 10000: P(D=1) = 0.0001

$$P(D=||T=1) = \frac{P(T=1|D=1)P(D=1)}{P(T=1|D=0)P(D=0)+P(T=1|D=1)P(D=1)}$$

Speech recognition

Bayesian learning for model parameters

Step 1: Given *n* data, $D = x_{1:n} = \{x_1, x_2, ..., x_n\}$, write down the expression for the likelihood:

 $p(D | \theta)$

Step 2: Specify a *prior*: *p*(*θ*)

Step 3: Compute the **posterior**:

$$\frac{p(\theta/D)}{p(D)} = \frac{p(D/\theta) p(\theta)}{p(D)}$$

Bayesian linear regression

The likelihood is a Gaussian, $\mathcal{N}(\mathbf{y}|\mathbf{X}\boldsymbol{\theta}, \sigma^2 \mathbf{I}_n)$. The conjugate prior is also a Gaussian, which we will denote by $p(\boldsymbol{\theta}) = \mathcal{N}(\boldsymbol{\theta}|\boldsymbol{\theta}_0, \mathbf{V}_0)$.

Using Bayes rule for Gaussians, the posterior is given by

$$p(\boldsymbol{\theta}|\mathbf{X}, \mathbf{y}, \sigma^2) \propto \mathcal{N}(\boldsymbol{\theta}|\boldsymbol{\theta}_0, \mathbf{V}_0) \mathcal{N}(\mathbf{y}|\mathbf{X}\boldsymbol{\theta}, \sigma^2 \mathbf{I}_n) = \mathcal{N}(\boldsymbol{\theta}|\boldsymbol{\theta}_n, \mathbf{V}_n)$$
$$\boldsymbol{\theta}_n = \mathbf{V}_n \mathbf{V}_0^{-1} \boldsymbol{\theta}_0 + \frac{1}{\sigma^2} \mathbf{V}_n \mathbf{X}^T \mathbf{y}$$
$$\mathbf{V}_n^{-1} = \mathbf{V}_0^{-1} + \frac{1}{\sigma^2} \mathbf{X}^T \mathbf{X}$$

Bayesian linear regression
Assume G² is Known.

$$P(\Theta|x, v, G^{2}) \ll P(Y|x, \Theta, G^{2}) P(\Theta)$$

$$\ll e^{-\frac{1}{2}(Y-X\Theta)^{T}(G^{2}\Gamma)^{-1}(Y-X\Theta)} e^{-\frac{1}{2}(\Theta-\Theta_{0}^{T}V_{0}^{-1}(\Theta-\Theta_{0})}$$

$$= e^{-\frac{1}{2}\left\{Y^{T}(G^{1}\Gamma)^{-1}Y - 2Y^{T}(G^{2}\Gamma)^{-1}X\Theta + \Theta^{T}X^{T}(G^{1}\Gamma)^{T}X\Theta + \Theta^{T}V_{0}^{-1}\Theta + \Theta^{T}$$

Bayesian linear regression $\Theta_n^{\mathsf{T}} V_n^{-1} - \frac{\sqrt{\mathsf{X}}}{2} = \Theta_0^{\mathsf{T}} V_0^{-1} = 0 \qquad \text{when } \Theta_n = V_n \left[V_0^{\mathsf{T}} \Theta_0 + \frac{\sqrt{\mathsf{Y}}}{G^2} \right]$ and when this happens, we have: $P(\Theta|X,Y,G^2) \propto e^{-\frac{1}{2}(\Theta-\Theta_n)V_n^{-1}(\Theta-\Theta_n)}$ By the definition of a multivariate Gaussian, we have: $\int e^{-\frac{1}{2}(\Theta - \Theta_n)} V_n^{-1}(\Theta - \Theta_n) d\Theta = |2\Pi V_n|^{\frac{1}{2}}$ $P(\Theta|X,Y,G^2) = |2\Pi V_n|^{-1/2} e^{-\frac{1}{2}(\Theta - \Theta_n)^7 V_n^{-1}(\Theta - \Theta_n)}$

Bayesian linear regression

Consider the special case where $\boldsymbol{\theta}_0 = \mathbf{0}$ and $\mathbf{V}_0 = \tau_0^2 \mathbf{I}_d$, which is a spherical Gaussian prior. Then the posterior mean reduces to

$$egin{aligned} oldsymbol{ heta}_n &=& rac{1}{\sigma^2} \mathbf{V}_N \mathbf{X}^T \mathbf{y} = rac{1}{\sigma^2} \left(rac{1}{ au_0^2} \mathbf{I}_d + rac{1}{\sigma^2} \mathbf{X}^T \mathbf{X}
ight)^{-1} \mathbf{X}^T \mathbf{y} \ &=& \left(\lambda \mathbf{I}_d + \mathbf{X}^T \mathbf{X}
ight)^{-1} \mathbf{X}^T \mathbf{y} \end{aligned}$$

where we have defined $\lambda := \frac{\sigma^2}{\tau_0^2}$. We have therefore recovered **ridge re-gression** again!

Bayesian versus ML plugin prediction Posterior mean: $\theta_n = (\lambda \mathbf{I}_d + \mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ Posterior variance: $V_n = \sigma^2 (\lambda \mathbf{I}_d + \mathbf{X}^T \mathbf{X})^{-1}$

To predict, Bayesians marginalize over the posterior. Let x_* be a new input. The prediction, given the training data D=(X, y), is:

$$P(y|x_*,D, \sigma^2) = \int \mathcal{N}(y|x_*^T \theta, \sigma^2) \,\mathcal{N}(\theta|\theta_n, V_n) \,d\theta$$
$$= \mathcal{N}(y|x_*^T \theta_n, \sigma^2 + x_*^T V_n x_*)$$

On the other hand, the ML plugin predictor is:

 $P(y|x_*,D, \sigma^2) = \mathcal{N}(y|x_*^T \theta_{ML}, \sigma^2)$

Bayesian versus ML plug-in prediction

Next lecture

In the next lecture, we extend Bayesian learning to nonlinear problems via a technique known as Gaussian processes.