Probabilistic linear prediction
and maximum likelihood

Nando de Freitas
January, 2013
University of British Columbia




Outline of the lecture

In this lecture, we formulate the problem of linear prediction using
probabilities. We also introduce the maximum likelihood estimate and
show that it coincides with the least squares estimate. The goal of the
lecture isfor you to learn:

O Multivariate Gaussian distributions

 How to formulate the likelihood for linear regression

1 Computing the maximum likelihood estimates for linear
regression.

1 Understand why maximum likelihood is used.



Univariate Gaussian distribution
The probability density function (pdf) of a Gaussian distribution is
given by
p(x) = Ae mz =", x ~N(p,o°)
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where 1 is the mean or center of mass and o2 is the variance.
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Sampling from a Gaussian distribution
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Multivariate Gaussian distribution

Let v € R then pdf of an n-dimensional Gaussian is eiven b
y ;

where

and
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Bivariate Gaussian distribution example

Assume we have twadependent univariate Gaussian variables
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Sampling from a multivariate Gaussian distribution
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We haven=3 data pointsy; =1,y, = 0.5, y; = 1.5, which are
iIndependent and Gaussian withknown meanédand variancer.

Vi~ (8 ,1) = 6+ 4(0, 1)

with likelihoodP(y, v, y5|8) = P(vy, |6 ) P(vy,|8) P(y;|8) . Consider
two guesses df, 1 and 2.5. Which has higher likelihood?

Finding the&that maximizes the likelihood is equivalent to moving the
Gaussian until the product of 3 green bars (likelihood) is maxin
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The likelthood for linear regression

Let us assume that each labpels Gaussian distributed with meap &
and varianceo?, which in short we write as:

= (x'0,0°%) = x'0+4(0,07?)

"o AD B
p(y|X9990) — Hp(yi‘xi,Q,O'). 6 e 8e






Maximum likelthood

The maximum likelihood estimate (MLE) of 6 is obtained by tak-
ing the derivative of the log-likelihood, log p(y|X, @, 0). The goal is to
maximize the likelihood of seeing the training data y by modifying the
parameters (6, o).

p(y|X.0,0) = (2m0?) " e mz (X0 (v -X0)



The ML estimate ofis:
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The ML estimate ofis:
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Making predictions

The ML plugin prediction, given the training ddda( X , y), for a

new inputx. and knowno? is given by: '——\L_—'A A
7®ML G

P(y|x.,.D, 2) = N (|xT 8y, ,o?)
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Frequentist learning and maximum likelithood

Frequentist learning assumes that there exists a true model, say with
parametersd, .

The estimate (learned value) will be deno%bd

Givenn data,x,., = {Xy, X,,..., %, }, we choose the value 6that has
more probability of generating the data. Tha

0= argmax p(x,,|6)
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Bernoulli: amodel for coins -

A Bernoulli random variabler.v. X takes values in {01}“* b

_ ‘)(x\e\
9 If X:]_ Lo q:.‘
1- 8 If x=0 | | /x

Whered & (0,1). We can write this probability more succinctly
follows:
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P(X[(-)\ = @x (\- @)M



Entropy

In information theory, entropM is a measure of the uncertainty
associated with a random variable. It is defined as:

H(X) = -2 p(x|6) log p(x|6)
X

Example For a Bernoulli variableX, the entropy is

\
X by X ~y
1 () = -ZOG (- o) [09{@ (\-9)]

:-[Q-e\ log {1-6) + &\ @]



MLE - properties

For independent and identically distributed (i.i.d.) data from p(z|0y),
the MLE minimizes the Kullback-Leibler divergence:
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MLE - properties
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MLE - properties

Under smoothness and identifiability assumptions,
the MLE is consistent:

0> 0,

or equivalently,

i

plim(0) = 6,

or equivalently, l ”

ngnoo P(|9 — 90| > Oé)-)O

for every a.



MLE - properties

The MLE is asymptotically normal. That is, as N — oo, we have:

(6- 90\/F> N, 77 Al of Qﬂlmtﬁ(i@

where [ is the Fisher Information matrix.

It is asymptotically optimal or efficient. That is, asymptotically, it has
the lowest variance among all well behaved estimators. In particular it
attains a lower bound on the CLT variance known as the Cramer-Rao
lower bound.

But what about issues like robustness and computation? Is MLE always
the right option?



Bias and variance

Note that the estimator is a function of the data:| 8 = g(D). D = 3(”/\

Its bias is: ) X _ A
bias(0) = Ep(pion)(0) =00 =0 =60 - So P(ole,)dD
Its variance is: X o
V(0) = Ey(pjo,) (8 — 0)?
Its mean squared error is:
A 2 _ A _
MSE = E,,(pjes) (0 — 00) = (6 — 00)” + Eppig,) (0 — 0)°
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Next lecture

In the next lecture, we introduce ridge regression and the Bayesian
learning approach for linear predictive models.



