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1 Random forests

In this question you will implement the training procedure for random forests. There are a few ways to go
about this, but the one you will be using is more or less the original algorithm from Leo Breiman.

In Breiman’s algorithm, each tree in the forest is trained using a bootstrapped sample of the training
data. Bootstrapping means that each tree is trained on a slightly different version of the data, which helps
ensure the trees are uncorrelated. This is explained in the pseudo-code in the lectures and also in great detail
in the random forests chapter of the book by Hastie, Friedman and Tibshirani, which is freely available online
(the link to it is on the main course webpage).

Each tree is built recursively, starting from the root. At each node a randomized search procedure is
applied to determine how the node should be split. When the best split is found, the data in the node are
partitioned according to the chosen split, and the procedure is applied recursively to split the left and right
children. Splitting continues until no acceptable split can be found or a maximum depth is reached.

The split procedure works by choosing n trials dimensions at random to search along (we will stick to
axis aligned splits to keep things simple). In each of these dimensions, it chooses a set of thresholds and
computes the information gain from splitting along each dimension at each threshold. For each dimension,
it should try enough thresholds to ensure that every possible partition is checked (choosing the thresholds
to be halfway between pairs of data points sorted along the current dimension is a good way to ensure this).

The split procedure chooses the (dimension, threshold) pair which gives the largest information gain over
all the candidates. Additionally, the split procedure must respect the parameter n min leaf by refusing to
create a split where either of the children contains fewer than n min leaf data points.

Your task is to implement the split procedure described here using the skeleton code provided at:

http://cs.ubc.ca/~mdenil/hidden/simpleforests/simpleforests.zip

The provided code handles building each tree using a bootstrapped sample of the training data and also han-
dles making predictions once the forest has been built. What is missing is the body of the find split parameters

function in rf/builder.py. This function is called when splitting each node to determine which (dimension,
threshold) should be used to split the data. You must implement this function.

There are several tests included in the root directory titled test *.py. You can run them individually
by running the file directly, e.g.

# python test forestfire.py

or you can run

# nosetests

to run them all. If you have implemented the split procedure correctly then all of these tests will pass.
Running the synthetic examples (test synthetic classification.py and test synthetic regression.py)

will generate images visualizing the predictions of the forest as well as the predictions of each tree. Example
images which show the intended output from these tests are also included with the code for comparison.

You should submit a printout of rf/builder.py with the code you wrote. Also submit a printout of the
result of running

# nosetests -vs

http://cs.ubc.ca/~mdenil/hidden/simpleforests/simpleforests.zip


in the project directory. This will verify all the unit tests pass with the correct accuracy.

Figure 1: Top row: Expected output from synthetic classification example.py. The forest prediction
is shown on the left, and the individual tree predictions on the right. Bottom row: Expected output from
synthetic regression example.py. The forest prediction is shown on the left, and the individual tree
predictions on the right.

2 Bayesian optimization with Gaussian processes

In this question you will implement a Bayesian optimization procedure using Gaussian processes (GPs). In
order to do this we will provide you with starter code that you can download from

http://cs.ubc.ca/~hoffmanm/bayesopt.zip

After unzipping, you will find the file bayesopt.py, which is where all your modifications for this assignment
will go.

2.1 Structure of the provided code

In the given code we provide a Gaussian process class GP such that (once the modifications detailed in the
next subsection are done!) one can perform the following:

gp = GP(kernel, sigma)

gp.add_data(xtrain, ytrain)

mu, s2 = gp.posterior(xtest)

The first line above creates the GP prior, given by a kernel function (which we’ll get to momentarily) and
the standard deviation of the noise. The second line adds training data to the GP, which must be in the form

http://cs.ubc.ca/~hoffmanm/bayesopt.zip


of an (n, d)-array xtrain and an n-vector ytrain. After adding this data we can then obtain the posterior
mean and variance for a collection of test points xtest which must also be an (n, d)-array (note that this n
can be different from the n used for training).

The kernel function must be a function which takes two arrays x1 and x2 of size (n, d) and (m, d) and
returns an (n,m)-array of all the pairwise kernel evaluations. We also allow for the kernel to take optional
hyperparameters, see for example the definition of the squared-exponential kernel

def sqexp_kernel(x1, x2, ell=1.0, sf2=1.0):

...

where ell and sf2 control the behavior of this kernel. When initializing the Gaussian process, any additional
named parameters will be passed to the kernel. For example to use a squared-exponential kernel with ` = 2.0
we could initialize a GP as

gp = GP(sqexp_kernel, sigma, ell=2.0)

We also provide a function to perform Bayesian optimization with GPs, gpopt, over a discrete set of
points. Given a noisy function f we can optimize this function as follows:

candidates = ... # some set of points we want to optimize at

gp = GP(sqexp_kernel, sigma=sigma)

xopt = gpopt(f, gp, acq, candidates)

The returned value xopt will be a sequence of points the algorithm “thinks are optimal” at every iteration,
i.e. xopt[-1] is the optimum found by the algorithm. The acquisition function acq is at the heart of Bayesian
optimization and should be something of the form

def acq(gp, candidates, ...):

...

This function should take a GP instance and a set of points candidates and return a vector or index
such that the highest index value corresponds to the next point that should be selected. See the expected
improvement, gpei, acquisition function for an example. Note also, that like the kernel functions defined
above any additional named parameters passed to gpopt will be passed to the acquisition function. I.e. to
use expected improvement, but with ξ = 0.8 we can run

gpopt(f, gp, gpei, candidates, xi=0.8)

2.2 Implementation

You will have to modify this file in all the locations marked with a comment of the form

# IMPLEMENT ME: ...

In particular, your task will consist of the: (1) implement the squared exponential kernel; (2) implement the
posterior computations for Gaussian processes; (3) implement the GP-UCB acquisition function. We will
detail each of these tasks below.

The code for implementing the Gaussian process is all contained within the first “block” of code, at the
top of the file. The first step is to implement a squared-exponential kernel function,

k(x, x′) = σ2
f exp(−0.5‖x− x′‖22/`).

We have provided starter code of the form

def sqexp_kernel(x1, x2, ell=1.0, sf2=1.0):

d = dist.cdist(x1, x2, ’sqeuclidean’)

k = ...

return k



We have also provided a call to the cdist function which should return an m × d matrix of the pairwise
squared distances between x1 and x2. You must then use this to implement the rest of the kernel.

Next, you must implement the posterior updates for the Gaussian process itself. Later on in the code
you will find a section of code inside the posterior(...) function that looks like

s2 -= np.diag(Kk.T.dot(k))

mu = ...

Here, mu and s2 are the mean and variance terms for each point passed in. We have provided code to compute
the variance, and you must compute the mean. Note also that you can make use of self.X, self.y, and
self.K to compute this term, where respectively these represent the set of training inputs, training outputs,
and the kernel matrix.

At this point the GP code should be fully implemented, and if you run the code (from ipython you can
just type %run bayesopt.py) it should produce the plot shown in Figure 2, which is fitting a noisy sin
function. The code that implements this demo is demo gp() and is called from the very bottom of the file
inside the main section.
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Figure 2: Using a Gaussian process to fit a noisy sin function.

Finally, the second block of code in this file implements Bayesian optimization. We have provided for
you a function gpei(...) which computes the expected improvement acquisition function. Your task is
to implement the upper confidence bound (UCB) acquisition function as discussed in class. If we let µ(x)
and σ2(x) denote the posterior mean and variance evaluated at x then at iteration t we can write the UCB
acquisition function as

ucbt(x) = µ(x) + ξ log(t)σ(x).

Your task is to implement this function, which can be found with the following code skeleton:

def gpucb(gp, x, xi=0.1):

...



Once this has been implemented the demo gp() function call at the end of the file can be replaced with
demo bo1(), which utilizes Bayesian optimization to find the maximum of the same noisy sin function.
Running this code just as before should result in a plot similar to that of Figure 3.
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Figure 3: Using a Bayesian optimization to optimize the noisy sin function. The top plot shows an example
GP at the end of the optimization process, and the bottom plot shows the result of the optimization averaged
over 30 runs.

Turn in your code along with your reproduction of the two plots produced above.

3 Gradient and Hessian for logistic regression

Derive the expressions for the gradient and Hessian of logistic regression presented in class.
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