
CPSC-540 Machine Learning 2013

Homework # 2

NAME:

Signature:

STD. NUM:

General guidelines for homeworks:

You are encouraged to discuss the problems with others in the class, but all write-ups are to be done
on your own.
Homework grades will be based not only on getting the “correct answer,” but also on
good writing style and clear presentation of your solution. It is your responsibility to make
sure that the graders can easily follow your line of reasoning.
Try every problem. Even if you can’t solve the problem, you will receive partial credit for explaining
why you got stuck on a promising line of attack. More importantly, you will get valuable feedback
that will help you learn the material.
Please acknowledge the people with whom you discussed the problems and what sources you used
to help you solve the problem (e.g. books from the library). This won’t affect your grade but is
important as academic honesty.
When dealing with python exercises, please attach a printout with all your code and
show your results clearly.

1 Bias Variance Trade-off

Prove the decomposition of the mean squared error in terms of bias and variance that was presented on the
lecture on maximum likelihood and linear prediction. (Recommended reading: The section titled Model
Selection and the Bias-Variance Tradeoff in the book of Hastie, Tibshirani and Friedman, which is
freely-available on the course website).

2 Entropy of a Gaussian Distribution

Consider the multivariate Gaussian distribution for x ∈ RN :

p(x|µ,Σ) = |2πΣ|−1/2e−
1
2 (x−µ)T Σ−1(x−µ).

Show that the differential entropy (entropy of a continuous variable) of this distribution is given by:

h(p) = −
∫
p(x) log p(x)dx =

1

2
log
{

(2πe)N |Σ|
}
.

3 Collaborative Filtering for Recommendation

Assume that user u has indicated preference for item i via the variable

Pui =

 +1 if user u liked (thumbed up) item i
0 if user u did not rate item i
−1 if user u disliked (thumbed down) item i.

We have m users and n items so that u = 1, . . . ,m and i = 1, . . . , n.
Given n movies, our first objective will be to learn a matrix of factors Y ∈ Rf×n for these movies. That

is, each movie will be described by a column vector yi ∈ Rf×1 of f factors (features). Our second objective
will be to learn a matrix of factors for the m users of the social network X ∈ Rm×f . Each user will be
described by a row vector of factors xu ∈ R1×f .

Since we have two unknowns, the method of solution will be alternating ridge regression. That is, we
first fix Y and solve for X, use this estimate of X and solve for Y, use the latest estimate of Y and solve
for X again, etc. In effect, we are estimating an approximation of P as follows: P̂ = X̂Ŷ.

In addition, we will introduce a matrix of weights cui, defined as follows:

cui = |pui|.

To compute the factors for each user, we assume the yi are given and proceed to minimize the following
quadratic cost function:

J(xu) =

n∑
i=1

cui(pui − xuyi)
2 + λ‖xu‖22 for each user u.

This is known as a weighted ridge regression problem. Note that if all the cui were equal to 1, then we would
be simply going back to the standard ridge estimates. Importantly, the addition of cui will enable us to focus
only on minimizing the error for the movies that the user actually rated!

For each user, assume we construct the diagonal matrix Cu ∈ Rn×n with diagonal entries cui. Let
pu ∈ R1×n denote the vector of preferences for user u. As shown in your last homework, the weighted ridge
regression objectives can be re-written in matrix format as follows:

J(xu) = (pu − xuY)Cu(pu − xuY)T + λxuxT
u

J(yi) = (pi −Xyi)
TCi(pi −Xyi) + λyT

i yi,

with solutions:

xu =
(
YCuYT + λI

)−1
YCupu

yi =
(
XTCiX + λI

)−1
XTCipi.

In the above, P ∈ Rm×n, X ∈ Rm×f , Y ∈ Rf×n, Cu ∈ Rn×n, Ci ∈ Rm×m, xu and pu are the uth rows of
X and P, respectively, and finally, yi and pi are the ith column of Y and P, respectively.

1. Finish implementing the alternating weighted ridge regression estimation in the code below. Note that
the code already implements the alternating ridge regression code.

from __future__ import division

import numpy as np

import pdb

MOVIES: Legally Blond; Matrix; Bourne Identity; You’ve Got Mail;

The Devil Wears Prada; The Dark Knight; The Lord of the Rings.

P = [[0,0,-1,0,-1,1,1], # User 1

[-1,1,1,-1,0,1,1], # User 2

[0,1,1,0,0,-1,1], # User 3

[-1,1,1,0,0,1,1], # User 4

[0,1,1,0,0,1,1], # User 5

[1,-1,1,1,1,-1,0], # User 6

[-1,1,-1,0,-1,0,1], # User 7

[0,-1,0,1,1,-1,-1], # User 8

[0,0,-1,1,1,0,-1]] # User 9

P = np.array(P)

print ’Raw Preference Matrix:’

print P

print ’\n’

Parameters

reg = 0.1 # regularization parameter

f = 2 # number of factors

m,n = P.shape

Random Initialization

X is (m x f)

Y is (f x n)

X = 1 - 2*np.random.rand(m,f)

Y = 1 - 2*np.random.rand(f,n)

X *= 0.1

Y *= 0.1

Alternating Ridge Regression

for _ in xrange(100):

Least-squares keeping Y fixed

X = np.linalg.solve(

np.dot(Y, Y.T) + reg * np.eye(f),

np.dot(Y, P.T)

).T

Least-squares keeping X fixed

Y = np.linalg.solve(

np.dot(X.T, X) + reg * np.eye(f),

np.dot(X.T, P)

)

print ’Alternating Ridge Regression:’

print np.dot(X,Y)

print ’\n’

Re-initialize

X = 1 - 2*np.random.rand(m,f)

Y = 1 - 2*np.random.rand(f,n)

X *= 0.1

Y *= 0.1

Alternating Weighted Ridge Regression

C = np.abs(P) # Will be 0 only when P[i,j] == 0.

for _ in xrange(100):

Each user u has a different set of weights Cu

for u,Cu in enumerate(C):

X[u] = ???

for i,Ci in enumerate(C.T):

Y[:,i] = ???

print ’Alternating Weighted Ridge Regression:’

print np.dot(X,Y)

2. Which top movie would you recommend for each user?

	Bias Variance Trade-off
	Entropy of a Gaussian Distribution
	Collaborative Filtering for Recommendation

