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Probabilistic linear prediction

and maximum likelihood



Outline of the lecture

In this lecture, we formulate the problem of linear prediction using 
probabilities. We also introduce the maximum likelihood estimate and 
show that it coincides with the least squares estimate. The goal of the 
lecture is for you to learn:

� Multivariate Gaussian distributions� Multivariate Gaussian distributions
� How to formulate the likelihood for linear regression
� Computing the maximum likelihood estimates for linear 
regression.
� Understand why maximum likelihood is used.



Univariate Gaussian distribution



Sampling from a Gaussian distribution



The bivariate Gaussian distribution



Multivariate Gaussian distribution



Bivariate Gaussian distribution example

Assume we have two independent univariate Gaussian variables

x1 = N ( µµµµ1 , σ σ σ σ 2 ) and x2 = N ( µµµµ2 , σ σ σ σ 2 )

Their joint distribution p( x1, x2 ) is:



Sampling from a multivariate Gaussian distribution



We have n=3 data points y1 = 1, y2 = 0.5, y3 = 1.5, which are 
independent and Gaussian with unknown mean θθθθ and variance 1111:

yi ~ N ( θθθθ , 1111 ) = θθθθ + N ( 0 , 1111 ) 

with likelihood P( y1 y2 y3 |θ θ θ θ ) = P( y1 |θ θ θ θ ) P( y1 |θ θ θ θ ) P( y3 |θ θ θ θ ) . Consider 
two guesses of θθθθ, 1 and 2.5. Which has higher likelihood? 

Finding the θθθθ that maximizes the likelihood is equivalent to moving the 
Gaussian until the product of 3 green bars (likelihood) is maximized.Gaussian until the product of 3 green bars (likelihood) is maximized.



The likelihood for linear regression

Let us assume that each label yi is Gaussian distributed with mean xi
Tθθθθ

and variance σ σ σ σ 2, which in short we write as:    

yi = N ( xi
Tθθθθ , σ σ σ σ 2 ) = xi

Tθθθθ + N ( 0, σ σ σ σ 2 ) 





Maximum likelihood



The ML estimate of θθθθ is:



The ML estimate of σσσσ is:



Making predictions

The ML plugin prediction, given the training data D=( X , y ), for a 
new input x*  and known σ σ σ σ 2 is given by:

P(y| x* ,D, σ σ σ σ 2 )  =    N (y| x*
T θθθθ ML , σ σ σ σ 2 )



Frequentist learning and maximum likelihood 

Frequentist learning assumes that there exists a true model, say with 
parameters θθθθοοοο . 

The estimate (learned value) will be denoted θθθθ. 

Given n data, x1:n = {x1, x2,…, xn }, we choose the value of θθθθ that has 
more probability of generating the data. That is,

^

more probability of generating the data. That is,

θ θ θ θ ==== arg max   p( x1:n |θ θ θ θ )
θθθθ

^



Bernoulli: a model for coins

A Bernoulli random variable r.v. X takes values in {0,1}

θθθθ if    x=1
p(x|θθθθ ) = 

1- θθθθ if    x=0

Where θθθθ 2 2 2 2 (0,1).  We can write this probability more succinctly as Where θθθθ 2 2 2 2 (0,1).  We can write this probability more succinctly as 
follows:



Entropy

In information theory, entropy H is a measure of the uncertainty 
associated with a random variable. It is defined as: 

H(X) =   - p(x|θθθθ ) log p(x|θθθθ )

Example: For a Bernoulli variable X, the entropy is:

ΣΣΣΣ
x

Example: For a Bernoulli variable X, the entropy is:



MLE - properties
For independent and identically distributed (i.i.d.) data from p(x|θ0),
the MLE minimizes the Kullback-Leibler divergence:

θ̂ = argmax
θ

n∏

i=1

p(xi|θ)

= argmax
θ

n∑
log p(xi|θ)= argmax

θ

∑

i=1

log p(xi|θ)

= argmax
θ

1
N

N∑

i=1

log p(xi|θ)−
1
N

N∑

i=1

log p(xi|θ0)

= argmax
θ

1
N

N∑

i=1

log
p(xi|θ)

p(xi|θ0)

−→ argmin
θ

∫
log

p(xi|θ0)

p(xi|θ)
p(x|θ0)dx



MLE - properties∑

i=1
|

argmin
θ

∫
log

p(xi|θ0)

p(xi|θ)
p(x|θ0)dx



MLE - properties
Under smoothness and identifiability assumptions,
the MLE is consistent:

θ̂
p
→ θ0

or equivalently,

plim(θ̂) = θ0

or equivalently,

lim
N→∞

P (|θ̂ − θ0| > α)→0

for every α.



MLE - properties

The MLE is asymptotically normal. That is, as N →∞, we have:

θ̂ − θ0 =⇒ N(0, I−1)

where I is the Fisher Information matrix.

It is asymptotically optimal or efficient. That is, asymptotically, it has
the lowest variance among all well behaved estimators. In particular itthe lowest variance among all well behaved estimators. In particular it
attains a lower bound on the CLT variance known as the Cramer-Rao

lower bound.

But what about issues like robustness and computation? Is MLE always
the right option?



Bias and variance
Note that the estimator is a function of the data: θ̂ = g(D).

Its bias is:
bias(θ̂) = Ep(D|θ0)(θ̂)− θ0 = θ̄ − θ0

Its variance is:
V(θ̂) = Ep(D|θ0)(θ̂ − θ̄)

2

Its mean squared error is:Its mean squared error is:

MSE = Ep(D|θ0)(θ̂ − θ0) = (θ̄ − θ0)
2 + Ep(D|θ0)(θ̂ − θ̄)

2



Next lecture

In the next lecture, we introduce ridge regression and the Bayesian 
learning approach for linear predictive models.


