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ar Algebra: Matrices,
Vectors, Determinants

P T T o A A L B A & S A A P,

Linear algebra includes the theory and application of linear systems of
equations (briefly called linear systems), linear transformations, and
eigenvalue problems, as they arise. for instance, from electrical net-
works, frameworks in mechanics, curve fitting and other optimization
problems, processes in statistics, systems of differential equations, and
so on.

Linear algebra makes systematic use of vectors and matrices (Sec. °

7.1) and, to a lesser extent, determinants (Sec. 7.8); and the study of
properties of matrices is by itself a central task of linear algebra.

A matrix is a rectangular array of numbers. Matrices occur in various
problems, for instance, as arrays of coefficients of equations (Sec. 7.4).
Matrices (and vectors) are useful because they enable us to consider
an array of many numbers as a single object, denote it by a single
symbol, and perform calculations with these symbols in a very compact
form. The “*mathematical shorthand™” thus obtained is very elegant and
powerful and is suitable for various practical problems. It entered ap-
plied mathematics more than 60 years ago and is of increasing impor-
tance in various fields.

This chapter has three big parts:

Calculation with matrices, Secs. 7.1-7.3
Systems of hnear equations, Secs. 7.4-7.9
Eigenvalue problems, Secs. 7.10~7.14

and a (more abstract) optional section (7.15) on vector and inner prod-
uct spaces and linear transformations.

Thus we first introduce matrices and vectors and related concepts
(Sec. 7.1} and define the algebraic operations for matrices (Secs. 7.2,
7.33. Next we consider linear systems-—solution by Gauss elimination
in Sec. 7.4, existence of solutions in Sec. 7.6, determinants and Cra-
mer's rule in Secs. 7.8 and 7.9. Then we study eigenvalue problems in
general (Secs. 7.10, 7.11) and for important special real matrices (Sec.
7.12) and complex matrices {Sec. 7.135. Finally., we discuss the dia-
gonalization of matrices and the reduction of quadratic forms to prin-
cipal axes (Sec. 7.14). Other important concepts in this chapter are the
rank of a matrix (Secs. 7.5, 7.9) and the inverse of a matrix (Sec. 7.7}.
Applications of matrices to practical problems are shown throughout
the chapter.

NUMERICAL METHODS in Chap. 19 can be studied immediately
after the corresponding material in the present chapter.
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Prerequisite for this chapter: None.

Sections that may be omitted in a shorter course: T.12-7.15.
References: Appendix I, Part B.

Answers to problems: Appendix 2.

Basic Conceptls

The first three sections of this chapter introduce the basic concepts and rules
of matrix and vector algebra. The main application to linear systems of
equations begins in Sec. 7.4.

A matrix is a rectangular array of numbers (or functions) enclosed in
brackets. These numbers {or functions) are called entries or elements of the
matrix. For example,

2 0.4 8 6 a b e* 3x

(hH , . la, ay, agl, ,
5 -3 0 I L "2 73 ¢ d e x2

are matrices. The first has two “rows”’ (horizontal lines) and three
“columns™ (vertical lines). The second consists of a single column, and we
call it a column vector. The third consists of a single row, and we call it a
row vector. The last two are square matrices, that is, each has as many rows
as columns (two in this case).

Matrices are practical in many applications. For example, in a system of
equations such as

Sx —2y+ z=20

Ix + 4z = 0

the coefficients of the unknowns x, y, z are the entries of the coefficient
matrix, call it A,

3 -2 1

A =

gy

3 0 4

which displays these coefficients in the pattern of the equations. Sales figures
for three products 1, 11, 111 in a store on Monday (M), Tuesday (T), - -~
may for each week be arranged in a matrix 2

M T W Th F S
fa0 33 81 o a1 47 1
o 12 18 S0 S0 %ﬁ% I
lo o o 27 8 )
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and if the company has ten stores, we can set up ten such matrices, one for
each store: then by adding corresponding entries of these matrices we can
get a matrix showing the total sales of each product on each day. Can you
think of other data for which matrices are feasible? For instance, in trans-
portation or storage problems? Or in recording phone calls, or in listing
distances in a network of roads?

General Notations and Concepts

Our discussion suggests the following. We denote matrices by capital bold-
face letters A, B, C, - - -, or by writing the general entry in brackets; thus,
A= {ajk], and so on. By an m X n matrix (read "'m by n matrix’’) we mean
a matrix with m rows, also called row vectors, and n columns, also called
column vectors of the matrix. Thus, an m X n matrix A is of the form

dyy (312 e ay,
a a e a
21 22 2n
(2) A = [ay] =
“ami “mz T amn_

Hence the matricesin (IYare 2 ¥ 3,2 x 1,1 x 3,2 x 2, and 2 x 2.

In the double-subscript notation for the entries, the first subscript always
denotes the row and the second the column in which the given entry stands.
Thus a,y is the entry in the second row and third column.

Ifm = n, we call A ann x n square matrix. Then its diagonal containing
the entries a,,. ay,, " = - , 4, is called the main diagonal or principal diagonal
of A. Thus the last two matrices in (1) are square. Square matrices are
particularly important, as we shall see.

A submatrix of an m X 2 matrix A is a matrix obtained by omitting some
rows or columns (or both) from A. For convenience, this includes A itself
{as the matrix obtained by omitting no rows or columns of A).

EXAMPLE 1 Submatrices of a matrix

The 2 o« 1 oopsiri

contns three 2o« 2 submatnices, namely.

« 1 submatrices (the columa vectorsh.
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{.{3}3 ﬁlzi. {ail Gi?)l’ {612 ‘113}*
lay, ag) lag  agl  lem axml

and six | x | submatrices, {ay). fagl - {agq). | ]

Vectors

A vector is a matrix that has only one row—then we call it a row vector-—
or only one column—then we call it a column vector. In both cases we call
its entries components and denote the vector by a lowercase boldface letter
such as a, b, - - -, or by its general component in brackets, a = {aj}, and
so on. Thus

a=1la ay - a]

is a row vector, and

bm

is a column vector. It will depend on our purpose as to which of the two is
more practical, but we often want to switch from one type of vector to the
other. We can do this by “‘transposition,”’ which is indicated by T; thus, if

4
b = 0}, then b =104 0 -7k
~7

Conversely, if

Lo

a = [3 3 i1, then al =

[

peoe

Transposition

It is practical to define transposition for any matrix. The transpose A7 of an
m x n matrix A = [a,] as given in (2) is the n x m matrix that has the
first row of A as its first column, the second row of A as its second colun.
and so on. Thus the transpose of A in 2y 1s




EXAMPLE 2

EXAMPLE 1
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Ay Ay
a a o ooa
, 12 22 m2
T o o
3 A {(lk}
__{"’In Qon = aan

Transposition of a matrix
If

[

Symmetric matrices and skew-symmetric matrices are square matrices whose
transpose equals the matrix or minus the matrix, respectively:

%

AT = {(symmetric matrix), AT = —A (skew-symmetric matrix).

These matrices are quite important, and we shall use them often in this
chapter.

Rules of matrix calculation follow in the next section and problems at the
end of it,

Matrix Addition,
Scalar Multiplication

What makes matrices and vectors really useful is the fact that we can
calculate with them almost as easily as with numbers. Indeed, practical
applications suggested the rules of addition and multiplication by scalars
(numbers), which we now introduce. (Multiplication of matrices by matrices
follows in the next section.)

We say briefly that two matrices have the same size if they are both m x n,
for instance, both 3 x 4. We begin by defining equality.

Definition. Equality of matrices

Two matrices A = la,Jand B = iéﬁj are equal, written A = B, if and i??%i}‘
if they have the samé size and the corresponding entries are equal, that 1s,
ay, = by dyy = b, and so on.

Equality of matrices
The definition implics that

A = | E a8 o= i if and only if '
e dyy | é_‘ ! by 3odgy = I
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EXAMPLE 3
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A canniot be equal to, say, a 2 X 3 matrix. A column vector cannot be equal to a row vector,
by the very definition of equality. 3

We shall now define two algebraic operations, called matrix addition and ‘
scalar multiplication, which turn out to be practical and very useful in
applications, as we shall see later in this chapter.

Definition. Addition of matrices
Addition is defined only for matrices A = {ajk} and B = [bjk} of the same

and their sum, written A + B, is then obtained by adding the corresponding
entries. Matrices of different sizes cannot be added.

As a special case, the sum a + b of two row vectors or two column
vectors, which must have the same number of components, is obtained by
adding the corresponding components.

Addition of matrices and vectors

-4 6 3 s —1 0 1 3
f A= and B = , then A+B= .
0 1 2 3 i 0 3 7

Our present A and AT cannot be added. B in Example | and the present A cannot be added.
Ifa=15 7 2landb =[~-6 2 0], thena + b = [~1 9 2} ]

Lt

g

Definition. Scalar multiplication (Multiplication by a number)

The product of any m X n matrix A = [ajk} and any scalar ¢ (number ¢),
written cA, is the m X n matrix cA = [cajkl obtained by multiplying each
entry in A by ¢.

Here ( — DA is simply written — A and is called the negative of A. Similarly,
(—k)A is written —kA. Also, A + (—B) is written A — B and is called the
difference of A and B (which must have the same sizel).

Scalar multiplication

if
[27 -18
A-lo 03]
9.6 -4.5
then
27 18] [3 -2 o]
Méx;@ ~osl, %’ffx 0 J 0A =10 {}i. '
[-90 45 19 ‘j o o

An m % n zero matrix is an m x n matrix with all entries zero. 1t is
denoted by 0. The last matrix in Example 3 is the 3 x 2 zero matrix.

From the definition we see that matrix addition enjoys properties quite
similar to those of the addition of real numbers: namely, for matrices of the
same size we have
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{a) A+ B =B + A

n (b U+ V)+W=UH+(V+W (written U + V + W)
{c} A+ 0 = A
(d) A+ (—-A) = §.

Furthermore, from the definitions of matrix addition and scalar multiplication
we also obtain

{a) (A + By = cA + ¢B

) {b) {c + kKA = cA + kA
<) c(kA) = (ck)A (written ckA)
(d) 1A = A, ]

For the transpose (Sec. 7.1) of a sum of two m x n matrices we have
(3) (A +B)7T = AT 4+ BT,
as the reader may prove; also,
{4) (cA)T = cAT.

One more algebraic operation, the multiplication of matrices by matrices,
follows in the next section. Then we shall be ready for applications.

Problem Set 7.1-7.2

3 21 o -2 v+ o 2 6 1 -
LetA = , B = , €= . D= .
4 1 L‘ s {4 0 1 s -2 13

Find the following expressions or give reasons why they are undefined.

1A+ B, B+ A 2. 4A, -3C, 3A ~ IB, YA - B)
3.2C 4 2D, 2AC + D) 4 A+B+C.C-D
S.A - C A+ 00, C + 0A 6. A+ AT (A + B)T,AT + BT.(AT)T
7. 4B + S8BT, 4B + 2B 8 20y, 2C7, ¢ + CT,CT -~ 2D7

4 1 0] 0 :ef«ﬂ 2]
LetK =11 3 2/ L=1|-2 o ol a= 1] b=

0 2 s L8 -6 0] 4]

Find the following expressions or give reasons why they are undefined.

9. K+ L,K - L 10. 3(a ~ 4bj, 3a — 12b, K + 2,8 + a'
LK - K7 L+ L7 a% « 7 12. 3K + 4L, 6K + BL

13. K+ K + L - LT 14, 6a’ - 9b7 3(2a - 3b)7.33b7 ~ 2a7)
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Symmetric and skew-symmetric matrices

15. Show that K is symmetric and L is skew-symmetric.

16. Show that for a symmetric matrix A = {a}k} we have a, = ay;

17. Show thatif A = {"3,-‘1(1 is skew-symmetric, then ay = g in particular, a; = 0.

18. Write A (in Probs. 1-8) as the sum of a symmetric and a skew-symmetric matrix.

19. Write B as the sum of a symmetric and a skew-symmetric matrix.

26, Show that if A is any square matrix, then § = %{A + A7) is symmetric,
= LA — ATy is skew-symmetric, and A = S + T.

21. Prove (3) and (4) in Sec. 7.2 as well as (ADT = AL

Use of matrices in modeling networks. Matrices have various engineering applications,

as we shall see. For instance, they may he used to characterize connections {in

electrical networks, in nets of roads connecting cities, in production processes, ete.),
as follows.

22. (Nodal incidence matrix) Figure 131 shows an electrical network having 6 branches
{connections) and 4 nodes {points where two or more branches come together).
One node is the reference node (grounded node, whose voltage is zero). We
number the other nodes and number and direct the branches. This we do arbi-
trarily. The network can now be described by a matrix A = {ajk}, where

+ 1 if branch k leaves node @
ap = {—Vif branch k enters node @
0 if branch k does not touch node @ .

A is called the nodal incidence matrix of the network. Show that for the network
in Fig. 131, A has the given form.

3
@/é\ Branch 1 2 3 4 5 6
> 5
0

4
) 6 Node (2) |0 1 0

(Reference node) Node 1.,0 0 1 6 =1 -1}

o

Fig. 131. Network and nodal incidence matrix in Prob. 22

23, Find the nodal incidence matrix of the electrical network in Fig. 132A.

(A) Problem 23 (B) Problem 24

Fig. 132. Electrical network and net of one-way streels
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24. Methods of electrical network analysis have applications in other fields. too.
Determine the analog of the nodal incidence matrix for the net of one-way streets
(directions as indicated by the arrows) shown in Fig. 132B.

Sketch the network whose nodal incidence matrix is

o o -1 -1 0 o -1 1 0 0
e T S R R U A B S T T
S 00 0 i Lo o —1 i

28. (Mesh incidence matrix} A network can also be characterized by the mesh in-
cidence matrix M = [mjk}, where

+1if branch & is in mesh| j ‘and has the same orientation

my = ¢ - 1if branch & is in mesh| j !and has the opposite orientation
0 if branch & is not in mesh

where a mesh is a loop with no branch in its interior {or in its exterior). Here, *
the meshes are numbered and directed (oriented) in an arbitrary fashion. Show
that for the network in Fig. 133, the matrix M has the given form.

-

[T
o
i

t

—

— D

—
!
E -
=3
-
-

Fig. 133. Network and matrix M in Problem 28

Matrix Multiplication

As the last algebraic operation we shall now define the multiplication of
matrices by matrices. This definition will at first look somewhat artificial,
but afterward it will be fully motivated by the use of matrices in linear
transformations, by which this multiplication is suggested.

Definition. Multiplication of a matrix by a matrix
The product C = AB (in this order) of an m x n matrix A — {a;) and an
r X p matrix B = {fz}gj is defined if and only if r = n, that is,

Number of rows of 2nd factor B = Number of columns of Ist factor A,

and is then defined as the m x p matrix C = [c ] with enlries

(n Chp = 2 aﬁb& == aﬂb}k + 3}2,{12}; + - =gk Q}g{;ﬁg




Sec. 7.3 Matrix Multiplication 335

(where j = 1, -+« ,mand k = 1, -, p) that is, multiply each entry in
the jth row of A by the corresponding entry in the kth column of B and then
add these n products. One says briefly that this is a “‘multiplication of rows
into columns.”’ Figure 134 illustrates this.

kth cotlumn
A 8 = c
¢ r - 5 r 5
i apy a2 - Ha b1y b‘kl’”‘blh”-b}péz cyp €12 »»Cu~»61;;?"
! azy @37 - - @2 bay buz o boa oo bop | i ¢pp Cpz - €2k - - C2p
| ! . . S !
I . 5 Gce  oml ood S %an‘w& :
jthrow | ajy G ... Gjn 5 e e e §§ €1 ciz - G- Cp i
m 1ows ' o o ’IE L m rows
B oo |) SR
e
p columns
E Lam} B2 - - Qmp Cm1 CmZ - Pmk o Cmp
A~ L o
n columns p columns
Fig. 134. Matrix multiplication AB = C
Examples. Properties of Matrix Multiplication
EXAMPLE 1 Matrix multiplication
4 3 4.2+ 31 4-5+3-6 1 38
2 5
AB = | 7 2 [ h}: 7-24+2-1 7.5+ 2-61 =16 471.
1 6
9 0 9.2+0-1 9-54+0-6 18 45

Here Ais3 x 2and B is 2 = 2, so that AB comes out 3 X 2, whereas BA is not defined. |

EXAMPLE 2 , Multiplication of a matrix and a vector

4 2113 12+ 10 22 3414 2 i
- = whereas is undefined.
18]S 3+ 40 43 st 8

EXAMPLE 3 Products of row and column vectors

;‘t (; 106 ﬂ
3 6 nl2l=09 }3;3 6 1=16 12 20 '
4J | 4 2 24 .é

EXAMPLE 4 CAUTION! Matrix multiplication is not commutative, AB # BA in general
This is ilustrated by Examples 2 and 3, but also holds for square matrices; for instance,

{9 3} L G 143 9. (~4) +3-5] 15 —21)
-2 ojlz s S l-2o1t0 (~n (-4 +0-5] |2 5J

whereas

[ m{i { 9 3 Lo (-4 (-n 1-y+c-a-0]  [17 3] 4
i ! = - :
L2 sjl-2 of [29+s5 D 1-3+5-0 86

ot

Pk
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EXAMPLE 5 AB = 0 does not necessarily imply A=00rB = 0orBA =0
[r i} [Mz z} " 0 e} {4 !
g7 (I 00 Lot

We have thus discovered the two properties

T
pr——
[
S
i

i
[
-

(2a) AB # BA in general
and

(2b) AB = 0 does not necessarily imply A =0 or B = 0 or BA = 0,

by which matrix multiplication differs from the multiplication of numbers.
Hence, always observe the order of factors very carefully! To emphasize
this, we say that in AB, the matrix B is premultiplied, or multiplied from the
left, by A, and A is postmultiplied, or multiplied from the right, by B. More
about (2b) will be said in Sec. 7.7. The other properties of matrix multipli-
cation are similar to those of the multiplication of numbers, namely

3

(¢}  (kA)B

ft

KAB) = A(KB) written kAB or AkB

il

(2) (d) A(BC) (AB)C written ABC
(e) (A + B)C = AC + BC

) CA + B)

i

CA + CB

provided A, B, and C are such that the expressions on the left are defined;
here, k is any scalar.

Special Matrices

Certain kinds of matrices will occur quite frequently in our further work,
and we now list the most important ones of them.

Triangular matrices

A square matrix whose entries above the main diagonal are all zero is called
a lower triangular matrix. Similarly, an upper triangular matrix is a square
matrix whose entries below the main diagonal are all zero. For instance,

C1 o ol (1 6 ~I?

| |
T, = %ﬁ 3 @f and T, = ge 2 3
L s 0 2 i{} 0 4]

are lower and upper triangular, respectively. An entry on the man diagonal
of a triangular matrix may be zero or not.
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Diagonal matrices

A square matrix A = [aﬁ] whose entries above and below the main diagonal
are all zero, that is, a; = 0 for all j # k, is called a diagonal matrix. For

example,
2 0 0 2 0 0
0 0 0 and 0 2 0
0 0 -4 0 0 2

are diagonal matrices.
A diagonal matrix whose entries on the main diagonal are all equal is called
a scalar matrix. Thus a scalar matrix is of the form

¢ 0 0]
0 ¢

S =
0 0 c]

where ¢ is any number. The name comes from the fact that an n X n scalar
matrix S commutes with any n X n matrix A, and the multiplication by S
e has the same effect as the multiplication by a scalar,

3) AS = SA = cA.

In particular, a scalar matrix whose entries on the main diagonal are all
1 is called a unit matrix and is denoted by I or simply by L. For I, formula
(3) becomes

(4) Al = 1A = A,

For example, the 3 x 3 unit matrix is

Transpose of a Product

The transpose (see Sec. 7.1} of a product equals the product of the transposed
factors. taken in reverse order,

TR

(5
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The proof of the useful formula (5) follows from the definition of matrix
multiplication and is left to the student.

EXAMPLE 6 Transposition of a product
Formula (5) is illustrated by

(AB)T -

30 214 o [ 30 4 15
BTAT = -1 L ) i
7 8l 2 s 0o 16 55

i
Fie]
Fod
| I
] Lot
e
LT
i
e
>
i
é Lt
<
>
el -
Ly L
]

o
[
i
Rl
f

Inner Product of Vectors

This is just a special case of our definition of matrix multiplication, which
occurs frequently, so that it pays to give it a special name and notation, as
follows.

If a and b are column vectors with » components, then a” is a row vector,
and matrix multiplication of these vectors gives a 1 x 1 matrix, thus a real

number, which is called the inner product or dot product of a and b and is
denoted by asb; thus

by
1
(6) asb=a'b=[a - - al| | =3 a)by = ab, + - + ab,.
: i1
b

n

Inner products have interesting applications in mechanics and geometry,
as we shall see in Sec. 8.2. At present we shall use them to express matrix -
products in a condensed form, which is often quite useful.

Product in Terms of Row and Column Vectors

Matrix multiplication is a multiplication of rows into columns, as we know,

and we can thus write (1} in terms of inner products. Indeed, every entry
of C = AB is an inner product.

[

€y, = ay+by = (first row of Aj«{first column of B}
C1o = a;+b, = (first row of Aj«(second column of B)

and so on, the general term being

N
H
E

= {jzh row o{ s&} {idh column sf B}
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Accordingly, if we write A in terms of its row vectors,

le a, = lay ay A
a. | a, = la Uy =~ lg]
A = 2 7 where 2 21 22 on
-
a_| a_ = la a ceeoa,
m n mi m mn
and B in terms of its column vectors, B = (b, by bp}, where
by, | by | by |
b b b
_ 21 . 22 . 2p
b, = b, = s , bp =
Lbnl_ Lbnz_. LbﬁP,

we see from (1) or (7) that the product C = AB can be written

asb,  apb, a;+b, |
@) BT L T 2Py
L2, by a,-b, T am'bp,

This idea sometimes helps in applications to see more clearly what is going
on.

Furthermore, Ab, is a column vector

dyy c “m_i ﬁi’xﬂ [ a;+b;

il T {inm a??} * b}

b

i

ni

and (8) shows that this is the first column of AB. Similarly for the other
columns of AB, so that we can write :

) AB = [Ab, Ab, - AbJ

a formula that is often useful ifor instance, in Sec. 7143




340 Linear Algebra. Matrices, Vectors, Determinants Chap. 7

EXAMPLE 7 Product in terms of row and column vectors
Writing a 2 % 2 matrix A in terms of row vectors. say,

ayy 2 {‘31 a; = [ay, dy)
where

3, ay = lay,  ay)

and a 2 % 2 matrix B in terms of column vectors, say,

f

B = J = [b, ‘bz} where b, = . b, =

we see that (8) takes the form

ay a;+by apeby apbyy + apby  ayby + agb,,
AB = | b, by =

ay ayeby  ay.by aybyy ¥ agebyy  aybyy +oagby, | s
Also, AB = [Ab,  Ab,] by (9). (]

Motivation of Matrix Multiplication

Matrix multiplication may look somewhat strange at first sight, but there is
a good reason for such an ‘‘unnatural’” definition, which comes from the
use of matrices in connection with *‘linear transformations.”” To see this,
we consider three coordinate systems in the plane, which we denote as the
wyw,-system, the x, x,-system, and the Y, ¥y-system, and we assume that
these systems are related by transformations

(10) Yi T agx toapx,

Yo T Ay Xy F Ay,
and

an Xy = byywy + byw,

== ? 4o s
Xy = by w, A Doywsy

which are (special) linear transformations. By substituting (11} into (10} we
see that the y, y,-coordinates can be obtained directly from the W Wy COOT-
dinates by a single linear transformation of the form

(12) Vi T oWyt Cppwy

Yo T Oy Wy b Copwy

Now this substitution gives




Sec. 7.3 Matrix Muttiptication 341

y, = aylbywy + biowy) + aplby Wy + bagy)

Yo = Ggylbyywy + bWy + Agglbyywy + byaWa)-
Comparing this with (12), we see that we must have

ey = dapby t dyybgy Cp = apbyp ayyby,

Cop = Uybyy T Ayby €2 T ay by + ayby

or briefly

2
(13) Cjo = @by + Gpby = 2 by jok=1,2.

i=1

Thisis (D withm =n =p = 2.

What does our calculation show? Essentially two things. First, matrix
multiplication is defined in such a way that linear transformations can be
written in compact form, using matrices; in our case, (10) becomes

y ayy Qg X
(10*) y = Ax where y = ! , A= ! 12 , X = '
Yy gy Goy X
and (11) becomes
x b b w
(11*) x = Bw where x = ! , B = Tz , oW o= !
Xg byy by W2

Second, if we substitute linear transformations into each other, we can obtain
the coefficient matrix C of the composite transformation (the transformation
obtained by the substitution) simply by multiplying the coefficient matrices
A and B of the given transformations, in the right order suggested by the
substitution: from (10%), (11%), and {12y we get

y = Ax = A(Bw) = ABw = Cw, where C = AB.

For higher dimensions the idea and the result are exactly the same; only
the number of variables changes. We then have m varniables y,. ~ -, ¥y
and n variables xy, -+, X, and p variables w, -~ - . W, The matrix A is
m % n, the matrix B is n x p, and C is m % p, as in Fig. 134. And the
requirement that C be the product AB leads to formula (1) in its general
form. This completely motivates the definition of matrix multiplication.

We shall say more about {general) linear transformations and related

matrices in Sec. 7.15, after we have gained more experence with matrices
by considering linear systems of equations, beginning in the next section.
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An Application of Matrix Multiplication

EXAMPLE 8 Stochastic matrix. Markov process

Suppose that the 1993 state of land use in 4 ey of S0 square miles of (nonvacant) area is

I (Residentially usedy 0%
H (Commercially used) 20%
HE  iIndustrially used) S0%.

Find the states in 1998 and 2003, assuming that the transition probabilities for S-year intervals

are given by the following matrix A = {ajk}A

To | To il To 1

From | 0.8 0.1 0.1
From I 0.1 7 0.2
From 111 4 0.1 09_}

Remark. A square matrix with nonnegative entries and row sums all equal to | is called a

stochastic matrix. Thus A is a stochastic matrix. A stochastic process for which the probabil

of entering a certain state depends only on the last state occupied (and on the matrix governing

the process) is called a Markov process.! Thus our example concerns a Markov process.

Solution. From the matrix A and the 1993 state we can compute the 1998 state

I (Residentiall  0.8-30 + 0.1-20+ 050 = 26 {5}
1 (Commercial) 0.1-30 +0.7-20 +0.1-50 = 22 [7]

HE  (Industrial) 0130 +0.2-20 + 0.9 50 = 32 (%)

The sum is 100%, as it should be. We write this in matrix form. Let the column vector x denote

the 1993 state; thus, x7 = [30 20 501 Let y denote the 1998 state. Then

0.8 0.1 0.1
= xTA = {30 20 50} 101 0.7 021 = {26 22

A
L
Tod

1o 0.1 0.9
Simtlarty, for the vector z of the 2003 state we get, as the reader may venfy.

27 = yTA = A = xTAZ = 3 132 sig)

2

Answer. In 1998 the residential area will he

(H square males) and the indusirial 3296 106 sguare mules). For 2003, the corresponding figures

This 1s the end of the first portion of Chap. 7, in which we have defined
the rules of matrix and vector algebra. We are now ready for applications.,
beginning in the next section,

YANDREL ANDREIEVITCH MARKOV (1851922}, Russian mathematician, known for
his work in probabidity theory.

T 113 square miles) the commercial 22%
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Problem Set 7.3

P 1 0o 1 L0 —1

Leta = || B=1l0 -2, C=|2 3 0 d = [l 0 2]
}j 2 3 10 3 41

Find those of the following expressions that are defined.

1. CB, B'C7, BCT 2. C%,C3,CCt, C'C

3. Ca, Cd", CTd7 4. B7a, Bd, dB, ad

5. B'C,B'B 6. BBY, BB'C, BB'a

7. aa, a'Ca, dCd” 8. dd7, d'd, adB, adBB7

9, Prove (5).

10. Find real 2 x 2 matrices {(as many as you can)} whose square is 1, the unit matrix.

1. Find a2 x 2 matrix A # 0 such that A% = 0.

12. Find two 2 x 2 matrices A, B such that (A + B)2 # A% + 2AB + B2

13. (Idempotent matrix) A matrix A is said to be idempotent if A% = A. Give examples
of idempotent matrices, different from the zero or unit matrix.

14, Show that AAT is symmetric.

15. Find all real square matrices that are both symmetric and skew-symmetric.

16. Show that the product of symmetric matrices A, B is symmetric if and only if A
and B commute, AB = BA.

Special linear transformations were used in the text to motivate matrix multiplication,
and we add some problems of practical interest. (Linear transformations in general
follow in Sec. 7.15.)

17. (Rotation) Show that the linear transformation y = Ax with matrix

cos & —sin b X y
A = ) and X = ! N y = :
~isin @ cos 8 x, b2

is a counterclockwise rotation of the Cartesian x,x,-coordinate system in the
plane about the origin, where 0 is the angle of rotation.
18. Show that in Prob. 17,

AP =

SC{}S nf - sin 8
i sin nd cos n@ |

What does this result mean geometrically?

19. (Computer graphics) To visuzhze a three-dimensional object with plane faces
{e.g.. a cube}, we may store the position vectors of the vertices with respect 1o
a suitable x,x,x,-coordinate system (and a list of the connecting edges) and then
obtain a two-dimensional image on a video screen by projecting the object onto
a coordinate plane, for instance, anto the x,x,-plane by setting x, = 0. Tochange
the appearance of the image, we can impose a linear transformation on the
position vectors stored. Show that a diagonal matrix D with main diagonal entries
3.1, 4 gives from an x = [x ] the new position vector y = Dx, wherey, = 3x,
{streich in the x,-direction %w* a factor 31, v, = x, {unchanged). v, = %;3 {con-
traction in the x,-direction). What effect would a scalar matrix have?
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20. (Rotations in space in computer graphics) What effect would the following matrices
have in the situation described in Prob. 197

] 0 0 [‘cos ¢ 0 -smmg cos i —sin 0
0 cos ¥ -—singi, Y I 0 .ol sin g Cos 0
0 sing cos 8 sint @ 0 Cos ¢ 0 0 I

21. (Assignment problem) Contractors Cy. €y, Gy bid for jobs J,. ], J4 as the cost
matrix {in 100 000-dollar units} shcws Whai dxsagnmcm mmxmxzes the total cost
{a} under no condition? (b) Under the condition that each contractor be assigned
to only one job?

J, I, J,
C | 24 4 10 40 28 20
C, 118 6 12 A= fa,] = |34 26 14
Cy |16 8 8 36 30 20
Cost matrix for Probiem 21 Matrix A for Problem 22 <

22. If worker W, can do job J, in a, hours, as shown by the matrix A, and each
worker should do one job only, which assignment would minimize the total time?

23. (Markov process) For the Markov process with transition matrix A = {a,}. whose
entries are ayy = a4y, = 0.5, a4y, = 0.2, ay, = 0.8, and initial state [0. 7 0.7]7,
compute the next 3 states.

24. In a production process, let N mean ""no trouble™ and T “trouble.” Let the
transition probabilities from one day to the next be 0.8 for N — N. hence 0.2
for N— T, and 0.5 for T— N, hence 0.5for T— T. If today there 1s no trouble,
what is the probability of trouble 2 days after today? 3 days after today?

Linear Systems of Equations.
Gauss Elimination

The most important practical use of matrices is in the solution of linear
systems of equations, which appear frequently as models of various prob-
lems, for instance, in frameworks, electrical networks, traffic flow, produc-
tion and consumption, assignment of jobs to workers, population growth,
statistics, numerical methods for differential equations (Chap. 20), and many
others. We begin in this section with an important solution method, the
Gauss elimination, and discuss general properties of solutions in the next
sections.
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Linear systems. A linear system of m equations in n unknowns x,, -+, X,
is a set of equations of the form
f
Cayx o ayX, = by
‘ L agx, o+ agx, = b
(nH i 2171 ‘ 2)%71’4’2
|y Xy + a,,x, = b,
Thus, a system of two equations in three unknown 15
Ay Xy + Appxy todpXy = by Sxp + 20y - xy = 4
for example,
Ay Xy + QgpXy T GgaXg = by, x, = 4x, + 3x3 = 6.

The a; are given numbers, which are called the coefficients of the system.
The b, are also given numbers. If the b; are all zero, then (1) is called a
homogeneous system. If at least one b, is not zero, then (1) is called a
nonhomogenous system.

A solution of (1) is a set of numbers x,, - - -, x,, that satisfy all the m
equations. A solution vector of (1) is a vector x whose components constitute
a solution of (1). If the system (1) is homogeneous, it has at least the trivial
solution x;, = I 0.

Coefficient Matrix, Augmented Matrix

From the definition of matrix multiplication we see that the m equations of
(1) may be written as a single vector equation

2 Ax = b

where the coefficient matrix A = {ij,«,] is the m X n matnx

-y - b . —y

gy Gy T gy Xy by
dyy  Agy "7 gy .
A= | . |, and x = and b =
i Gg a??%??d : Léjm
'X?Z,‘

are column vectors. We assume that the coefficients a, are not all zero, so
that A is not a zero matrix. Note that x has n components, whereas b has
m components. The matrix
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b

11 e ain

aml amn f)m_J

is called the augmented matrix of the system (1). We see that A is obtained

by augmenting A by the column b. The matrix A determines the system (1)
completely, because it contains all the given numbers appearing in (1).

EXAMPLE 1 Geometric interpretation. Existence of solutions
Ifm = n =2 we have two equations in two unknowns Xy X

Gypty + dppxy = by
)
dypXy +odpxy = by,
If we interpret Xy, Xy as coordinates in the Xy xo-plane, then each of the two equations represents

a straight line, and {xy, x,) is a solution if and only if the point P with coordinates Xy, X, les
on both lines. Hence there are three possible cases:

(a} No solution if the lines are parallel.
{b) Precisely one solution if they intersect.
(¢} Infinitely many solutions if they coincide.

For instance,

X by = | x4y =} X+ oy = |

4y =0 X~y =0 e + 2y = 2
Case {a} Case (b) Case (¢)
by ¥ \Ky

-
®
[
“
ot
L3

If the system is homogeneous, Case {u) cannot happen, because then those two straight lines
pass through the origin, whose coordinates 0, 0 constitute the trivial soliition. The reader may
consider three equalions in three unknowns as representations of thres planes in space and
discuss the various possible cases in a similar fashion, ¥

Our simple example lustrates that a system (1} may not always have a
solution, and relevant problems are as follows. Does a given system (1) have
a solution? Under what conditions does it have precisely one solution? If it »
has more than one solution. how can we characterize the set of all solutions?
How can we obtain the solutions” We discuss the last question first and the
others in Sec. 7.6
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Gauss Elimination

EXAMPLE 2

f!

The Gauss elimination is a standard method for solving linear systems. This
is a systematic process of elimination, a method of great importance that
works in practice and is reasonable with respect to computing time and
storage demand (two aspects we shall consider in Sec. 19.1 on numerical
methods). We first explain the method by some typical examples. Since a
linear system is completely determined by its augmented matrix, the process
of elimination can be performed by merely considering the matrices. To see
this correspondence, we shall write systems of equations and augmented
matrices side by side.

Gauss elimination. Electrical network
Solve the linear system

Xy - oyt oxy = 0
Xyt Xy m Xg = 0
10x, + 25x3 = 90

20x, + 10x, = 80.

Derivation from the circuit in Fig. 135 (Optional). This is the system for the unknown currents
Xy =y, Ay =g, Xy =y in the electrical network in Fig. 135. To obtain it, we label the currents
as shown, choosing directions arbitrarily; if a current will come out negative, this will simply
mean that the current flows against the direction of our arrow. The current entering each battery
will be the same as the current leaving it. The equations for the currents result from Kirchhoff 's
laws:

Kirchhoff’s current law (KCL). At any point of a circuit, the sum of the inflowing currents equals
the sum of the outflowing currents.

Kirchhoff's voltage law (KVL). In any closed loop, the sum of all voltage drops equals the
impressed electromotive force.

Node P gives the first equation, node  the second, the right loop the third, and the left loop
the fourth, as indicated in the figure.

Solution by Gauss’s method. This system is so simple that we could almost solve it by inspection.
This is not the point. The point is to perform a systematic elimination—the Gauss elinunation—
which will work in general, also for large systems. It is a reduction to “'rriangular form™ from
which we shall then readily obtain the values of the unknowns by “back substitution.”

We write the system and its augmented matrix side by side:

Node P: i~ gt 3= 0
) Node O —y b i, = = D
|30 voits ! : 3
' Right loop: 10, + 25iy = 90

P
i

Left loop: 20§, + 10§, -

¥
oy onms
Fig 135 Network in Example 2 and equations for the currents
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Equations Augmented Matrix A

Pivot ~ x4+ xy= 0 to- ! 0
Xyl t x, - xy = 0 -1 I 0

Eliminate ——s 10 x, + 2504 = 90 0 16 25 90
200y | + Hx, = 80 20 10 0 80

First Step. Elimination of Xy
Call the first equation the pivot equation and its xy-term the pivot in this step, and use this
equation to eliminate x, (get rid of x, in the other equations. For this, do these operations:

Subtract ~ { times the pivot equation from the second equation.?

Subtract 20 times the pivot equation from the fourth equation.

This corresponds to row operations on the augmented matrix, which we indicate behind the
new matrix in (3). The result is

Xp < oxy b xy = 0 i ~1 I 4] <
0 =0 0 0 0 0] Row 2 + Row |
(3)
10x, + 25x, = 90 0 10 25 90
30x, — 20x, = 80 0 36 -20 80| Row 4 — 20 Row

Second Step. Elimination of X,

The first equation, which has just served as the pivot equation, remains untouched. We want
to take the (new!) second equation as the next pivet equation. Since it contains no Xy-term
(needed as the next pivot)—in fact, it is 0 = 0—first we have to change the order of equations
(and corresponding rows of the new matrix) to get a nonzero pivot. We put the second equation
(0 = 0) at the end and move the third and fourth equations one place up; this is called
partial piveting.? We get

Xy - = 0 -1 { 0

Pivot ——oo ’ = 90 0 10 25 90
Eliminate — 5 3ﬁx = 80 0 30 -2 80
\ = { 0 0 0 0

To eliminate x,, do:

Subtract 3 times the pivot equation from the third equation.

The result is

LTI P 0 ;ri -1 i 0
() Wxy, + 25 = 3 16 10 25 90
- 950y = - 190 0 0 -95 190 Row 3 - FRow.

6 = 0 lo o o o

To call alf the operations Usubtractions” rather than Usubtractions’ and “additions” 18 -
preferable from the viewpoint of umformity of numerical algorithms. See also Sec. 19,1

3As opposed to total pivoting, in which also the order of the unknowns is changed. Total
pivoting is hardly used in practice.
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Back Substitution, Determination of xy, X4, Xy
Working backward from the last to the first equation of this “trianguar’’ system (4), we can
now readily find xy. then x, and then 1

~95x, = — 190, Xy =y = 2 {amperes],
0, + 250, = %0, Xy = 7590 - 25xy) = iy = 4 [amperes],
Xy - Xy b Xy = g, A T R 2 {amperes].
This is the answer to our problem. The solution is unique. ]

A system (1) is called overdetermined if it has more equations than un-
knowns. as in Example 2, determined if m = n, as in Example 1, and
underdetermined if (1) has fewer equations than unknowns. An underdeter-
mined system always has solutions, whereas in the other two cases, solutions
may or may not exist. (Details follow in Sec. 7.6.) We want to illustrate next
that the Gauss elimination applies to any system, no matter whether it has
many solutions, a unique solution, or no solutions.

Gauss elimination for an underdetermined system
Solve the linear system of three equations in four unknowns

(3.05))+ 205, + 2,085 = 5.0x, = 80 30 20 20 -50 80
(5) 0.6+ 150, + 1.5x, — Sdx, = 27 06 15 1.5 -s54 27
1.2}~ 0.3z, — 0.3x, + 2.4x, = 2.1 12 -03 ~03 24 21

Solution. As in the previous example, we circle pivots and box terms to be eliminated.
First Step. Elimination of x from the second and third equations by subtracting
0.6/3.0 = 0.2 times the first equation from the second equation,
1.2/3.0 = 0.4 times the first equation from the third equation.

This gives a new system of equations

3.0x, + 2,01, + 205, — 5.0x, = 8.0 3.0 2.0 20 —50 8.0
(6) ' 1.1 o 1.1 1.1 —44 1.1

[ 0 -1 ~1d 44  ~1.1

and we circle the pivot to be used in the next step.

Second Step. Elimination of x, from the third equation of (6) by subtracting

— 1 U/11 = ~1 times the second equation from the third equation.
This gives
308, + 2.0, + 2.0x; - S.0x, = 8.0 {3%3 20 20 -50 s.zﬂ
0 fhr, + Lixy — 44x, = L1 % 0 1L -44 mz
0=0 Lo 0 o 0 0]

Back Substitution. From the second equation, 1, = 1 — xz + dxg. From this and the first
equation, 1, = I ~ z,. Since 14 and x, remain arbitrary, we have infinitely many solutions; if
we choose a value of 1, and o value of x,. then the corresponding values of v, and x, are
uniquely determuned.
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EXAMPLE 5
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Gauss elimination if a unique solution exists
Soive the system

Xy b Xyt ey =2 =1 { 2 2
3y - oy + Xy =6 3 —1 H 6
- Xy +3x2 + 413:4 =1 3 4 4
First Step. Elimination of xy from the second and third equations gives
S A P | 1 2 2|
20y + Txg = 12 0 2 7 120 Row 2 - o
2oy + 2y = 2 L 0 2 2 21 Row v Row !
Second Step. Elimination of x, from the third equation gives
METIRE SN S S 2 -1 1 2 gl
2 + Tag = 12 0 2 7 12 3
- Sxy = ~ 10 9 0 =5 —10] Row 3 o« Row
Back Substitution. Beginning with the last equation, we obtain successively X3 = 2,09 = 1,
x; = |. We see that the system has a unique solution. i

Gauss elimination if no solution exists

What will happen if we apply the Gauss elimination to a linear system that has no solution?

The answer is that in this case the method will show this fact by producing a contradiction.
For instance, consider

3x3)+ 2y 4 xy =3 3 2 I 3
g+ xy + xy =0 2 | i 0
by i+ ey + dxy = 6 6 2 4 6

First Step. Elimination of x, from the second and third equations by subtracting

2/3 times the first equation from the second equation,

6/3 = 2 times the first equation from the third equation.

This gives
3xg + Ix, 4 Xy o= 3 13 2 I 3
{ 1n 1
»%xg%g,r3~~3 0 ~% 5 2
TR R T o -2 2 o
Second Step. Elimination of x, from the third equation gives
3y by b kg = 3 5‘5 2 13
1 1
S LR T % 6 -3 3 -2
i
g = 12 ii_{} ] 1] 12
This shows that the system has no solulion ]
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The form of the system and of the matrix in the last step of the Gauss
elimination is called the echelon form. Thus in Example S the echelon forms
of the coefficient matrix and the augmented matrix are

3 2 1 3 2 1 3
0 -3 3 and 6 -+ 1 =2
0 0 0 0 0 0 12

At the end of the Gauss elimination (before the back substitution) the
reduced system will have the form

apXy FdpXy v +ayx, = by

622'}"2 T 4 C?_n'xn bz*

(8) krrxr oot krnxn = br

0= br+}

, 0=b,
where r = m (and a,;; # 0, ¢,y # 0, - -+, k5 0). From this we see that
with respect to solutions of this system (8), there are three possible cases:
(a) No solution if » < m and one of the numbers Ern* IR gm is not
zero. This is illustrated by Example S, where r = 2 < m = 3 and

b,,, = by =12

£ e -

(b) Precisely one solution if r = nand b, ,, - - -, b, if present, are

zero. This solution is obtained by solving the nth equation of (8) for x_, then
the (n — 1)th equation for x, _;, and so on up the line. See Example 2, where
r=n=3and m = 4.

{¢) Infinitely many solutions if r < nand b__,. -, b, if present, are
zero. Then any of these solutions is obtained by choosing values at pleasure
for the unknowns x,_,, - - -, x,, solving the rth equation for x, then the
{r — Djth equation for x__,, and so on up the line. Example 3 illustrates this
case.

Elementary Row Operations

To justify the Gauss elimination as a method of solving linear systems, we
first introduce two related concepts.
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Elementary operations for equations
Interchange of two equations
Multiplication of an equation by a nonzero constan:
Addition of a constant multiple of one equation 1o another equation.,

To these correspond the following

Elementary row operations for matrices
Interchange of two rows
Multiplication of a row by a nonzero constant
Addition of a constant multiple of one row 1o another row.

The Gauss elimination consists of the use of the third of these operations?
(for getting zeros) and of the first (in pivoting).

Now call a linear system S| row-equivalent to a linear system S, if §, can
be obtained from S, by (finitely many!) elementary row operations. Clearly,
the system produced by the Gauss elimination at the end is row-equivalent
to the original system to be solved. Hence the desired Justification of the
Gauss elimination as a solution method now follows from the subsequent
theorem, which implies that the Gauss elimination gives all solutions of the
original system.

(Row-equivalent systems)
Row-equivalent linear systems have the same sers of solutions.

Proof. The interchange of two equations does not alter the solution set,
Neither does the multiplication of an equation by a (nonzero!) constant c,
because multiplication of the new equation by l/c produces the original
equation. Similarly for the addition of an equation £, to an equation E,,
since by adding — E| (the equation obtained from E} by multiplying E, by
— 1) to the equation resulting from the addition we get back the original
equation, |

This justifies the Gauss elimination. Numerical aspects of it are discussed
in Sec. 19.1 (which is independent of other sections on numerical methods)

and popular variants of it (Doolittle’s, Crout’s, and Cholesky's methods) in
Sec. 19.2.

Problem Set 7.4

Solve the following linear systems by the Gauss elimination,

L2x+3y= 4 L34 3y =repy 3o-x ety = 4

AHof we send subtraction of 5 constan meftiple”” (rather than “add
ton'h as Being more o £g

HVE R geihing seron of course. this 1 3 mere matter of language.
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4. x+ 2y - Bz =0 S.3x — y+ z= =2 6. 7x - y -2z =0
2x -3y + 5:=0 x+ 5 + 2= 6 9x ~ y — 3z =10
3x + 2y - 122 =0 2¢+ 3y + z= 0 2+ dy — T2 =0
7. x+ y+ 7= —| 8. Sx + 3y =22 9 4y + 3z = 13
4y + 62 = 6 —d4x + Ty = 20 x -2y + 7= 3
y+ z= 1 9x — 2y = 15 3x + Sy = 11
0. 7x ~4y ~2z= -6 1L x~ 3y +2z= 2 12.3x -3y —7z= —4
6x + 2y + z= 3 Sx — ISy + 7z = 10 x- y+2z= 3
13. 3w —6x — vy~ z =290 M. 4w + 3x — 9 + z = |
w = 2x + S5y - 3z =0 -w + 2x - 13y + 3z = 3
2w — 4x + 3y - 7z =13 3w~ x4+ 8y - 2z = -2
15. w+ x+ ¥ =6 16. w— x+ 3y - 3z= 3
~3w - 1Tx + y + 27 =12 ~S5w + 2x - Sy + 4z = —3
4w ~ 17x + 8y — 5z = 2 3w —dx + Ty - 2z = 7
- S5x ~2y+ z=2 2w+ 3x + y — llz= 1
Modeis of electrical networks
Using Kirchhoff’s laws (see Example 2}, find the currents in the following
networks.
Ry

17. AN/ 18. -
L
3 R, Ry
oA } |,
i T ¥
; .

I} Ei
It %{
i T I
-~ B,
9. 8 voits 20.
b

156 volts
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200 400
300 x; 400
Xy X5
500 Xy 600
300 500
Problem 21 Problem 22
Wheatstone bridge Net of one-way streets

21. (Wheatstone bridge) Show that if RJR; = R|/R, in the figure, then | = 0.
(R, is the resistance of the instrument by which I 1s measured.)

22. (Traffic flow) Methods of electrical circuit analysis have applications to other
fields. For instance, applying the analog of Kirchhoff's current law, find the
traffic flow (cars per hour) in the net of one-way streets (in the directions indicated
by the arrows) shown in the figure. Is the solution unique?

23. (Models of markets) Determine the equilibrium solution (Dy = 8,.D, = §,) of
the two-commodity market with linear model

D, =40 - 2P, - P, S, =4P, - P, + 4

D, = 5P, - 1P, + 16, S, =3P, - 4

where D, §, P mean demand. supply, price, and the subscripts 1 and 2 refer to
the first and second commodity, respectively,

24. (Equivalence relation) By definition, an equivalence relation on a set is a relation
satisfying three conditions: ’ '
(1) Each element A of the set is equivalent to itself.
(2) If A is equivalent to B, then B is equivalent to A,
{3) If Ais equivalent to B and B is equivalent to C, then A is equivalent to C.
For instance, equality is an equivalence relation on the set of real numbers. Show
that row equivalence satisfies these three conditions.

Linear Independence.
Vector Space. Rank of a Matrix

In the last section we explained the most important practical method for
solving linear systems of equations, the Gauss elimination. We have also
seen that a system may have no solutions or a single solution or more than
just one solution tand then infinitely many solutions). So we ask whether
we can make general statements about these problems of existence and
unigueness. The answer is yes. and we shall do so in the next section. For
this we shall need the concepts of linear independence and rank, which we
now introduce: these are of great general importance. far beyond our present
discussion. ‘
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Linear Independence and Dependence of Vectors

EXAMPLE 1

Given any set of m vectors® Ag s Ay, {with the same number of com-
ponents), a linear combination of these vectors is an expression of the form

, - o
Ciagy + ot Oy,

where ¢, - - -, ¢, are any scalars.® Now consider the equation

(1 Exam + gy + ot Gy = 0 1

Clearly, this holds if we choose all ¢'s zero, because then it becomes
0 = 0. If this is the only m-tuple of scalars for which (1) holds, then our
Vectors ag, * * © ., By, are said to form a Iinearly independent set or, more
briefly, we call them linearly independent. Otherwise, if (1) also holds with
scalars not all zero, we call these vectors linearly dependent, because then
we can express (at least) one of them as a linear combination of the others;

for instance, if (1) holds with, say, ¢, # 0, we can solve (1) for agy

ag, = kyag, + o+ k,a.,  wherek;, = —¢jley
(and some or even all k’s may be Zero).

Linear independence and dependence
The three vectors

ag =1 3 o 2 2
ag = (-6 42 24 54

ag =121 -21 0 —15]

are linearly dependent because

1 -
éam - Gy T By T 0.

Although this is easily checked (do it it is not so easy to discover; however, a method for
finding out about linear independence and dependence, follows below.

The first two of the three vectors are linearly independent because ¢ya,, + €384, = 0 implies
cy = 0 (from the second components) and then ¢y = 0 {from any other pair of componenis}.

Vector Space, Dimension, Basis

Given m vectors a,, = ° -~ 8, with n components each, as before. we can
form the set V of all linear combinations of these vectors. V is called the
span of these m vectors.

V is a vector space.” By definition, this means that V is a set of vectors
with the two algebraic operations of addition and scalar mudtiplicarion de-
fined for these vectors such that the following holds.

Write simply 8,, © . 8, if you wish, but keep in mind that these are veclors, not vectior
componenis.

815 this section, scalars will be real numbers.

THere, we give just what we need in the nexi section. General vector spaces follow i
See. 715,
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1. The sum a + b of any vectors a and b in V is also in V and the product
ka of any vector a in V and scalar k is also in V.
2. For all vectors and scalars we have the familiar rules

a+b=>b+a
fa +by+c=a+1{b+c¢ (writtena + b + ¢}
a+0=a
a+{—a =40
as well as
kia + b) = ka + kb

(k + 6a = ka + {a
kifa) = (kf)a (written kfa)

fa = a.

(For our vectors, these rules follow from (1) and (2) in Sec. 7.2—after all,
vectors are special matrices?)

The maximum number of linearly independent vectors in V is called the
dimension of V and is denoted by dim V.

Clearly, if those given m vectors are linearly independent, then
dim V = m: and if they are linearly dependent, then dim V << m.

A linearly independent set in V consisting of a maximum possible number
of vectors in V is called a basis for V. Thus the number of vectors of a basis
for V equals dim V.

EXAMPLE 2 Vector space, Dimension, Basis
The span of the three vectors in Example | is a vector space of dimension 2, and a basis is
ay,. By, for instance, or a), ag,. etc. ]

By the real n-dimensional vector space K™ we mean the space of all vectors
with n real numbers as components {“'real vectors’) and real numbers as
scalars. This is a standard name and notation. Hence each such vector is
an ordered n-tuple of real numbers, as we know.

Thus for n = 3 we get R¥ consisting of ordered triples (*‘vectors in
3-space”’), and for n = 2 we get R? consisting of ordered pairs (*vectors in
the plane”). In Chaps. 8 and 9 we shall see that these special cases provide
wide areas for applications of geometry, mechanics, and calculus which are
of basic importance to the engineer and physicist.

Rank of a Matrix

The maximum number of linearly independent row vectors of a matrix
A =la,lis called the rank of A and is denoted by

rank A.
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e

Rank
The matrix

3 0 2 2
2) A= -6 42 24 54

2t -2 6 -15

has rank 2. because Example | shows that the first two row vectors are tinearly independent,
whereas all three row vectors are linearty dependent. i

Note further that rank A = 01f and only if A = 0. This follows directly
from the definition. ,

In our proposed discussion of the existence and uniqueness of solutions
of systems of linear equations we shall need the following very important

(Rank in terms of column vectors)
The rank of a matrix A equals the maximum number of linearly independent
column vectors of A.

Hence A and its transpose AT have the same rank.

Proof. Let A = [a; ] and let rank A = r. Then, by definition, A has a linearly

independent set of r row vectors, call themv i, = = Vi and all row vectors
Ay By of A are linear combinations of those independent ones, say,
a, = Vo T ¥ Y Ve
Ay, = S + Cog¥i9y 4+ -+ Cor¥im
a{m; = Cm}vil} + ‘7m2"<2} = - E Cmf"{r}

These are vector equations. Each of them is equivalent to n equations for
corresponding components. Denoting the components of v, by Dy " s
v,,. the components of Vg bY Ugpe =7 0 Vo etc., and similarly for the
vectors on the left, we thus have

N 3 L. . . b oeloB
6‘2;;: {'éﬁg”ik L ;g”zg hs H (,1}05,,?;\:
— s R T T 7
op Coy Uy 7 Cpptlar 7 P
== P 3 E 3 N 3
ok G mi’i’ik ’ {;331’259: i i {mr{‘ rk
where &k = 1, - - . n Thiscan be written
@1k 1y €y | Cyr
i
i
oy £21 Cog | Cop
""" LTI T U ! B ol
&m& {mi ?m?ﬁ {.mr‘
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where k& = .- - - n. The vector on the left is the &th column vector of A.
Hence the equation shows that each column vector of A is a linear combi-
nation of the  vectors on the right. Hence the maximum number of linearly
independent column vectors of A cannot exceed r. which is the maximum
number of linearly independent row vectors of A, by the definition of rank.

Now the same conclusion applies to the transpose AT of A. Since the row
vectors of AT are the column vectors of A, and the column vectors of AT
are the row vectors of A, that conclusion means that the maximum number
of linearly independent row vectors of A (which is r) cannot exceed the
maximum number of linearly independent column vectors of A. Hence that
number must equal r, and the proof is complete. |

EXAMPLE 4 lllustration of Theorem 1
What does Theorem | mean with respect to our matrix A in {2)7 Since we have rank A = 2,
the column vectors should contain two linearly independent ones, and the other two should be
finear combinations of them. Indeed, the first two column vectors are linearly independent,

and
2 3 r ﬂ 2 3 0
2 2 | 2 29
Wl =T =6 v 2 and 4l =56 5| @
0 21 /r‘zxj ~15 21 -2

This 1s easy to verify but not so easy to see. Imagining that AT were given, we realize that the
determination of a rank by a direct application of the definition is not the proper way, unless
a matrix is sufficiently simple. This suggests asking whéther we can *'simplify™ (transform) a
matrix without altering its rank. The answer is yes. as we show next. |

The span of the row vectors of a matrix A is called the row space of A
and the span of the columns the column space of A. From this and Theorem
I we have

Theorem 2 (Row space and column space)

The row space and the column space of a matrix A have the same dimension,
equal to rank A.

Invariance of Rank Under Elementary Row Operations

We claim that elementary row operations (Sec. 7.4) do not alter the rank of
a matrix A.

For the first operation {interchange of two row vectors) this is clear. The
second operation {(multiplication of a row vector by a nonzero constant) does
not alter the rank either, since it does not alter the maximum number of
inearly independent row veclors. Finally, the third operation is the aédéiign
of ¢ times a row vector a,,. say. to another row vector, say, a;. This
produces a matrix that differs from A only in the ith row vector, which is
of the form a,, + ca . alinear combination of the row vectors a, and .
so that the number of linearly independent row vectors remains the same.
Hence the new matrix has the same rank as A. Remembering from the
previous section that row-equivalent matrices are those that can be f;}biainfzd
from each other by finitely many elementary row operations. our result is
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EXAMPLE 5

Theorem 4

Theorem 5

Theorem 6
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(Row-equivalent matrices)
Row-equivalent matrices have the same rank.

This theorem tells us what we can do to determine the rank of a matrix
A, namely. we can reduce A to echelon form (Sec. 7.4}, using the technique
of the Gauss elimination, because this leaves the rank unchanged, by
Theorem 2. and from the echelon form we can recognize the rank directly.

Determination of rank
For the matrix in Example 3 we obtain successively

-
3 [ pA 2

A= -6 42 24 54 fpivens
2t 21 g —15

0 42 28 58 Row I + 2 Row |

0 -2 -—-14 =29 Row 3} - 7 Row |

0 o 0 0 Row 3} + ; Row 2

The last matrix is in echelon form. From the row vectors and Theorem 3 we see immediately
that rank A = 2, and rank A = 2 by Theorem 1, since the first two column vectors are certainly
linearly independent.

This method of determining rank has practical applications in connection
with the determination of linear dependence and independence of vectors.
The key to this is the following theorem, which results immediately from
the definition of rank.

(Linear dependence and independence)

p vectors Xy, = * * 5 Xgy (with n components each) are linearly independent
if the matrix with row vectors Xy, = -+, X, has rank p; they are linearly
dependent if that rank is less than p.

Since each of those p vectors has n components, that matrix, call it A,
has p rows and n columns; and if n < p, then by Theorem [ we must have
rank A = n < p, so that Theorem 4 yields the following result, which one
should keep 1n mind.

p vectors with n < p componerits are always linearly dependent.

For instance. three or more vectors in the plane are linearly dependent.
Similarly, four or more vectors in space are hnearly dependent.
By the definition of dimension, we also have

The vector space R™ consisting of all vectors with n components has
dimension n.

Basic applications of rank follow in the next section.
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Problem Set 7.5

Vector spaces. Is the given set of vectors a vector space? (Give a reason.) If your
answer is yes, determine the dimension and find a basis.

L All vectors {o; ¢, ©,]7 in R® such that o, + 2u, = 0.

2. All vectors in R* such that o, + v, = 0.0, + v, = 0.

3. All vectors in R? satisfying v, + vy + vy = L

4. All vectors in R? such that vy + o, = k(= const.

5. All real numbers.

6. All vectors in R® such that o, + v = 0,00 + 20, + 0, — v, = 0.
7. All ordered quintuples of positive real numbers.

8. All vectors in R* such that o, = 0, Uy + 0g + 0, 20

9. All vectors in R™ with the first n — | components zero,

-
foed

- {Subspace) A nonempty subset W of a vector space V is called a subspace of ¥
if Wis itself a vector space with respect to the algebraic operations defined in
V. Give examples of one- and two-dimensional subspaces of R3,

Rank. Find the rank by inspection or by the method in Example 5.

77 32 -9 2 0 9
1§ T R 12. 1-6 -4 18 B.j1 4 6 0
0 0 128 -36 35 7

14. \

1
_—
o
B
-
t
o=
o
-
D |
-
o
o e
[V
T e
LS B

I N a C_j
0 0 i_j a# +h -8 ~1 -3 4
TR 6 o 2] 3’“1 0o 3 G]
Lo s sl o s 3 Lo 46
7. | | 18. | 9. |
-3 4 dt L2 7 s (3 o S 1
| z | ;
Lo 2 4] iw 50 éz 30 [

20. Show by an example that rank A = rank B does nor imply rank A? = rank B%
21. Show that rank B'A7 = rank AB.

21. Prove that if the row vectors of an n x n matrix A are tinearly independent.
then so are the column vectors of A fand vice versal

23. Prove that if A is not square. then either the row vectors or the column vectors
of A are lincarly dependent,

24. Prove that row-equivalent matrices have the same row space.

25. Find a basis of the row space and of the column space of the matrix in
Prob. 11,

26. Do the same task as in Prob. 25 for the matrix in Prob, 17,
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Linear independence. State whether the given vectors are linearly independent or

dependent.

27. 01 S 31,2 4 6L.{3 9 11 28.04 3 9L.(0 0 o1t § &
29. {1 0L [F 2113 4] 30. {1 1 oL {0 1 1t 0 1]
3. {1 2 3,4 5 6L[7 8 9] 32.03 -1 4116 7 5L{9 6 9
33,09 0 9L,{0 6 6113 3 0 M2 1 0 6L 9 9 0]
35.030 2 4 SL{7 26 L OLIL 22 -7 -~

Linear Systems:
General Properties of Solutions

Using the concept of the rank of a matrix, as defined in the last section, we
can now settle the issue of existence and uniqueness of solutions of linear
systems. The central theorem (which the student should memorize!) is as
follows. (For illustrative examples, see Sec. 7.4.)

Theorem 1 Fundamental Theorem for linear systems
(a) A linear system of m equations

A%t apky T

7x

(1)

..............

in n unknowns x,, - - -, x_ has solutions if and only if the coefficient matrix
A and the augmented matrix A, that is,

a

= —y p— e

ali PRI a, 611 5o o a

A = and A =

gm} e mn ml o Lo bm

ke L.

have the same rank.

(by If this rank r equals n, the system (1) has precisely one solution.

(¢} If r < n, the system (1) has infinitely many solutions, all of which are
obtained by determining r suitable unknowns (whose submatrix of coeffi-
cients must have rank r in terms of the remaining n — r unknowns, 10 which
arbitrary values can be assigned.

(d) If solutions exist, they can all be obtained by the Gauss elimination
(see Sec. 7.4). (This elimination may be started without first looking at the
ranks of A and A, since it will automatically reveal whether or not solutions
exist; see, for instance, Example 5 in Sec. 7.4.)
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Proof. (a) We can write the system (1} in the form

4 |
(- Ax =b
orin terms of the column vectors Cqyr g, of A
b N 4 v - P N T -
(2) Catt T Gty by, = b

Since A is obtained by attaching to A the additional column b, Theorem |
in Sec. 7.5 implies that rank A equals rank A or rank A + |. Now if (1) has
a solution x, then (2) shows that b must be a linear combination of those
column vectors. Hence rank A cannot exceed rank A, so that we must have
rank A = rank A

Conversely, if rank A = rank A, then b must be a linear combination of
the column vectors of A, say, <

b= ac, + -+ % C

since otherwise rank A = rank A + 1. But this means that (1) has a solution,

namely, x; = a,, -+ x = a,.

(b) If rank A = r = pn, then the set C = {cm, ey cm)} is linearly
independent, by Theorem 1 in Sec. 7.5. It follows that then the representation
(2) of b is unique because

St B Xy =gy b g, T,
would imply
X = Xegy + o - ) = 0
and x, — x, =0, - . X, = ¥, = 0 by the linear independence. Hence
the scalars x,, - - - x_in (2) are uniquely determined, that is, the solution

of (1) is unique.

(ylifrank A = rank A = r < », by Theorem I, Sec. 7.5, there is a linearly
independent set K of r column vectors of A such that the other n - rcolumn
vectors of A are linear combinations of those vectors. We renumber the
columns and unknowns., denoting the renumbered quantities by . so thal

{e €} 1s that linearly independent set K. Then (2) becomes
fé%;"‘é EREEE Ci;«z:s"{?z - b’

Cougp "« €4y are linear combinations of the vectors of K. and so are the

veetors X €y X €, Expressing these vectors in terms of the

vectors of K and collecting terms, we can thus write the system n the form
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= b

33 23 PO o ] i
3) ¥y T CnYy

with y; = X; Bg, where B; results from the terms x €, 45 ~ s

i3 G ewe, J¥=nl, 2 e Since the system has a solution, there are

Ter s satisfying (3). These scalars are unique since K 1s linearly in-

dependent. Choosing %,,,, ---. %, fixes the B; and corresponding
%, =y, — B; wherej = 1. o gl

(d) This was proved in Sec. 7.5 and is restated here as a reminder. E |

The theorem is illustrated by the examples in Sec. 7.4: in Example 3 we
have rank A = rank A = 2 < n = 4 and can choose x, and x, arbitrarily;
in Example 4 there is a unique solution since rank A = rank A = n = 3;
and in Example 5 there is no solution, since rank A = 2 < rank A =3

- The Homogeneous System

?g;eo;em 2

The system (1) is called homogeneous if all the b.’s on the right side are zero.
Otherwise it is called nonhomogeneous. (See also Sec. 7.4.) From the
Fundamental Theorem we readily obtain the following results.

{Homogeneous system)
A homogeneous linear system

Gy Xy + AppXy + oot oax, = 0
e Uy Xy + GgaXy + - or g, x, =0
} .

ARSI o i S 2 IR Ll A L Rl

always has the trivial solution x, = 0, - - -, x, = 0. Nontrivial solutions
exist if and only if rank A < n. If rank A = r < n, these solutions, together
with x = 0, form a vector space of dimension n — r {see Sec. 7.3y In
particalar, if X1 and Xy, are solution vectors of (4), then x = € (X, + CyXy
where ¢, and ¢, are any scalars, is a solution vector of (). {This does not
hold for nonhomogeneous syxtems.}

Proof. The first proposition is obvious and is in agreement with the fact that
for a homogeneous system the matrix of the coefficients and the augmented
matrix have the same rank. The solution vectors form a vector space because
if x,;, and x,,, are any of them, then Ax,, = 0, Ax,, = 0, and this implies
Alxy, + X)) = Axy, + AXg, = Bas well as Alex,) = cAx,, = 0, where
¢ is arbitrary. If rank A = r < n, the Fundamental Theorem implies that we
can choose n — rsuitable unknowns, call them x_ .- - -, X, in an arbitrary
fashion, and every solution is obtained in this way. It follows that a basis of
solutions (that is, a basis for the vector space of these solutions¥is ¥, < -
Yin- e Where the solution vector ¥, j= 1. -+-.n — r, is obtained by
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choosing x .. = | and the other x i1 0. X, zero; the corresponding
Xpo X are then determined. Th;s proves thal the vector space of all
solutions ha% dimension n — r and completes the proof. 1

We mention that the vector space of all solutions of (4) is called the
null space of the coefficient matrix A, because if we multiply any x in this
null space by A we get 0. The dimension of the null space is called the
nullity of A. In terms of these concepts, Theorem 2 states that

(5) ) “rank A + nullity A = n

where n is the number of unknowns (number of columns of A). If we have
rank A = n, then nullity A = 0, so that the system has only the trivial
solution. If rank A = r < n, then nullity A = n — r > 0, so that we have
nontrivial solutions which, together with 0, form a vector space of dimension
n—r>40

Note that rank A = m in (4), by the definition, so that rank A < 1 when
m < n. By Theorem 2 this proves the following theorem, which is of con-
siderable practical importance.

(System with fewer equations than unknowns)
A homogeneous system of linear equations with fewer equations than un-
knowns always has nontrivial solutions.

The Nonhomogeneous System

Theorem 4

If a nonhomogeneous system of linear equations has solutions, their totality
can be characterized as follows.

(Nonhomogeneous system)
If a nonhomogeneous linear system of equations of the form (1) has solu-
tions, then all these solutions are of the form

X:XQ‘%X%

where X, is any fixed solution of (1) and Xy, runs through all the solutions of
the corresponding homogeneous system (4).

Proof. Let x be any given solution of (1) and X, an arbitrarily chosen solution
of (1). Then Ax = b, Ax; = b and, therefore,

Alx — xg}} = AX — stx@ = 0.

This shows that the difference x ~ x, of any solution x of (1) and any fixed
solution x; of (1) is a solution of (4), say, x;. Hence all solutions of (1} are
obtained by letting x; run through all the solutions of the homogeneous
system {4), and the proof is complete. 1

“
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Inverse of a Matrix

In this section we consider exclusively square matrices.
The inverse of an n X n matrix A = {aj 1 is denoted by A-!and is an
n % n matrix such that

(1) AAl=ATA=L

where 1 is the n X n unit matrix (see Sec. 7.3).

If A has an inverse, then A is called a nonsingular matrix. If A has no
inverse, then A is called a singular matrix.

If A has an inverse, the inverse is unique.

Indeed, if both B and C are inverses of A, then AB = I and CA = 1, so
that we obtain the uniqueness from

B = IB = (CA)B = C(AB) = CI = G-

We prove next that A has an inverse (is nonsingular) if and only if it has
maximum possible rank n. The proof will also show that Ax = b implies
x = A~ b provided A-! exists, and thus give a motivation for the inverse
as well as a relation to linear systems.®

(Existence of the inverse)
The inverse A* of ann X n matrix A exists if and only if rank A = n.
Hence A is nonsingular if rank A = n, and is singular if rank A < n.

Proof. Consider the linear system
(2) Ax = b

with the given matrix A as coefficient matrix. If the inverse exists, then
multiplication from the left on both sides gives by (1)

A-1Ax = x = A 'b.

This shows that (2) has a unique solution x, so that A must have rank n by
the Fundamental Theorem in the last section. '

Conversely, let rank A = n. Then by the same theorem, the system ¥4]
has a unique solution x for any b, and the Gauss elimination (in Sec. 7.4)
shows that its components X, are linear combinations of those of b, so that
we can write

3 x = Bb.

[PURe————

BHut not a method of solving Ax = b numerically, because the Gauss elimination (Sec. 7.4}
requires fewer com Hialions,
P
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Substitution into (2) gives
Ax = A(Bb) = (AB}b = Cb = b (C = AB)

for any b. Hence C = AB = I, the unit matrix. Similarly, if we substitute
(2) into {3) we get

x = Bb = B(Ax) = (BA)x

for any x (and b = Ax). Hence BA = L. Together, B = A~! exists. |

Determination of the Inverse

EXAMPLE 1

We want to show that for practically determining the inverse A~! of a non-
singular n X n matrix A we can use the Gauss elimination (Sec. 7.4), actually, .
a variant of it, called the Gauss—Jordan elimination.® Our idea is as follows.

Using A, we form the n systems Ax, = €, " ", AX,, = €., where €5
has the jth component 1 and the other components 0. Introducing the
n x n matrices X = x4, " "~ x{m} and I = [em S e(m}’ we combine the n
systems into a single matrix equation AX = I and the n augmented matrices
[A em}, <o [A e(m] into a single augmented matrix A =[A I Now
AX = limplies X = A~'I = A~!, and to solve AX = I for X we can apply
the Gauss elimination to A = [A I} to get {U H], where U is upper tri-
angular, since the Gauss elimination triangularizes systems. The Gauss-Jordan
elimination now operates on [U H] and, by eliminating the entries in U
above the main diagonal, reduces it to [I K], the augmented matrix of

IX = A~!. Hence we must have K = A~!and can thus read off A~! at the
end.

(A formula for the entries of A~1 in terms of those of A follows in
Sec. 7.9, in connection with determinants.)

Inverse of a matrix. Gauss—Jordan elimination
Find the inverse A™ ! of

wd
|
| SE—

SWILHELM JORDAN (18471899}, German mathematician and geodesist. {See American
Muthematical Monthly 94 (19875, 130-142 3

We do not recommend it as a method for solving systems of linear equations, since the number
of operations in addition to those of the Gauss elimination is larger than that for back subsu-
rution, which the Gauss—Jordan elimination avoids. See also Sec. 19.1.
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Solution. We apply the Gauss elimination {Sec. 7.4) 10

-1 i 2 i 0 0
(A H= 3 -1 i \ 0 i 0
-1 3 4 0 0 i
— 1 i 2 i 0 0
\] 2 7 \ 3 i 0 Row 2+ ) Row !
0 2 2 -1 0 1 R 3 Row |
~1 1 2 i 0 0

4 -1 i Row 3} —~ Row 2

This is (U HJ] as produced by the Gauss elimination, and U agrees with Example 4 in
Sec. 7.4. Now follow the additional Gauss-Jordan st€ps, reducing U to L, that is, to diagonal
form with entries 1 on the main diagonal.

-1 =2 -1 o 0 Row |

0 H 3.5 X 1.5 0.5 0 0.5 Row 2

o o 1 08 02 -02] ~02Row3

p -1 0 06 04 —04] Rowl +2Row3
& o 1 © § 13 -02 07| Row2 - 3SRow3

08 02 -062

1 4] 4 -0.7 0.2 0.3 Row | + Row 2
0 i 0 \ -13 ~02 0.7

Loox

The last three columns constitute AL Check:

0.8 0.2 02

-1 i 2 -0.7 0.2 03 i 0 0
3 ~1 H -13 -02 071 = {0 1 ]
-1 3 4 08 0.2 '432”} 0 0 i
Hence AA™L = L Similarly, A-lA = L |

Some Useful Formulas for Inverses

For a nonsingular 2 x 2 matrix we obtain

4) A = , A"l =




EXAMPLE 2

EXAMPLE 3
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where det A = a,dyy — dyp0y; and will be discussed in the next section.
Indeed. one can readily verify that (1) holds.
Similarly. for a nonsingular diagonal matrix we simply have

a, 0] (Va, - 0

0 a 0 Va

L nn | L nn |

the entries of A~! on the main diagonal are the reciprocals of those of A.

Inverse of a 2 X 2 matrix

05 0 0 2 o0 0]
A= 10 4 0 Act= | o 025 0 R
o0 ! o o 1

The inverse of the inverse is the given matrix A:
(6) (A™H 1 = AL
The simple proof is left to the reader (Prob. 16).

Inverse of a product. The inverse of a product AC can be calculated by
inverting each factor separately and multiplying the results in reverse order:

e a0yt = At |

[ SUS—

To prove (7). we start from (1), with A replaced by AC, that is,
ACAC) H = L
Multiplying this by A~ ! from the left and using A-'A = I, we obtain
CAC)™! AL
If we multiply this by C~! from the left, the result follows. , .
Of course, {7} may be generalized to products of more than two matnces;

by induction we obtain

(8 (AC - POyl = Qlp~t AT
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Vanishing of Matrix Products. Cancellation Law

Theorem 2

7

We can now obtain more information about the strange fact that for matrix
multiplication, the cancellation law is not true, in general; that is, AB = 0
does not necessarily imply that A = 0 or B = 0 (as for numbers), and it
does also not imply that BA = 0. These facts were stated in Sec. 7.3 and

illustrated with
S 0 0
2 2 | - o ol
-1 bl 1o
- 2 2 -1 -1}

Each of these two matrices has rank less than n = 2. This is typical, and
the situation changes when n x n matrices have rank n:

i

il

(Cancellation law)
Let A, B, C be n x n matrices. Then:

(a) Ifrank A = n and AB = AC, then B = C.

(b) If rank A = n, then AB = 0 implies B = 0. Hence if AB = 0, but
A # 0 as well as B # 0, then rank A < n and rank B < n.

(¢) If A is singular, so are AB and BA.

Proof. (a) Premultiply AB = AC on both sides by A~L which exists by
Theorem 1.

(b) Premultiply AB = 0 on both sides by A™1.

(c) Rank A < n by Theorem 1. Hence Ax = 0 has nontrivial solutions,

by Theorem 2 in Sec. 7.6. Multiplication gives BAx = 0. Hence those
solutions also satisfy BAx = 0. Hence rank (BA) < n by Theorem 2 in
Sec. 7.6, and BA is singular by Theorem 1.

(¢,) AT is singular by Theorem 1 in Sec. 7.5. Hence BTAT is singular
by part (c;). But BTAT = (AB)T; see Sec. 7.3. Hence AB is singular by
Theorem | in Sec. 7.5, |

Problem Set 7.7

Find the inverse and check the result, or state that the inverse does not exist, giving

4 reason.
fz 7] cos 8 sin# 06 08
L | 2. ‘ 3.
(3 4] ~sin @ cos 8] 08 -06
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Find the inverse and check the result, or state that the inverse does not exist, giving

a reason.
.t 2 2 T 6 -2 )] o o0 S|
4. 2 -1 2 5, P52 6. |0 ~1
L2 2 ! | -8 24 7] 13 0 0]
0.5 0 —-0.5 i 9 1] 10 0]
7. l-01 02 03] 8 |8 -8 5 9. 14 1 0
Los o -1s 4 60 29] lr 5 2]
0 2 0 1 4 8 10 0
10. 14 0 0 1. {0 S 2 1.0 9 17
0 0 S o 0 10 0 8] -
3 -1 9 2 -9 371 =76 -40
13. |-15 6 -5 4., | -4 -1 2 15. 36 -7 -4
5 -2 2 -2 0 1 ~176 36 19

16. Prove (6).

17. Verify (4) and (5) by showing that AA™! = A“lA = L

18. Show that (A"1)" = (A1,

19. Show that the inverse of a nonsingular symmetric matrix is symmetric.
20. Show that (;3&2)"1 = (A-1%. Find (A%)~! for the matrix in Prob. 14.

Determinants

Determinants were first defined for solving linear systems and, although
impractical in computations,'® they have important engineering applications
in eigenvalue problems (Sec. 7.10), differential equations (Chaps. 2, 4), vec-
tor algebra (vector products, scalar triple products, Sec. §.3}, and so on.
They can be introduced in several equivalent ways, and our definition is
particularly practical in connection with those systems.

An nth-order determinant is an expression associated withann X n {hance
square!) matrix A = [a;], as we now explain, beginning with n = 2.

Second-Order Determinants

A determinant of second order is denoted and defined h}

i“
(h D = det A = i

[y Aoy

i1 di2f

= Ayl — Gypbyp

01y numerical work, use a method from Secs. 7.4, 19 1-19.3; do not use Cramer’s rule (se¢
Sec. 7.9
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So here we have bars (whereas a matrix has brackets). For example,
4 3
2 5

This definition is suggested by systems

~4-5-3-2=14

) (@) ap Xyt a5 T by
(b} Ay Xy + AgpXy = b,

whose solution can be written x; = D,/D, xy = D,/D with D as in (1) and

b a
1 12
D, = b = byay — ayyby,
2 oy
a b
1 1
D, = b = ay by = byay,
gy 2

provided D # 0; this is called Cramer’s rule.!! It follows by the usual elim-
ination. Indeed, to eliminate x,, multiply (2a) by a,, and (2b) by —a,, and
add, finding

(ay G99 — c:tli,.ezm))c1 = bilyy — ambé, thus Dx, = D,.
To eliminate x,. multiply (2a) by — ay; and (2b) by a;; and add, finding

(@899 — Ay,a9)%y = anbz = byay,, thus Dx, = D,.
Now divide by D (if D # 0) to get x, and x,.

Use of second-order determinants

if
4x, + 3xy = 12
2y + Sxy = -8,
then
4 3 i 12 3 4 12
D = =~ 14 D, = = R4 ;),,“Li = Sk,
2 s f-g s b -8
so that x, = %4/14 = band xy, = - 36714 = — 4, ]

HGABRIEL CRAMER (1704—1752). Swiss mathematician.
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If the system (2) 1s homogeneous (b, = b, = 0y and D # 0, it has only
the trivial solution x; = x, = 0, and if D = 0, it also has nontrivial solutions.

Third-Order Determinants

A determinant of third order can be defined by

ay Gy dyg
B D= B Gyp Ay 4y dy3 a2 i3
3 T 1G9y gy dgz T dyy — dyy Qg :

A3y g3 dgg 4y Ayy Ggg

A3y 43y 4djy

Note the following. The signs on the right are + — +. Each of the three
terms on the right is an entry in the first column of D times its ““minor,?’
that is, the second-order determinant obtained by deleting from D the row

and column of that entry (thus for a,, delete the first row and first column,
etc.).

If we write out the minors, we get

D = ay,a59043 ~ ay1a3,a,5 + 5103004

C)

T dy1A19Qg3 + A3y 015093 — A3 Agdys.

For linear systems of three equations in three unknowns

!
R

ap Xyt apxy +oapxg =
(5) Ay X) + AyoXy + Gpaxy = b,
Ay Xy + AgoXy + dgaxy = b3

Cramer’s rule is

8 DI ‘92 D3
(5} Xii‘-‘“*g, XZK};, xzx}*}“ {{)?é{‘;}
with the “'determinant of the system’™ D given by {3) and
by 0, 4,4 la,, by ag a,, ay, b
D, = P? gy Azl Dy = lay b, ayl, Dy = |ay ap byl
{by ag, ag [dgy by ag 1931 a2 by

This could be derived by elimination similarly as above, but, instead, we
shall obtain Cramer’s rule for general n in the next section.
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Determinant of Any Order n

™~

A determinant of order n is a scalar associated with an n X n matrix
A= {a}.k}, which is written

gy tyg o Ay
oy dogy T Ay
N D = det A =
anl anZ T ann
and is defined for n = 1 by
(8) D = ay

and for n = 2 by

(9a) %D:ajic}.1+ajzcj2+..j@ (j=1,2---,0rn

or

(9b) | D = a,Cy + ayCop + 1" + a,C

we | k=120, 0mn

where

LGy = (1M, ;
§ -

and M is a determinant of order n — 1, namely, the determinant of the

subma%rix of A obtained from A by deleting the row and column of the entry
Ay (the jth row and the kth column). ]

In this way. D is defined in terms of n determinants of order n — 1, each
of which is. in turn, defined in terms of n ~ 1 determinants of order n — 2.
and so on: we finally arrive at second-order determinants, in which those
submatrices consist of single entries whose determinant is defined by (8).

From the definition it follows that we may expand D by any row or column,
that is, choose in (9) the entries in any row or column, similarly when
expanding the Cj;{"s in {9}, and so on,

This definition is unambiguous, that is, vields the same value for D no
matter which columns or rows we choose. A proof is given in Appendix 4.

Terms used in connection with determinants are taken from matrices: n
I we have n® entries or elements ay, also n rows and n columns, a main
diagonal or principal diagonal on which a, |, @gq. "~ * stand. Two names
are new:

M}Q is called the minor of ay in D, and C;;: the cofactor of ay in D
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For later use we note that (9) may also be written in terms of minors

n
(10a) D=3 («w*ka}ijk (j=1,2,-,o0rn
k=1
n
(10b) D=3 (1Y ka, M, (k=1,2,---,o0rn).
j=1

Determinant of second order
For

a a
D =detA =" 12

91 a2

formula (9) gives four possibilities of expanding it, namely, by

the first row: D = aj a,, + agpl(—ay),
the second row: D = ay(~ay) + ayayy,
the first columm: D = ajja,, + ag(—ap).
the second column: D = a;(~ Qgy) + Ggedy;.
Théy all give the same value D = ayy89y — Aygdyy, which agrees with (1). ]

Minors and cofactors of a third-order determinant
In the third-order determinant

ayy 42 413
gy by a3
d 39 a3

the minors are

a a i i i é.
22 23 21 23 21 2
My, = : My, = ) : My = .
A3y Oy g1 Gay a3y b3y
I i - B & W b i g
My = . My, = . My = e
A3z A3 Hay 33 a3y d3g
@ a &y a a a
12 13 1t 13 11 12
My = . My = ) : My = ’
a9z ) dgy " Ay e 29

and the cofactors are

Cii = JM%EZ‘ ng = '“M;gs {T‘;g oY M}3’
Cpy = My, Coy = + My, Cp = ~ My,

Cﬁi = 4 Mﬁi* (@32 - ’,;,532? 533 & :r,&fn‘
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Hence the signs form a checkerboard pattern:

+ -+
- & - |
+ - 4+
EXAMPLE 4 A third-order determinant
Let

i 3 0
D= 2 6 4
-1 0 2

The expansion by the first row is
6 4
0 2

D=1

4
2‘ = 12 - 0) — 4 + 4 = — 12
-1

The expansion by the third colums is

2 6 1 3
- 4
=1 0 -1 0

etc. | ]

i 3
2 6

D=0

x=0~12+03*12,

EXAMPLE 5 Determinant of a triangular matrix

The determinant of any triangular matrix equals the product of alt the entries on the main
diagonal. To see this, expand by rows if the matrix is lower triangular, and by columns if it is
upper triangular. For instance,

[

-3 0 0
4 0

6 4 0= -3 = ~31-4-5= —60. ]
2 s

1 2 s

£.

General Properties of Determinants

From our definition we may now readily obtain the most important properties
of determinants, as follows.

Since the same value is obtained whether we expand a determinant by
any row or any column, we have

Theorem 1 (Transposition)
The value of a determinant is not altered if its rows are written as columns,
in the same order.

EXAMPLE 6 Transposition

T TR TR
§ 5 6 4l=131 6 ol=-1n2 1
-1 o 20 lo 4 2
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EXAMPLE 7

Theorem 3

Theorem 4

EXAMPLE 8

Theorem 5
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{Muitiplication by a constant)

If all the entries in one row (or one column) of a determinant are multiplied
by the same fuctor k, the value of the new determinant is k times the value
of the given determinant.

Proof. Expand the determinant by that row (or column) whose entries are
multiplied by k. 1

Caution! det kKA = k" det A (not k det A). Explain why.

Application of Theorem 2

! 3 0 ! 3 0 i i 0 t I 0
2 6 41 = 2 1 3 2l =6 i I 20 = 12 i 1 =12
-1 0 2 ~ 1 0 2 =] 4] 2 = 0 I ]

From Theorem 2, with & = 0, or directly by expanding, we obtain

If all the entries in a row (or a column) of a determinant are zero, the value
of the determinant is zero.

If each entry in a row (or a column) of a determinant is expressed as a
binomial, the determinant can be written as the sum of two determinants.

Proof. Expand the determinant by the row (or column) whose entries are
binomials. ]

HHlustration of Theorem 4

a, + d, by o] a; b, o d, b, ¢
%az tdy by oy = lay by | v ldy by g ¥
jag + dy bg 4l iq by Y ,d-'i by =1

(Interchange of rows or columns)
If any two rows (or two columns) of a determinant are interchanged, the
value of the determinant is multiplied by — 1.

Proof. The proof is by induction. We see that the theorem holds for deter-
minants of order n = 2. Assuming that it holds for determinants of order
n = 1.owe will show that it holds for determinants of order n.

Let D be of order n and E obtained from D by interchanging two rows.
Expand D and E by a row that is not one of those interchanged, call it the
Jthrow. Then, by (104},

e ik

(tn D= > -0 M, E=3S (-1, N,
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Theorem 6

EXAMPLE 10

Theorem 7
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where N is obtained from the minor M, of a, in D by interchanging two
rows. Since these minors are of order n — |, the induction hypothesis applies
and gives N;;;: = -;Mjk, Hence E = — D by (11). This proves the statement

for rows. To get it for columns, apply Theorem 1. 1

Interchange of two rows

2 6 4 I3 0
1t 3 ol=-12 6 4]=12 |
-1 0 2 -1 0 2

(Proportional rows or columns)
If corresponding entries in two rows (or two columns) of a determinant are
proportional, the value of the determinant is zero.

Proof. Let the entries in the ith and jth rows of D be proportional, say,
a; = ca}-k,k =1, -+, nlIfc =0, then D = 0. Now let ¢ # 0. By
Theorem 2,

D = cB
where the ith and jth rows of B are identical. Interchange these rows. Then
B goes over into — B, by Theorem 5. On the other hand, since the rows

are identical, the new determinant is still B. Thus B = —-B, B = 0, and
D = 0. ]

Proportional rows

3 6 —4
o~ 3p =0 ||
~6 —12 8

(Addition of a row or column)

The value of a determinant is left unchanged if the entries in a row (or
column) are altered by adding to them any constant multiple of the corre-
sponding entries in any other row (or column, respectively).

Proof. Apply Theorem 4 to the determinant that results from the given
addition. This yields a sum of two determinants; one is the original deter-
minant and the other contains two proportional rows. According to Theorem
6, the second determinant is zero, and the proof is complete. |

Theorem 7 shows that we can evaluate a determinant by first creating
zeros as in the Gauss elimination (Sec. 7.4), a method that can be pro-
grammed easily.'? We explain it in terms of an example.

1215 specific cases, selecting rows or columns by inspection may save work {€.8.. in pocket
computations), an art which old-fashioned texts emphasize 1o this day.
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EXAMPLE 11 Evaluation of a determinant by reduction to “trlangular torm”
Explanations of computations, such as "Row 2 — 2 Row 1, always refer to the preceding
determinant; they are placed behind the row where the result goes.

2 0 -4 6
4 5 | 0
D o=
0 2 6 -1
—3 8 9 t
z 0 -4 6
0 5 9 ~12 Row 2 - 2 Row |
0 2 6 -1
0 8 3 10 Row 4 » | 3 Row |
&
2 0 -4 6
0 s 9 -12
0 ¢ 2.4 18 Row 3 ~ 0.4 Row 2
0 0 —1il.4 29.2 Row 4 ~ 1.6 Row?
20 -4 b
0 3 9 - 12
0024 38
0 4 0 47.25 Row 4 + 475 Row 3

2 x5 % 2.4 x 47.25 = 1134,

i

In work with pencil and paper, one writes down lower order determinants when they appear,
instead of carrying along zeros,

2 0 -4 6

s 9 -2
& 5 1 0 24
P = | = =202 6 ~1] = :i{}I = 1134.
0 2 6 -1 114 2921
i g 3 1ol
-3 & 9 i

For determinants of products of matrices, there is a very useful formula
that has various applications. A proof of this formula will be given in the
next section.

Theorem 8 (Determinant of a product of matrices)
For any n X n matrices A and B,

(12) ~det (AB) = det (BA) = det A det B.




EXAMPLE 12

Theorem 9

EXAMPLE 13

W
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Hiustration of Theorem 8
12 4 3 4 0 S ) 4 18
6 10 4] i-2 1 -~ =146 10 76 |
4 7 9 30 4 29 749

If the entries of a square matrix are scalars (numbers), so is the deter-
minant. If they are functions, so is the determinant, and in this case, one
occasionally needs the following theorem, which can be obtained by the

product rule.

{Derivative of a determinant)

The derivative D' of a determinant D of order n whose entries are differ-

entiable functions can be written

(13) D' =Dy + Dy + -

¢}

+ D

(n)

where DU’) is obtained from D by differentiating the entries in the jth row.

Derivative of a third-order determinant
f g h g K f oz
=—ip q r}= q r{+1p q

i & w u 14 w i v

Problem Set 7.8

Evaluate
L 17 9} 3 cos nf  sin né
~4 13 ~sin n§  cos né
e 02 1.6 5 i 8
4. 130 06 1.2 5. 115 3 6
2.0 08 0.4 0w 4 2
6 22 4 a b ¢
7.1 4 =3 2 8 a
120 28 2 b ¢ a
AR 3 20
10. v 11, 6 ’ 0
0 1 0 o 4
0 6 —12i L s

12.

4.3
0.8

i1

~6

-7

87
9.1

wd

~d

3.6]
~1.7
4.5}

[ VA
—

ok
o

Tt
e
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Evaluate
4 3 9 9 4 3 0 0 ji2 6 i It
-8 3 5 -4 -8 1 2 0 4 4 { 4
13. 14. 15.
-8 0 -2 -8 0 -7 3 —~6 7 4 3
- 16 6 14 -5 0 0 5 -5 8 2 3 9

16. Show that det (kA} = k™ det A (not k det A}, where A is any n X n matrix.
17. Write the product of the determinants in Probs. 5 and 6 as a determinant.
18. Do the same task as in Prob. 17, taking the determinants in reverse order.

19. Verify that the answer to Prob. 11 equals the product of the determinants of the
2 x 2 submatrices containing no zero entries. Explain why.

20. Show that the straight line through two points Py (xy, y,) and Py (x,, y,) in the
xy-plane is given by formula (a) (below), and derive from (a) the familiar
formula (b).

x-x oy -y
@ |x, ¥ 1} =0 (b} =
T T X Yy T

Rank in Terms of Determinants.
Cramer’s Rule

In this section we first show that the rank of a matrix A (defined as the
maximum number of linearly independent row or column vectors of A; see
Sec. 7.5) can also be characterized in terms of determinants. This remarkable
property is often used for defining rank. We formulate this as follows, as- -
suming rank A > 0 (since rank A = 0if and only if A = 0; see Sec. 7.5).

(Rank in terms of determinants)

Anm X n matrix A = [a,]) has rank r = | if and only if A has anr x r
submatrix with nonzero determinant, whereas the determinant of every square
submatrix with r + | or more rows that A has (or does not havely is zero.

In particular, if A is a square matrix, A is nonsingular, so that the inverse
A~ Y of A exists, if and only if

det A # 0.

Proof. The key lies in the fact that elementary row operations (Sec. 7.4),
which do not alter the rank (by Theorem 3 in Sec. 7.5), also do not alter the
property of a determinant of being zero or not zero, since the determinant
is multiplied by
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{f} — 1 if we interchange two rows (Theorem 5. Sec. 7.8),
{iiy ¢ # 01f we multiply arow by ¢ # 0 (fheorem 2. Sec. 7.8),
(iii) 1 if we add a multiple of a row to another row (Theorem 7, Sec. 7.8).

Let A denote the echelon form of A (see Sec. 7.4). A has r nonzero row
vectors {which are the first r row vectors) if and only if rank A = r. Let
R be the r x r submatrix of A consisting of the r2 enmes {hdi are simul-
taneously in the first r rows and the first r columns ()f A. Since R i is triangular
and has all diagonal entries different from zero, det R #0. Since R is obtained
from the corresponding r x r submatrix R of A by elementary operatlons.
we have det R # 0. Similarly, det S = 0 for a square submatrix S of r +
OF more rows possibly contained in A, since the corresponding submamx
S of A must contain a row of zeros, so that det S = 0 by Theorem 3 in Sec.
7.8. This proves the assertion of the theorem for an m X n matrix.

If A is square, say, an n X n matrix, the statement just proved implies
that rank A = n if and only if A has an n x n submatrix with a nonzero
determinant; but this submatrix is A itself, so that det A # 0. ]

Using this theorem, we shall now derive Cramer’s rule, which gives so-
lutions of linear systems as quotients of determinants. Cramer’s rule is not
practical in computations (for which the methods in Secs. 7.4 and 19.1-19.3
are suitable), but is of theoretical interest in differential equations (Sec. 3.5)
and other theories that have engineering applications.

Cramer’s Theorem (Solution of linear systems by determinants)
(a) If the determinant D = det A of a linear system of n equations

apxy tapx, - +agx = b,
() Qgy Xy + AgyXy + + ay,x, = b,
arzl’xl + an2x2 oot arm’}:n = E’n
in the same number of unknowns Xy 00 X, s not zero, the system has

precisely one solution. This solution is given b@« the formulas

2) X =

1 2 i § (Cramer’s rule)

B‘s sz”‘i)"g"‘g n D

where D, is the determinant obtained from D by replacing in D the kith

column by the column with the entries by, b,.

{b) Hence if (1) is kom@geneem and D # O, it has only the trivial solution

x, = 0. x, = 0, v, = 0. If D = 0, the homogeneous system also has
f;s}:z{rivézz{ sm’fsfz{ms,
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Proof. From Theorem | and the Fundamental Theorem in Sec. 7.6 it follows
that {1) has a unique solution, because if

ayy C Ay

1
(3) DzdetAzii # 0,
|

a a

nl e nn
then rank A = n. We prove (2). Expanding D by the kth column, we obtain

(4) D =ayCy + ayCy + 0 F 4, Crxs

where C is the cofactor of the entry g, in D. If we replace the entries in
the kth column of D by any other numbers, we obtain a new determinant,
say, D. Clearly, its expansion by the kth column will be of the form (4),
withay, = G replaced by those new numbers and the cofactors C;; as
before. In particular, if we choose as new numbers the entries ay;, * * * . dy
in the Ith column of D (where | # k), then the expansion of the resulting
determinant D becomes

5 ay Cy + a, Cop + +° F a,C., = 0 (I # k)
because D has two identical columns and is zero (by Theorem 6 in Sec. 7.8).
If we multiply the first equation in (1) by C,,, the second by Cyy, * - -, the
last by C,, and add the resulting equations, we first obtain
Cplagxy + 000+ apx) + oot Col@pyxy + 70 F Xy
b Cy t o+ buCue

Collecting terms with the same x, we can write the left side as

xlayCy + 0+ ay Gy + oo xlag Gy + 0+ G-
From this we see that x,_is multiplied by

aCu 7 N 5 Corpr

which equals D by (4}, and x; 18 multiplied by

B Y H
ayCyy +oa,C .

which is zero by (5) when [ # k. Hence the left side equals x, D, and we
thus have



Theorem 3

Sec. 7.9 Rank in Terms of Determinants. Cramer’s Rule 383

xD = b Cp + -+ b, Cpp

The right side is D, (as defined in the theorem) expanded by its kth column.
Division by D (5 0) gives (2).
If (1) is homogeneous and D # 0, then each D, has a column of zeros, so
that D, = 0 by Theorem 3 in Sec. 7.8, and (2) gives the trivial solution.
Finally, if (1) is homogeneous and D = 0, then rank A < n by Theorem
1, so that nontrivial solutions exist by Theorem 2 in Sec. 7.6. |

An example is included in Sec. 7.8 (Example 1).
As an important consequence of Cramer’s theorem, we may now express
the entries of the inverse of a matrix as follows.

(Inverse of a matrix)
The inverse of a nonsingular n X n matrix A = [ajk} is given by

Ay Agy T Am-1
1 i A A 00 © A
© Al= —— [A'k}T _ 12 22 n2 ’
det A det A . . C .
_A}n Azn o Arm_“

where A is the cofactor of ay in det A (see Sec. 7.8). Noté well that in

A~L, the cofactor Ajk occupies the same place as a,; (not ajk) does in A.

Proof. We denote the right side of (6) by B and show that BA = L. We write

7 BA =G = [gki]'

Here, by the definition of matrix multiplication, and by the form of the entries
of B as given in (6},

( . Ask
& S = 2 Gera
=

5=

det A (agAy + -0 0+ agAn).

Now (3) and (4) (with C written in our present notation A ) show that the
sum (- - -) on the right is D = det A when [ = k and zero when [ # k. Hence

1
Bkk = et A

det A = 1, gy =0 (# k.
sothat G = [g,] = BA = Lin (7). Similarly AB = 1. Hence B = A™1. 1

The explicit formula (6) is often useful in theoretical studies, as opposed
to methods of actually computing inverses (see Sec. 7.7).
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EXAMPLE 1 illustration of Theorem 3
Using (6}, find the inverse of

£
£

A= Io-1 1
-1 3 4

Solution. We getdet A = ~ =7y — 13 + 2-8 = 10, and in (6},

l~1 1 11 2 i i zl
Ay = = 7 Agy = ~ =2, Ay = =3,
n 34 a 34 A B

‘3 1 i»i 2 1~1 2} ;
A, = — = 13, A, = = =2, Ay, = - =7,
12 1 4 22 1 4 32 3 {
A = = §, Agy = — 55) Ang = = 2,k
E PR = 13 5 31 )

so that by (6), in agreement with Example 1 in Sec. 7.7,

07 02 03
A"l = {-13 —02 07]. n
08 02 -02

Using Theorem 1, we may now also prove the theorem on determinants
of matrix products (Theorem 8 in Sec. 7.8), which we first restate.

Theorem 4 (Determinant of a product of matrices)
For any n X n matrices A and B,

) | det (AB) = det (BA) = det A det B. |

Proof. If A is singular, so is AB by Theorem 2(c) in Sec. 7.7. Hence we
have det A = 0, det (AB) = 0 by Theorem 1, and (9} is 0 = 0, which holds.
. Let A be nonsingular. Then we can reduce A to a diagonal matrix
A= EEE;{} by Gauss-Jordan steps (Sec. 7.7). Under these operations, det A
retains its value, by Theorem 7 in Sec. 7.8, except perhaps for a sign reversal
if we have to interchange two rows to get a nonzero pivot (see Theorem 5
in Sec. 7.8). But the same operations reduce AB to AB with the same effect
on det (AB). Hence it remains to prove (9) for S.B; written out,

P“ 0 0 ] [by by
ggtgs A ng b

- |
o0 G E%}%; by 0 bus]

Tiﬁ“f e

21 22 2n
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a; by ay by, ayby,
_ aggbyy agobyy agbon
annbnl anﬁbnz T armbrm

We now take the determinant det (AB). On the right we can take out a factor

a,, from the first row, d,, from the second, - - -, a, from the nth. But
this product @,,d,, - - - a,, equals det A, since A is diagonal. The remaining
determinant is det B, and (9) is proved. 1

This completes our discussion of linear systems (Secs. 7.4-7.9). (For
numerical methods, see Secs. 19.1-19.4, which are independent of other
sections on numerical methods.) Beginning with Sec. 7.10, we turn to

eigenvalue problems, whose importance in engineering and physics can hardly
be overestimated.

Problem Set 7.9

Using Theorem 1, find the rank of the following matrices.

-1 3 . 30 -70 50
3 - T 1-36 84 -60

0.4 2.0 0 5 2 21 -3 17 13
4, 132 1.6 5. 13 0 —1 6.0 46 11 52 14
0 1.1 7 9 0 33 48 7t -23

Using Theorem 3, find the inverse. Check your answer.

; 9 s . 0.8 0.6 . cos 38 sin 36 |
s 14 " loe 08 " {-sin30 cos36)
-3 -1 1o @‘i [2. s ﬂ

10. |15 -6 5 m. -2 1t 0 12. %3 o8
-5 2 -2 - zj lo o ze}

0 -04 02 [ {}“} 19 2 -9

13, 01 01 -01] 4 1 0 0 15. | -4 -1 zi
02 04 o | o o 1 2 0 1

Solve by Cramer’s rule and by the Gauss elimination:
6. 4x - y = 3 17. —x + 3y - 22 = 7 18, 2x + Sy + 1z = |
~2x + ﬁ}‘ = 21 3x 4+ }: = — % —y 4+ 2}? + 7= 2

2r ¢+ oy + 2z= | x+ y+ 7z =10
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19. Using A~ ! as given by (6), show that AA™! = L
20. Obtain (4) and {5) in Sec. 7.7 from the present Theorem 3.

21. Show that the product of two n x n matrices is singular if and only if at least
one of the two matrices is singular.

Geometrical applications. Using Cramer’s theorem, part (b), show:
22. The plane through three points (x,, v, z,}. (x,, y,, 2,), ¥y, ¥, 23) in space is
given by the formula below.

23. The circle through three points (x;, v, (x,, ¥,). {x,, v,) in the plane is given by
the formula below.

x v z | Ix? 4 y? x v !
X v z 1 2+ oy ? X y 1
1 1 1 -0 1 1 1 1 -0
Xy Yoo %y ! LR S A 2 I
Xy Yz o I3 ! PR A I
Problem 22 Problem 23

24, Find the plane through (1, 1. 1), (5, 0, 5}, (3, 2, 6).
25, Find the circle through (2, 63, (6, 4), (7, 1),

Eigenvalues, Eigenvectors

From the standpoint of engineering applications, eigenvalue problems are
among the most important problems in connection with matrices, and the
student should follow our present discussion with particular attention. We
first define the basic concepts and explain them in terms of typical examples.
Then we shall turn to practical applications.

Let A = [ajk} be a given n X n matrix and consider the vector equation

h

where A is a number.

It is clear that the zero vector x = 0 is a solution of (1} for any value of
A. A value of A for which (1) has a solution x # 0 is called an eigenvalue'®
or characteristic value (or laient rooty of the matrix A. The corresponding
selutions x # 0 of (1) are called eigenvectors or characteristic vectors of A
corresponding to that eigenvalue A. The set of the eigenvalues is called the
spectrum of A. The largest of the absolute values of the eigenvalues of A is
called the spectral radius of A.

The set of all eigenvectors corresponding to an eigenvalue of A, together
with 0, forms a vector space {Sec. 7.5}, called the eigenspace of A corre-
sponding to this eigenvalue.

The problem of determining the eigenvalues and eigenvectors of a matrix
is called an eigenvalue problem. ' Problems of this type occur in connection
wiih physical and technical applications, as we shall see.

Berman: Eigenwert: “eigen’’ means Cproper’ L Uwert means Uvalue
} blem, because there are other eigenvalue prob-
5. 3B and 11,35 or an integral equation.

Mare preciselyr an algebruic eigeny
lems wvolving a differential equation (see §




Sec. 7.10 Eigenvalues, Eigenvectors 387

How to Find Eigenvalues and Eigenvectors

EXAMPLE 1

The following example illustrates all steps.

Determination of eigenvalues and eigenvectors
Find the eigenvalues and eigenvectors of the matrix

Solution. (a) Eigenvalues. These must be determined first. Equation (1) is
-5 214 x x
Ax = ! = A ! H
2 - Xy Xy

=5xy + 2xy = Axg

written out in components,
’

2y~ 2xy = Axy,
Transferring the terms on the right to the left, we get
(=5 — A, + 2x. =0
) 1 2
2xy + (=2~ Ay = 0.
This can be written in matrix notation

3% (A — ADx = 0.

{Indeed, (1) is Ax — Ax = Bor Ax — Alx = 0, which gives (3).] We see that this is a homogeneous
linear system. By Cramer's Theorem in Sec. 7.9 it has a nontrivial solution x » 0 (an eigenvector
of A we are looking for} if and only if its coefficient determinant is zero,

~5 -~ A 2
D(A) = det (A — AD

i

) 2 -2-2

= {5 = AH~2 — A}~ 4= A% + TA + 6 = 0.

We call D(A) the characteristic determinant or, if expanded, the characteristic polynomial, and
DA} = 0 the characteristic equation of A. The solutions of this quadratic equation are
Ay = ~1land , = —6. These are the cigenvalues of A.

by} Eigenvector of A corresponding to Ay This vector is obtained from (2%} with
A= A, = —1, thatis,

— Iy, =
dx, + 2xy = 0
9y X -t
Ay *2

A solution is x, arbitrary, x, = 2xr,. If we choose x; = 1. then x, = 2, and an eigenvector of
A corresponding to Ay = —1is

We can easily check this
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(by) Eigenvector of A corresponding to A,. For & = A, = ~—6, equation {2%) becomes
X+ 2, =0
2y + 4xy, = 0.

A solution is x, = —x,/2. If we choose x, = 2, we get x, = — 1|, and an eigenvector of A
corresponding 10 A, = —6is

Check this. Y

This example illustrates the general case as follows. Equation (1) written
in components is

apx, + - ta x = ,\xl
Ay Xy + 00 ay,x, = Ax,
anlxl + + avmxn = ’\xn

Transferring the terms on the right side to the left side, we have

(@, — A)xy + ay5X, 4+ o+ a, . X, = {
A9y %y + (ay, — Ax, + -+ Ay, X, = {

@
a, x + a,x, + + la,, - Ax, =0

In matrix notation,

o Wi

By Cramer’s Theorem in Sec. 7.9, this homogeneous linear system of equa-

tions has a nontrivial solution if and only if the corresponding determinant
of the coefficients is zero:

gﬁn A ay e ayy ;
|
oa Aoy = A d,
@ D) =det(A ~ap=| 2 " =0
| |
L oa a a,, ~ Al
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D(A) is called the characteristic determinant, and (4 is called the characteristic
equation corresponding to the matrix A. By developing D{A) we obtain a
polynomial of nth degree in A. This is called the characteristic polynomial
corresponding to A.

This proves the following important theorem.

{Eigenvalues)
The eigenvalues of a square matrix A are the roots of the corresponding
characteristic equation (4).

Hence an n X n matrix has at least one eigenvalue and at most
n numerically different eigenvalues.

For larger n, the actual computation of eigenvalues will in general require
the use of Newton's method (Sec. 18.2) or another numerical approximation
method in Secs. 19.7-19.10. Sometimes it may also help to observe that the
product and sum of the eigenvalues are the constant term and (— D7 imes
the coefficient of the second highest term, respectively, of the characteristic
polynomial (why?). Once an eigenvalue A, has been found, one may divide
the characteristic polynomial by A — A,.

The eigenvalues must be determined first. Once these are known, corre-
sponding eigenvectors are obtained from the system (2), for instance, by the
Gauss elimination, where A is the eigenvalue for which an eigenvector is
wanted. This is what we did in Example 1 and shall do again in the examples
below.

{Eigenvectors)
If x is an eigenvector of a matrix A corresponding to an eigenvalue A, 50 is
kx with any k # 0.

Proof. Ax = Ax implies K(AX) = Alkx) = Alkx). ]

Examples 2 and 3 will illustrate that an 7 X n matrix may have n linearly
independent eigenvectors,'® or it may have fewer than n. In Example 4 we
shall see that a real matrix may have complex eigenvalues and eigenvectors.

Muitiple eigenvalues
Find the eigenvalues and eigenvectors of the matnx

i’“mz 7 =3
A=) 2 1 -6
% ;
L-r -2 o]

Solution. For our matrix, the characterstic determinant gives the characteristic equation

B RS A2 T O L )

The roots (eigenvalues of Ajare A, = 5. 4, = A, = -3 To find cigenvectors, we apply the
3 Cige! i 2 2 : ¥ U
Gauss elimination (Sec. 7.4} to the system (A - Ahw = B, first with 4 = 5 and then with
A o= -1 We find that the vector

P A property that will play 2 role m Sec. 714
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= b
Xl k4
~1

is an eigenvector of A corresponding to the eigenvalue 5, and the vectors

F el 3

X, = 1 and X3 =10
0 1
are two linearly independent eigenvectors of A corresponding to the eigenvalue — 3. This agrees
with the fact that, for A = -3, the matrix A ~ Al has rank 1 and so, by Theorem 2 in Sec.
7.6, a basis of solutions of the corresponding system (2) with A = -3,

xl+?~x‘2“3x3$0
bl ; - -
2x, + 4dxy &r3-—0
*x}—:?xz'% 31’330

consists of two linearly independent vectors. |

If an eigenvalue A of a matrix A is a root of order M, of the characteristic
polynomial of A, then M, is called the algebraic multiplicity of A, as opposed
to the geometric multiplicity m, of A, which is defined to be the number of
linearly independent eigenvectors corresponding to A, thus, the dimension
of the corresponding eigenspace. Since the characteristic polynomial has
degree n, the sum of all algebraic multiplicities equals n. In Example 2, for
A = ~3 we have m, = M = 2. In general, m = M,, as can be shown.
We convince ourselves that m, < M, is possible:

Algebraic and geometric multiplicity
The characteristic equation of the matrix

0 {
A = is det (A — Al =
0 G

~A
= A% = 0.
— A

Hence 4 = 0 is an eigenvalue of algebraic multiplicity 2. But its geometric multiplicity is only
1, since eigenvectors result from —08x; + x, = 0. hence x, = 0, in the form [x, a7, ]

Real matrices with complex eigenvalues and eigenvectors

Since real polynomials may have complex roots twhich then occur in conjugate pairs), a real
matrix may have complex eigenvalues and eigenvectors. For instance, the characieristic equa-
tion of the skew-symmetric matrix

o 1] PR PO, |
A= | s det(A - aly = =A% 4+ 1 =0
Lt 0 HES B § :
and gives the eigenvalues A, = 1{= v < k, = ~i Eigenvectors are obtained from
~ixy 4 1y = Oand ix; » gy = O respectively, and we can choose 1 = | o get

H
H

M

The reader may show that, more generally | these vectors are eigenvectors of the matrix

ey

[
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a b
A= (a, b real)
~b a

and that A has the eigenvalues a + b and a — ib. ]

Having gained a first impression of matrix eigenvalue problems, in the
next section we illustrate their importance by some typical applications.

Problem Set 7.10

Find the eigenvalues and eigenvectors of the following matrices.

o N2 2 0
1. 2. 3.
0 - 0 3 4 S

4 0 0 3 0 0] -1 1 0

13. 10 8 0 4. |5 4 0 15. I ~1 0
0 0 13 6 1] 0 0 0
2 -2 3 6 10 6 (32 24 -8
16. | -2 ~—1 17. 1 0 8 12 18. 116 ~11 ~4
! 2 0 L0 0 2 72 -57 -18

8 o 3 s 0 s 2 -3

19, 12 2 1 20 | -3 -4 9 21. 2 4 —6
2 o 3 50 15 -1 -2 3

Some general properties of the spectrum. Let A, -~ -, A be the eigenvalues of a

given malrix A = igzﬁ,&; In each case prove the proposition and llustrate it with an

example.

22. (Tracey The so-called rrace of A, given by trace A = ay, oy, t ot oa
isequal to &, + - - + A_. The constant term of D{A} equals det A,

- If A is real, the eigenvalues are real or complex conjugates in paifs.

. {Inverse) The inverse A~ exists if and only if A#EO0G =1 m

. The inverse A™! has the eigenvalues /A, -+ -, VA .

BRE B

{Triangular matrix) If A is triangular, the entries on the mamn diagonal are the
eigenvalues of A,

27. {“*Spectral shift”) The matrix A - kI has the eigenvalues L I T
28. The matrix kA has the eigenvalues KA, - kAL
29

. The matrix A™ On a nonnegative integer) has the eigenvalues AL LA
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30, (Spectral mapping theoremi The matnix

K AT =k AT e e RA KL

"
which is called o polynomial matrix, has the eigenvalues

. n I3 m-1 L ... i [ ; - ;o= e
ko A™ + kA + FokA kg U i, . nh
{This proposition s called the specrral mapping theorem for polvnomial

matrices.) The eigenvectors of that matrix are the same as those of A,

Some Applications of
Eigenvalue Problems ;

In this section we discuss a few typical examples from the range of appli-
cations of matrix eigenvalue problems, which is incredibly large. Chapter 4
shows matrix eigenvalue problems releted to differential equations governing
mechanical systems and electrical networks. To keep our present discussion
independent, for students not familiar with Chap. 4 we include a typical
application of that kind as our last example.

Stretching of an elastic membrane
An elastic membrane in the x, r,-plane with boundary circle /(12 + ng = | (Fig. 136} is stretched
so that a point P (xy. x5} goes over into the point Q1 (v, vy} given by

Fv{l N fﬁ 3 o vy = Sxy + 3y
= AX =

oy = g % . in components,

L‘;'zj L% Sy vy = 3xy o+ Sag.
Find the “principal directions.” that is. directions of the posilion vector x of P for which the
direction of the position vector y of {J is the same or exactly opposite. What shape does the
houndary circle take under this deformation”

Solution. We are looking for vectors x such that ¥ = Ax. Since y = Ax, this gives Ax = Ax,
an equation of the form (1) an cigenvalue probiem. In components, Ax = Ax i$

td = A Yo ‘
4 i | =43 A - g e 0
i 3 C f‘i;

fty solunions

These are the eigenvalues of our problem For

b, = 3 ol Selutien v, & v, v, arbirary,
o : z
. i
i Yo, o6 ¢ oe, o d

For &, = 2. our sys
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Fig. 136. Undeformed and deformed membrane in Example 1

i

3x; + 3x, = 0, Solution x, = —x;, x, arbitrary,

i

3xp + 3xy = 0. for instance, xy = 1, x, = — 1,

We thus obtain as eigenvectors of A, for instance,

1 {
[ ] corresponding to Ay; { } corresponding to Ags
1 —1

{or a nonzero scalar multiple of these). These vectors make 45° and 135° angles with the positive
x,-direction. They give the principal directions, the answer to our problem. The eigenvalues
show that in the principal directions the membrane is stretched by factors 8 and 2, respectively;
see Fig. 136,

Accordingly, if we choose the principal directions as directions of a new Cartesian Ly iy~
coordinate system, say, with the positive u,-semiaxis in the first quadrant and the positive Uy
semiaxis in the second quadrant of the x,x,-system, and if we set

uy = rcos @, uy = rsin o,

then a boundary point of the unstretched circular membrane has coordinates cos ¢, sin ¢.
Hence, after the stretch we have

zy = Bcos ¢, zy = 1sin ¢.

Since cos? ¢ + sin® ¢ = 1. this shows that the deformed boundary is an ellipse (Fig. 136)
X ’ 2,2
‘gi + *g‘i = |

with principal semiaxes 8 and 2 in the principal directions. ]

Eigenvalue problems arising from Markov processes
As another application, let us show that Markov processes also lead to eigenvalue problems.
To see this, let us determine the limit state of the land-use succession in Example 8, Sec. 7.3.

Solution. We recall that Example 8 in Sec. 7.3 concerns a Markov process and that such a
transition process is governed by a stochastic matrix A = iz;}k}, that is, a square matrix with
nonnegative entries a e {giving transition probabilities) and all row sums equal to |. Furthermore,
state y {a column vector} is obtained from state x according to y* = x'A, equivalently,
y = ATx. A limit is reached if states remain unchanged, if x7 = x7A or

(43 ATy = x.
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This means that AT should have the eigenvalue 1. But AT has Qxe same cigenvalues as A (by

Theorem | in Sec. 7.8} and A has the eigenvalue 1, with eigenvector vT = {1 - 1], because
the row sums of A equal 1. Inour exampie,

0.8 0.1 0.1 H t
Av = (0.1 0.7 0211 = |t
0 0.1 09111 i

as claimed. Hence (4) has a nontrivial solution x 0, which is an eigenvector of AT corresponding
to A = 1. Now (41 is (AT — Dx = 0; written out,

—0.2x, + O.lxy = {
0.1xy ~ 0.3x, + O.lxy = Q
0.0x; + 0.2xy — 0.1xg = 0.

A solution is xT = [12.5 25 62.5]. Answer. Assuming that the probabilities remain the same

as time progresses, we see that the states tend to 12.5% residentially. 25% commercially, and

62.5% industrially used area.

Eigenvalue problems arising from population models. Leslie model

The Leslie model describes age-specified population growth, as follows. Let the oldest age
attained by the females in some animal population be 6 years. Divide the population into three
age classes of 2 years each. Let the ~ Leslie matrix”” be

0o 23 04
(5) L=1)=06 0 0
o 03 0

where Iy is the average mumber of daughters born to a single female during the time she is in
age class &, and IM‘MI (=12, is the fraction of females in age classj — 1 that will survive
and pass into class j. () What is the number of females in each class after 2.4, 6 years if each
class initially consists of 500 females? (b) For what initial distribution will the number of females
in each class change by the same proportion? What is this rate of change?

Sotution. (2} Initially, xj,, = [500 S00 0 S001. After 2 years,

[o 237 o4 s001  [13s0]
i [ i H
X = Lagy = }m o 0| i%@t} - 1% 300

lo o3 o y@(}j L §§§}j

Similarly, after 4 years we have xfé,} = {Lxgggf = [750 810 90] and after 6 years we have
x;}; = {Lxgﬁz" = [1899 450 2431 i

th) Proportional change means that we are looking for a distribution vecior x such that
Lx = ix, where A is the rale of change (growth if A > 1, decrease a1y The characteristic
equation is

det (L ~ Al = —A% -~ 08 -234 - 0304 = Zi% s 1384+ 007220

A positive root s found to be for instance. by Newton's method, Sec. 1823 4 = L1
A corresponding eigenvector can tie determined from 0.6x, - 1.2, = 0,030, — blxg = 0.
Thus. x' = {1 0.5 £.125] To get an mital population of 1500, as before, we multiply 2’ by
931, Answer, 923 {emales in class L 467 in class 2, 115 in class 3. Growth rate 1.2.
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Vibrating system of two masses on two springs {Fig. 57 in Sec. 4.1)
Mass-spring systems involving several masses and springs can be treated as cigenvalue prob-
lems. For instance, the mechanical system in Fig. 57 (Sec. 4.1) is governed by the differential
equations

) vy = —Sy, + Iy
(6) Y1 1 2

S e =2
Yo = 2¥y =¥y

where y, and y, are the displacements of the masses from rest, as shown in the figure, and
primes denote derivatives with respect to time t. In vector form, this becomes

” 3‘;1] -5 2 Y1
{7) y = £ Ay ==
.” -y — 7 q
¥a 74 - }2
We try a vector solution of the form

8) y = xe!

This is suggested by a mechanical system of a single mass on a spring (Sec. 2.5), whose motion
is given by exponential functions (and sines and cosines). Substitution into (7} gives

wixe®t = Axe*t

Dividing by e“! and writing w2 = A, we see that our mechanical system leads to the eigenvalue
problem

9) Ax = Ax where A = w?.
From Example ! in Sec. 7.10 we see that A has the eigenvalues A, = -1 consequently,
- = ol : .
w=V-1= +i and Ay = —b thusw = V -6 = +iV6, and corresponding eigenvectors
1 2
10 = d =
(10} %y 5 el X2 4

From (8) we thus obtain the four complex solutions {see (7), Sec. 2.3}

xie"' = x{cos ! = isin 1},

Xy =ivBL

4

x5{co8 Vet + isin VE 13,

and by addition and subtraction (see Sec. 2.3} we get the four real solutions
Xy COS 1, X, S, Xy €O VB 1, X, Sin V61

A general solution is obtained by taking a linear combination of these,

y = xda, cost o+ byosing) + xyiay cos V&1 + by sin Ve

with arbitrary constants a,. by, a4y 5, (10 which values can be assigned by prescribing initial
displacement and initial velocity of each of the two massesy. By (101, the componenis of y are

¥y 0= @ €051 ¢ bysint ¥ Zuycos V61 + Dby sin V6
v o= Ja.cost 4+ 3B, sint — g.cos VB ~ B Va1
¥a 2a,cost + Iby st gy cos VB by s VBT

These functions describe harmonic oscillations of the two masses, |
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Problem Set}?.ﬁ

Find the principal directions and corresponding factors of extension or contraction
of the elastic deformation y = Ax, where A equals
1 0.2
3.
0.2 {

3 V2 , [ vl
Lo . -
V2 2 12 |
200 175 21 350 1.00
a. 5. 6.
200 225 P2 075 2.50

Find limit states of the Markov processes governed by the following stochastic

matrices.

~ 0.50 025 0.25 (06 04 0
0.3 0.7
7. 8 (025 0.50 0.25 9. 10.1 0.1 0.8
0.5 0.5
- 0.25 025 0.50 L 0 1.0 0
Find the growth rate in the Leslie model with Leslie matrix
C0 52 2.125 0 8 0 [0 45  2.5]
16. 0.4 0 0 11. 10.5 0 0 12. 10.2 0 0
0 0.3 0 0 0.2 0 L0 0.2 0 |

oy

13. {Leontief!® input—output model) Suppose that three industries are interrelated so
that their outputs are used as inputs by themselves, according to the 3 X 3
consumption matrix

02 05 0
A=lal =106 0 04
lo2 05 06

where a;, is the fraction of the output of industry k& consumed (purchased) by
mdussrv Jj. Letp;be the price charged by industry j for its total output. A problem
is to find prices so that for each industry, total expendzmres equal total income.
Show that this leads to Ap = p, where p = [p, p, p,)7, and find a solution
p with nonpegative p,, p,. py.

14. Show that a consumption matrix as considered in Prob. 13 must have column
sums 1 and always has the eigenvalue 1.

15. (Open Leontiel input-output model) ff not the whole output is consumed by
the industries themselves {as in Prob. 13}, then instead of Ax = x we have
x — Ax =y, where x = [x, x, xs}’ is produced, Ax is consumed by the
industries, and, thus, y is the net production available for other consumers. Find
for what production x a given y = {0.1 0.3 0.1]7 can be achieved if the con-
sumplion matrix is

Fot 04 02]
é 0 o
lor o4 04
i o et

W ASSILY LEONTIEF thorn 19061 American economist. For his work he was awarded
the Mobel Prize in 1973
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16. (Perron—~Frobenius theorem) Show that a Leslie matrix L with positive e Uy
l,;. 14, has a positive eigenvalue. Hinr. Use Probs. 22, 23 in Sec. 7.10. (This is
a special case of the famous Perron-Frobenius theorem in Sec. 19.7, which is
difficuit to prove in its general form.)

For differential equations and related matrix eigenvalue problems, see Chap. 5.

Symmetric, Skew-Symmetric, and
Orthogonal Matrices

We consider three classes of real square matrices that occur quite frequently
in applications. These are defined as follows.

Definitions of symmetric, skew-symmetric, and orthogonal matrices
A real square matrix A = {ajk] is called

symmetric if transposition leaves it unchanged,

o =)

thus A = gy,

skew-symmetric if transposition gives the negative of A,

2) WZTXTJ thus Q= —ay,

3) L AT = AL,

Symmetric, skew-symmetric, and orthogonal matrices
The matrices

<3 1 &) 0 9 -1 { : 4 {E
i Lo -2, -9 0 201, SR EEY
is -2 4 {12 -20 o Po% -3

are symmetric, skew-symmetric, and orthogoenal, respectively. as the student should verify.
Every skew-symmetric matrix has all main diagonal entries zero. (Can you prove this?) 3

Any real square matrix A may be written as the sum of a symmetric matrix
R and a skew-symmetric matrix S, where
and

{43 R = LA + AT S =LA - AT).
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fllustration of formula {4}

3 -4 -1 31 =2 o -5 1
A = 6§ 0 -t] =R+S§= P00 6] + s 0 =7 |}
-3 13 -4 2 6 -4 -1 7 0

(Eigenvalues of symmetric and skew-symmetric matrices)

(a) The eigenvalues of a symmetric matrix are real.
(b) The eigenvalues of a skew-symmetric matrix are pure imaginary or
zero. (Proofs see in the next section.)

Eigenvalues of symmetric and skew-symmetric matrices
The matrices in (1) and (7) of Sec. 7.11 are symmetric and have real eigenvalues. The skew-
symmetric matrix in Example | has the eigenvalues 0, ~25i, and 25i. (Verify this.) The matrix

NN |

has the real eigenvalues | and 5 and is not symmetric. Does this contradict Theorem 1? |

Orthogonal Transformations and Matrices

Theorem 2

Orthogonal transformations are transformations
(5 y = Ax with A an orthogonal matrix.

With each vector x in R™ such a transformation assigns a vector y in R™.
For instance, the plane rotation through an angle 0

y l‘cos 8 —sin § Xy

©) y=|"" =1
¥y Ls;né cos 6 xi_}

is an orthogonal transformation, and one can show that any orthogonal
transformation in the plane or in three-dimensional space is a rotation (pos-
sibly combined with a reflection in a straight line or a plane, respectively).

The following property of orthogonal transformations is the main reason
for the importance of orthogonal matrices.

(invariance of inner product)

An orthogonal transformation preserves the value of the inner product of
vectors {see Sec. 7.3)

(7 asb = a'h,

hence also the length or norm of a vector in R™ given by

(8)
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Proof. Letu = Aaand v = Ab, where A is orthogonal. We must show that
usv = asb. Now (5) in Sec. 7.3 gives u' = {(Aa)" = aTAT Also.
ATA = A7'A = I by (3). Hence

9) usv = u'v = (Aa)"Ab = a"ATAb = a'Ib = a'b = a.b. 1

Orthogonal matrices have further interesting properties, as follows.

Theorem 3 (Orthonormality of column and row vectors)
A real square matrix is orthogonal if and only if its column vectors

ay, © - -, a, (and also its row vectors) form an orthonormal system, rhat is,
; 0 ifj#*k
(10) ara, = aTa, = {
E 1 ifj =k
Proof. (a) Let A be orthogonal. Then A™!A = ATA = I, in terms of column
vectors,
T T Ta o g. Ta
AT aa aa aa,
1 T T T
a,’a, a,'a, *--a,a
. 2 94 4y @y 2
(DA TA=ATA= | | (a,- - -a ] = n =1,
) 3; T T T
Nan al an 32 e an any

where the last equality implies (10), by the definition of the n % n unit matrix
L From (3} it follows that the inverse of an orthogonal matrix is orthogonal
(see Prob. 22}, and the column vectors of A~ (= A7) are the row vectors
of A; hence the row vectors of A also form an orthonormal system.

(b) Conversely, if the column vectors of A satisfy (10), the off-diagonal
entries in the big matrix in (11) are 0 and the diagonal entries are 1. Hence
ATA = I, as (11) shows. Similarly, AA™ = L. This implies AT = A~! because
also A7'A = AA~! = I and the inverse is unique. Hence A is orthogonal.
Similarly when the row vectors of A form an orthonormal system, by what
has been said at the end of part (a). ]

Theorem 4 (Determinant of an orthogonal matrix)
The determinant of an orthogonal matrix has the value + 1 or — 1.

Proof. This follows from det AB = det Adet Band det A™ = det A (Theorems
P and 8 in Sec. 7.8} Indeed, if A is orthogonal, then

I = detl = det {AA™}) = det (AAT) = det A det AT = (det A)2. &

EXAMPLE 4 fliustration of Theorems 3 and 4
The last matrix in Example | and the matrix in (6] iHustrate Theorems 3 and 4. their determinants
being —  and + 1. as the student should verify. |
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{Eigenvalues of an orthogonal matrix)
The eigenvalues of an orthogonal matrix A are real or complex conjugates
in pairs and have absolute value 1.

Proof. The first part of the statement holds for any real matrix A because
its characteristic polynomial has real coefficients, so that its zeros {the ei-
genvalues of A) must be as indicated. The claim that [A| = 1 will be proved
in the next section. 1

Eigenvalues of an orthogonal matrix
The orthogonal matrix in Example | has the characteristic equation

~A e s i1 =0
Now one of the eigenvalues must be real (why?), hence +1 or — . Trying, we find —1.

Divisionﬂgy A + 1 gives A2 ~ SA/3 + | = 0 and the two eigenvalues (5 + iV11Y/6 and
(5 — iV11y6. Verify all of this. 1

%

Problem Set 7.12

Write the following matrices as the sum of a symmetric and a skew-symmetric matrix.

7 =20 == 3 0 —1 4
1. L Iji 2. 4 g -5 3. 9 1 -7
= =g 5 -10 11 -1

4. Show that the main diagonal entries of a skew-symmetric matrix are all zero.

Are the following matrices symmetric? Skew-symmetric? Orthogonal? Find their
eigenvalues (thereby illustrating Theorems 1 and 5).

6 8 T 08 06 T 0 3
5. 6. 7
8 - -06 08 -3 0

C0 1 - } o0 o ﬂ cos 8 —sing 0

8. -1 0 1 9. 1 0 1 o0 10. [sinf cosf 0

b QJ o z}j 0 0 i
P [050 025 0.25) [0 18 -24]
TR E E% 12. §9425 0.50 g.zij 13. } 8 0 40
I B {025 025 050 | 24 -4 of

14. (Symmetric matrix) Prove that eigenvectors of a symmetric matrix corresponding
1o different eigenvalues are orthogonal. Give an example.

15. Find a real matrix that has real eigenvalues but is not symmetric. Does this
contradict Theorem 17

16. Show that (6} is an orthogonal transformation. Verify that Theorem 3 holds. Find
the inverse transformation.

17. Let v’ = [4 I.w = Av, y = Ax with A given in (6}, Find v,
Ixf, iwl, Iyl Which theorem do the results dlustrate?

18, Find A such that v = Ax is a counterclockwise rotation through 307 in the plane.

T
21 x¥ = [ -2
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19. Interpret the transformation y = Ax geometrically, where A is the matrix in
Prob. 10 and the components of x and y are Cartesian coordinates.

20. Find a 2 x 2 matrix that is both orthogonal and skew-symmetric. Find its
eigenvalues,

21. Does there exist an orthogonal skew-symmetric 3 x 3 matrix? An orthogonal
symmetric 3 X 3 matrix? (Give a reason.)

22. Show that the inverse of an orthogonal matrix is orthogonal.

23. Show that the product of two orthogonal n X n matrices is orthogonal.
24. Is the sum of two orthogonal matrices orthogonal?

25

. Show that the inverse of a nonsingular skew-symmetric matrix is skew-sym-
metric.

Hermitian, Skew-Hermitian,
and Unitary Matrices

We shall now introduce three classes of complex square matrices that gen-
eralize the three classes of real matrices just considered and have important
applications, for instance, in quantum mechanics.

In this connection we use the standard notation

A = [a,]

for the matrix obtained from A = {‘{;‘k} by replacing each entry by its complex
conjugate, and we also use the notation

for the conjugate transpose. For example, if

3+ 4 -~ 5i , 3 - 4 =5
A= , then A =
= 7. 6 — 2i 5i 6 + 2

Definitions of Hermitian,'” Skew-Hermitian, and unitary matrices
A square matrix A = E(zﬁj is called

Hermitian if A = A, that is, 4, = a.

kg ik
skew-Hermitian if A = ~ A, that is, @j = —ay
unitary if Al =AY

From these definitions we see the following. If A is Hermitian, the entries
on the main diagonal must satisfy a; = ag, that is, they are real. Similarly,
if A is skew-Hermitian, then 4. = -~ a; or, if we set a, = a + if, this
becomes a — i = ~(a + iB), so that a = 0 and ay is pure imaginary or 0.

H ~ < P > N P
See footnote 32 in Problem Set $.9.
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EXAMPLE 1 Hermitian, skew-Hermitlan, and unitary matrices
The matrices

4 |- 3 3 24 4 V3
A= ., B= , €= N
RSN 7 -2 & ~i Vi ‘

are Hermitian, skew-Hermitian, and unitary, respectively, as the reader may verify. ]

-

If a Hermitian matrix is real, then A' = AT = A. Hence a real Hermitian
matrix is a symmetric matrix (Sec. 7.12).

Similarly, if a skew-Hermitian matrix is real, then AT = AT = —A.Hence
a real skew-Hermitian matrix is a skew-symmetric matrix.

Finally, if a unitary matrix is real, then A" = AT = A~! Hence a real
unitary matrix is an orthogonal matrix.

This shows that Hermitian, skew-Hermitian, and unitary matrices gen-
eralize symmetric, skew-symmetric, and orthogonal matrices, respectively.

Eigenvalues P

It is quite remarkable and in part accounts for the importance of the matrices
under consideration that their spectra (their sets of eigenvalues; see Sec.
7.10) can be characterized in a general way as follows (see Fig. 137).

Theorem 1 (Eigenvalues)

(a) The eigenvalues of a Hermitian matrix (and thus of a symmetric matrix)
are real. :

(b) The eigenvalues of a skew-Hermitian matrix (and thus of a skew-sym-
metric matrix) are pure imaginary or zero.

(¢) The eigenvalues of a unitary matrix (and thus of an orthogonal matrix)
have absolute value 1.

Proof. Let A be an eigenvalue of A and x a corresponding eigenvector. Then
(h Ax = Ax.
(a) Let A be Hermitian. Multiplying (1) by X7 from the left, we obtain
XA = XTAx = AX"x.

Now X'x = ¥,x, + -+ + X,x, = [x|? + - -+ + [x,]? is real, and is not

0 since x # 0. Hence we may divide to get

X TAX

x'x

We see that A is real if the numerator is real. We prove that the numerator
is real by showing that it is equal to its complex conjugate, using A=A
or A = AT and (5) in Sec. 7.3. Indeed, beginning with the application of a~
transposition, which has no effect on a number (the numerator), we get

(3 $TAX = (XTAx)T = x"ATX = xTAX = (X"Ax).

From this and (2}, whose denominator is real, we see that A 1s real.




EXAMPLE 2
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im A o Skew-Hermitian (skew-symmetric)

P Unitary {orthogonat)

[Harmitian (symmetric)

s
N

Fig. 137. Location of the eigenvalues of Hermitian, skew-Hermitian,
and unitary matrices in the complex A-plane

(b) If A is skew-Hermitian, then A” = —A, thus A = —AT, so that we
get a minus sign in (3),

4 ¥TAX = —(XTAx).

So this is a complex number ¢ = g + ib that equals minus its conjugate
¢ =a — ib, thatis,a + ib = ~(a — ib). Hence a = 0, so that ¢ is pure
imaginary or zero, and division by the real X"x in (2) gives a pure imaginary
Aori = 0.

(c) Let A be unitary. We take (1) and its conjugate transpose,
Ax = Ax  and  A®D' = (%) = AxT
and multiply the two left sides and the two right sides,
(A% Ax = XX = |A|2%%"x.
But A is unitary, A" = A, so that on the left we obtain
(A Ax = X'A"Ax = ¥'A71Ax = ¥'Ix = X'x.

?‘ageiha, x'x = [A*X"x. Now divide by X"x (# 0) to get |A|2 = 1, hence
Egg’f;isi npmveg our present theorem as well as Theorems | and § in the
previous section. ]

Hitustration of Theorem 1
For the matrices in Example | we find by direct calculation

Matrix Characteristic Equation . ~Eigenvalues-
A Hermitian AT~ 1A+ 18 =0 9. 2
B Skew-Hermitian AT~ 24 + 8 =10 4, -2
C  Unitary AT A -1=0 IVis b, V3 b
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Forms
We mention that the numerator X' Ax in (2) is called a form in the components
Xpn ot Xy of x, and A is called its coefficient matrix. When n = 2, we get

Ay i |51 a; Xy Fodp,

[x, x,]
gy yg | X2 Ay Xy + Xy

i

.

X'Ax = [¥, %]

~ { a; Xx, +oapIix,

+ 021,¥2X1 + amxzxz,
Similarly for general n,

k3 n
xT = ¥ = T BV T
XTAX = D D apXx, = apXix + + a,,%,x,
j=1k=1 - ~ ;
s + oAy, Xox, + 0+ Ay, XX, ‘
(5)
+ ..................
+oa,Tx b A, XX

If x and A are real, then (5) becomes

n n
T = = 2 B
xXTAX = 3 3 a,xx ayx 2 o+ oapxx, + +oa,xx,
j=1k=1 ,
6 oy XX, AgXyE b g XX,
)
+ .........................
. ) N 2
T Any Xty + Apatnty i k pntn

and is called a quadratic form. Without restriction we may then assume the
coefficient matrix to be symmetric, because we can take off-diagonal terms
together in pairs and then write the result as a sum of two equal terms,
as the next example (Example 3) illustrates. Quadratic forms occur in
physics and geometry, for instance, in connection with conic sections (ellipses
x*a® + xggf‘éz = 1, etc.) and quadratic surfaces. (Their “‘transformation
to principal axes'’ will be discussed in the next section.)

EXAMPLE 3 Quadratic form. Symmetric coefficient matrix C

Let
3410 ‘é
7 i H 3,2 1, 2 TR
xTAx = Lx; {232{3 ‘}i | Po=3xnf o A 4 brpr 4 Z:zg = 3x,¢ + Hx x, + 26,°
6 2 Lx]
Here 4 + 6 = 10 = § + S From the corresponding symmetric matrix € = {c ], where

S T %i‘?gk +oagh thus o = Joogy = ooy = 5,0, = D, we get the same result

oy
2

3 s’} 0]
- : : . .
2Cx =[xy %yl } 2 2} | i = 32,0+ Sxyx, + Sapxy 4 et = 35, %+ 0xgx, + “rf) ]
% |
L

Lzl
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If the matrix A in (5) is Hermitian or skew-Hermitian, the form (5) is called
a Hermitian form or skew-Hermitian form, respectively. These forms have
the following property, which accounts for their importance in physics.

{Hermitlan and skew-Hermitian forms)
For every choice of the vector x the value of a Hermitian form is real, and
the value of a skew-Hermitian form is pure imaginary or Q.

Proof. In proving (3) and (4), we made no use of the fact that x was an
eigenvector, and the proofs remain valid for any vectors {(and Hermitian or
skew-Hermitian matrices). From this, our present theorem follows.

Hermitian form
If

then

a 3 PAE I B A
XTAx = [1 - § 24}
2+ 4 2

4D+ 2~ i
=0 - -2 = 34 i
QD0+ +4-2

Properties of Unitary Matrices. Complex Vector Space C”

Theorem 2

We now extend our discussion of orthogonal matrices in Sec. 7.12 to unitary
matrices. Instead of the real vector space R™ of all real vectors with n
components and real numbers as scalars, we now use the complex vector
space C" of all complex vectors with n complex numbers as components and
complex numbers as scalars. For such complex vectors, the inner product
is defined by

™ asb = &b

and the length or norm of a vector by

laf = Va.a = Va'a = Vaya, + -~ - + aa,

(8)

A i 12
= Via,[* + + la |2

Note that for real vectors this reduces to the inner product as defined in
Sec. 7.3,

(Invariance of inner product)
A unitary transformation, rhat is, y = Ax with a unitary matrix A, preserves

the value of the inner product (7}, hence also the norm (8).

Proof. The proof is the same as that of Theorem 2 in Sec. 7.12, which the
theorem generalizes; in the analog of (93, Sec. 7.12, we now have bars.

usv = 'y = (AB) Ab = a'A'Ab = a'Ib = &'b = a.b. ]




Theorem 3

Theorem 4

EXAMPLES
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The complex analog of an orthonormal system of real vectors (see Sec.
7.12) is a unitary system, defined by

. 0 if j#k
9 aea, = a a x{
TR =k

and the extension of Theorem 3, Sec. 7.12, to complex is as follows.

(Unitary systems of column and row vectors)
A square matrix is unitary if and only if its column vectors (and also its row
vectors) form a unitary system.

Proof. The proof is the same as that of Theorem 3 in Sec. 7.12, except for
the bars required by the definitions Al = A~ and (7) and 9). §

-

(Determinant of a unitary matrix)
The determinant of a unitary matrix has absolute value 1.

pProof. Similarly as in Sec. 7.12 we get

| = det AA~! = det (AA") = det A det A" = det A det A
= det A det A = |det A|%.
Hence |det A| = 1 (where det A may now be complex). 1

Unitary matrix illustrating Theorems 2-4
For the vectors a7 = [I Jand bT = {31 2 + {] we get b = 3 — {2 + ) =1 + i and
with

0.6 08 1.4i ~0.2 + 0.8
A= also Aa = and Ab = 5
0.8 0.6¢ ) 0.2 ~0.6 + 3.6

as one can readily verify. This gives (A#yTAb = 1 + i illustrating Theorem 2. The matrix
is unitary. lts columnas form a unitary system, and so do the rows, as we sec. Also,
det A = — 1.

Problem Set 7.13

1. Verify the eigenvalues in Example 2. -

In Examples | and 2. find eigenvectors of
2. The matrix A 3. The matnx B 4. The matrix C

ndicate whether the following matrices are Hermitian, skew-Hermitian, or unitary
and find their eigenvalues (thereby verifying Theorem 1) and eigenvectors.

i e’ N .
5{} i E { g ..;E f 4 i
i 6. | 7 |
S ! L |
; L L

21 04 - f 2

o]
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1.
2.

13.
14.

15.

_ _ ,. I’ i 0 o0
I3 VI3 w2 N2
e _ 9. ;»« - 10. 0 0
-iVI3 -1V3 -iIV2 -2
0 i 0

Show that the product of two n x n unitary matrices is unitary.

Show that the inverse of a unitary matrix is unitary. Verify this for the matrix
in Prob. 10.

Verify Theorems 3 and 4 for the matrix in Prob. 9.

Show that any square matrix may be written as the sum of a Hermitian matrix
and a skew-Hermitian matrix.

(Normal matrix) By definition, a normal matrix is a square matrix that commutes
with its conjugate transpose,

AR = ATA.

Show that Hermitian, skew-Hermitian, and unitary matrices are normal.

Quadratic forms. Find a symmetric matrix C such that Q = x"Cx, where Q equals

16.
18.
20.

22.

x? — dxpx, + Tx,? 17. (x; — 3x,)?%

(), + x, + x5)? 19, -3x? + dxx, — 1,2+ 200, — Sx?
(x, = x, + 2x, ~ 2x,)? 21 (x) + x)? + (xy + x)?
(Definiteness) A real quadratic form 0 = x"Cx and its symmetric matrix C =

{cﬁc} are said to be positive definite if Q0 > 0 for all [x, - -~ x ] »# {0 - - 0.
A necessary and sufficient condition for positive definiteness is that all the
determinants

Cip Sz Cy3

Cop Coaly -, €, = detC

€, ¢
1 ‘iz _
Ci=c¢ypn G = v Gy = ey

Ca1 Conj )
31 C32 Ca3

are positive (see Ref. [B2], vol. I, p. 306). Show that the form in Prob. 16 is

positive definite, whereas that in Example 3 is not positive definite.

Hermitian and skew-Hermitian forms. Is A Hermitian or skew-Hermitian”? Find x7Ax.

23. ¢

0 i 1] 2 1+ i
A = ) g}gxagi 24.;%::{ fgtx:ﬁii
-i 0] Li] b= 1] L2]
’E I g s ol *}
e i i Xﬁgi %}Axg a f}fé‘gxzzzz
- § 2i Lz’ {5}-:{ k e ézz

A= |~i I =2 x = i
0 2 2] [
i { b+ 2? ;W
A= -1+ 3 z*s;xm H
-2 34 o i ]
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Is A Hermitian or skew-Hermitian? Find x"Ax.

3 -1 0 X,
29. A= i 0 220 .x = | x,
L0 - 21 4 N
2 0 4 0
3. A= 0 i 5 -, x = 2i
| -4 -5 4i -3

Diagonalization

In our discussion of eigenvalue problems so far we have emphasized prop-
erties of eigenvalues. We now turn to eigenvectors and their properties.
Eigenvectors of an n X n matrix A may (or may not!) form a basis for R™
or C™ (see Sec. 7.13), and if they do, we can use them for “‘diagonalizing”
A, that is, for transforming it into diagonal form with the eigenvalues on the
main diagonal. These are the key issues in this section.

We begin with a concept of central interest in eigenvalue problems:

of Matrices

An n X n matrix A is called similar to an n X n matrix A if

(

for some (nonsingular) n % n matrix T. This transformation, which gives
A from A, is called a similarity transformation.

Similarity transformations are important since they preserve eigenvalues:

(Eigenvalues and eigenvectors of similar matrices)
{f;fi is similar to A, then A has the same eigenvalues as A.

Furthermore, if x is an eigenvector of A, theny = T~ ix is an eigenvector
z;nf,;. corresponding to the same eigenvalue.

Proof. From Ax = Ax (A an eigenvalue, x # 0) we get T™1Ax = AT
Now I = TT !, so that

T-1Ax = T-1AIx = TATT !x = AT} = AT 'x.

Hence A is an eigenvalue of Aand T x a corresponding eigenvector, because
T-1x = 0 would give x = Ix = TT"'x = T0 = 0, contradicting x # 0. 1
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Properties of Eigenvectors

Theorem 2

Theorenﬂ’ 3

EXAMPLE 1

EXAMPLE 2

The next theorem is of interest in itself and of help in connection with bases
of eigenvectors.

(Linear independence of eigenvectors)
Let Ay, Ay » 7 7 Ap be distinct eigenvalues of an n X n matrix. Then cor-
responding eigenvectors Xy, Xy, © * -, Xy form a linearly independent set.

Proof. Suppose that the conclusion is false. Let r be the largest integer such
that {x,, - - ", x,} is a linearly independent set. Then r < k and the set
{Xp, - X} is linearly dependent. Thus there are scalars ¢y, * - -, €,y
not all zero, such that

(2) g%y o X T 0

(see Sec. 7.5). Multiplying both sides by A and using Ax}. = AjX;, we obtain

(3) CiAlxz +oe F Cr+1)‘r+1xf+1 = 0.

To get rid of the last term, we subtract A, times (2) from this, obtaining

g = Ay G = A% =0
Here ¢,(A; = A,y = 0, -, (A = A, = Osince {x;, -~ -, x}is
linearly independent. Hence ¢, = -+ = ¢, = 0, since all the eigenvalues

are distinct. But with this, (2) reduces to ¢, (X, .y = 0, hence ¢, ., = 0,
since x,, , # 0 (an eigenvector!). This contradicts the fact that not all scalars
in (2) are zero. Hence the conclusion of the theorem must hold. ]

This theorem immediately implies the following.

(Basis of eigenvectors)
If an n % n matrix A has n distinct eigenvalues, then A has a basis of
eigenvectors for C™ (or R™).

Basis of eigenvectors

The matnx
53 N
A= has a basis of eigenvectors | |,
3s L] =

corresponding 1o the cigenvalues &y = 8, Ay = 3. {See Exaupie | in Sec. 7113 ]

Basis when not all eigenvalues are distinct. Monexistence of basis ~

Even if not all n eigenvalues are different, a matnix A may still provide a basis of eigenvectors
for O™ or R™. This is lustrated by Example 2 in Sec. 7.10, where n = 3. On the other hand,
A may not have enough linearly independent cigenvectors to make up a basis. For instance,
the matrix in Example 3, Sec. 7.10,

1 .

{{; | [ k
A = has only one eigenvector i .
lo o Lo

where k s arbitrary, oot zero. Hence A does not provide a basis of eigenvectors for RZ2. B
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Actually, bases of eigenvectors exist under much more general conditions
than those given in Theorem 3, and for the matrices in the previous section
we can even choose a unitary system of eigenvectors, as follows.

Theorem 4 (Basis of eigenvectors)
A Hermitian, skew-Hermitian, or unitary matrix has a basis of eigenvectors
for C™ that is a unitary system (see Sec. 7.13). A symmetric matrix has an
orthonormal basis of eigenvectors for R™. (Proof see Ref. [B2], vol. |, pp.
270-272.)

EXAMPLE 3 Orthonormal basis of eigenvectors
The matrix in Example t is symmetric, and an orthonormal basis of eigenvectors is
TAYGIRVAVEI LIS I TAVE R VAVE] LN ]

A basis of eigenvectors of a matrix A is of great advantage if we are
interested in a transformation y = Ax because then we can represent any x

uniquely as 3
X = 01X+ CuXy F o0 ke X
interms of suchabasis x;, - - -, x, and if these eigenvectors of A correspond
to (not necessarily distinct) eigenvalues Ay ooty Ay, of A, then we get
y = Ax = Aleyx; + -+ X))
4) = Ax + -+ AX
= CA Xy R kA X

This shows the advantage: we have decomposed the complicated action of

A on arbitrary vectors x into a sum of simple actions (multiplication by

scalars) on the eigenvectors of A. h
Diagonalization

Bases of eigenvectors also play a central role in the diagonalization of an

n % n matrix A, as the following theorem explains.

Theorem 5 (Diagonalization of a matrix)
If an n % n matrix A has a basis of eigenvectors, then

(5

is diagonal, with the eigenvalues of A as the entries on the main diagonal.
Here X is the matrix with these eigenvectors as column vectors. Also. =

(5%} D™ o= XTEATX,




EXAMPLE 4

EXAMPLE 8
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Proof. Let x,, - - -, x, form a basis of eigenvectors of A for C" (or R™)
corresponding to the eigenvalues A;, - - -, A, respectively, of A. Then
X =[x, - - - x,] has rank n, by Theorem [ in Sec. 7.5. Hence X1 exists by
Theorem 1 in Sec. 7.7. Now (9) in Sec. 7.3 and Ax; = AX; give

AX = Alx, - - 1!:”]={Ax1 Av.!zﬂ}x{)\x1 e A X

nn

Together, AX = XD. This we multiply on both sides by X~! from the left
to get X"!AX = X~1XD = D, which is (5). Also, (5*) follows by noting that

D? = DD = X IAXX!AX = X"1AAX = X" 1A2X,  etc. @

Diagonalization
Calculation as in the examples in Sec. 7.10, etc. shows that the matrix

5 4 4 i 4 i
A = has eigenvectors and . Hence X =
1 2 i -1 I -1

and, using (4) in Sec. 7.7, we obtain

SR I | I e [ R M

The student may show that an interchange of the columns of X results in an interchange of the
eigenvalues 6 and 1 in the diagonal matrix. ]

Diagonalization
Diagonalize

7.3 0.2 -37
A= |~115 1.0 5.51.
17.7 1.8 -93

Solution. The characteristic determinant gives the characteristic equation ~ A3 — A% + {24 = 0.
The roots (eigenvalues of A) are A; = 3, A, = —~4, A; = 0. By the Gauss elimination applied
to (A — Allx = B with 2 = &, A,, A; we find eigenvectors and then X~ ! by the Gauss-Jordan
elimination {Sec. 7.7, Example 1}. The results are

~1] ! 21 11 2 -07 02 03]
34, b-tl, il = 3 -t ti, X"t = .13 -02 07
l-t) L3 e -1 3 4 i_ 08 02 -02]
Caleulating AX and multiplying by X~! from the left, we thus obtain
~07 02 s}ﬂ -3 -4 0 i 0 0
D= XIAX = i»:.z ~02 07 9 4 o =10 -4 of 1
L 08 02 -02]{-3 -1z o o o o]




412 Linear Algebra. Matrices, Vectors, Determinants Chap. 7

Transformation of Forms to Principal Axes

Theorem 6

EXAMPLE 8

This is an important practical task related to the diagonalization of matrices.
We explain the idea for quadratic forms (see Sec. 7.13)

© | 0 = x"Ax.

Without restriction we can assume that A is real symmetric (see Sec. 7.13).
Then A has an orthonormal basis of n eigenvectors, by Theorem 4. Hence
the matrix X with these vectors as column vectors is orthogonal, so that
X-! = X7. From (5) we thus have A = XDX~! = XDXT. Substitution into
(6) gives ’
Q = x"XDXTx.

If we set X"x = y, then, since X7 = X~1, we get
0] x = Xy

and Q becomes simply

t3] Q0 =yDy = A y2 + Ap2 + - -+ Ay 2

This proves

(Principal axes theorem)
The substitution (7) transforms a quadratic form

n n
Q= x"Ax = 2 2 ayxx
j=1k=1

to the principal axes form (8), where Ay, - - -, A are the {not necessarily
distinct) eigenvalues of the (symmetric') matrix A, and X is an orthogonal
matrix with corresponding eigenvectors x;, - - + , X, respectively, as column
vectors.

Transformation to principal axes. Conic sections
Find out what type of conic section the following quadratic form represents and transform it

to principal axes:

Q = 1752 - 30x,x4 + 17x,2 = 128,

Solation. We have @ = x7Ax, where

17 -15 Xy
A = . x = .
y
i 15 17 Xy
This gives the characteristic equation {17 ~ X% - 152 = 0 It has the roots A, = 2,4, = 12,

Hence (8) becomes

&
@ = 2y~ + 32yt
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We see that 0 = 128 represents the ellipse ?.ylz + 32}—'22 = 128, that is,

w? vt

82+‘2*‘2"33‘

If we want to know the direction of the principal axes in the x x,-coordinates, we have to
determine normalized cigenvectors from (A — ADx = O with A = A = 2 and A = A, = 32

and then use (7). We get
iz - 132
- and =1
AR 11V2

Wz -1v2 |y X =y /V2 - 3y V2
x = Xy = . s =
Iz VT |y, Xy = y V2 + 3,V

hence

This is a 45° rotation. Our results agree with those in Sec. 7.11, Example 1, except for the
notations. See also Fig. 136 in that example. B

Problem Set 7.14

Similarity transformations
Find A = T-'AT. Find the eigenvalues of A and A and verify that they are the same.

Find corresponding eigenvectors y of R, compute x = Ty, and verify that they are
eigenvectors of A.

-4 0 4 - 6 8 10 4
1. A = ,T = 2. A = LT =
0 2 -3 1 8 - 4 2]

8 0 3 0o 1
A= 2 2 Jﬁz i 0
2 0 3 o 0 1
[s o -15 2 o 3
&Az§m3~4 ol,T=140 1 o
s 0 -5 3 o s

Traces of similar matrices

The sum of the entries on the main diagonal of an 2 X n matrix A = [a,] s called
the trace of A thus trace A = a,, + gy, + © 7 + 4,

% 24
9. Show that trace AB = 3 3 a,b, = trace BA, where A = [a, Jand B = {b,]

b
. wi 1=t
are n x n matrices.

10. Using Prob. 9, show that similar matrices have equal traces.
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11. (Sum of the eigenvalues) Show that trace A equals the sum of the eigenvalues of
A, each counted as often as its algebraic multiplicity indicates.

12. Using Prob. 11, show that trace A = trace A when A is similar to A.

Find a basis of eigenvectors that form a unitary system (or a real orthogonal system).

Lo 0 2 0.8  0.6i
13. 14. 15.
—i 0 %0 0.6i —0.8i
! L+ i1 e W3
16. 17. 18. g,.
1 1 -1 i V3 i

Diagonalization
0 16 3003 Co0
19. 20. 21. .
4 0 6 0 -1 0

LSim

Find a basis of eigenvectors and diagonalize:

oo 1 s o -6

304
22. L l 23. (0 3 2 u. 12 1 -4
' 00 2 3 0 -4

Transformation of quadratic forms to principal axes. Conic sections

Find out what type of conic section (or pair of straight lines) is represented by the
given quadratic form. Transform it to principal axes. Express x" = [x, x,]interms
of the new coordinate vector ¥7 = [y, ¥}, as in Example 6.

25, 1 + 24x,x, — 63, = 3 26. 2x% + 2V3xx, + 4xt = S
27. 3x,2 + 4\5/?11:1.{2 + Tx,2 =9 28, —3x7 + Bxyx, + 3x,? =
29. x2 + 6xyx, + 9x,% = 10 30. 6x,% + 16x,x, — 6x,2 = 10

Vector Spaces,
Inner Product Spaces,
Linear Transformations
Optional
From Sec. 7.5 we recall that the real vector space R™ is the set of all real
vectors with n components {thus, each such vector is an ‘ordered n-tuple of
real numbers), with the two algebraic operations of vector addition and
multiplication by scalars (real numbers). Similarly, taking ordered a-tuples
of complex numbers as vectors and complex numbers as scalars, we obtain”
the complex vector space (7 (see Sec. 713

There are other sets of practical interest (sets of matrices, functions,

transformations, etc.) for which an addition and a scalar multiphcation ¢an
be defined in a natural way. The desire to treat such sets as “yector spaces’
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Sec. 7.15 V

suggests we create from the "‘concrete model” R" the “abstract concept’ of
a “‘real vector space’” V by taking the most basic properties of R™ as axioms
by which Vis defined, properties without which one would not be able to
create a useful and applicable theory of those more general situations. Se-
lecting good axioms is not easy, but needs experience, sometimes gained
only over a long period of time. In the present case, the following system
of axioms turned out to be useful; note that each axiom expresses a simple
property of R", or of R3, as a matter of fact.

Definition of a real yector space
A nonempty set V of elements a, by ="~ is called a real vector space {or
real linear space), and these elements are called vectors, '8 if in V there are
defined (two algebraic operations (called vector addition and scalar multi-
plication) as follows.

I. Vector addition associates with every pair of vectors a and bof V a
unique veetor of V, called the sum of a and b and denoted by a + b, such
that the following axioms are satisfied.

L1 Commutativity. For any two vectors a and bof V,
a+b=D>bta
1.2 Associativity. For any three vectors u, v, W of V,
(u+v)+wzu+(v+w) (writtenu+v+w).

1.3 There is a unique vector in V., called the zero vector and denoted by
0, such that for every a inV,

a+ 0= a.

1.4 Forevery ain V there is a unique vector in V that is denoted by —a
and is such that

a%{wa)cxﬁ.

{1. Scalar multiplication. The real numbers are called scalars. Scalar mul-
tiplication associates with every a in V and every scalar ¢ a unique vector
of V. called the product of ¢ and a and denoted by ca {(or ac) such that the
following axioms are satisfied.

11.1 Distributiviry. For every scalar ¢ and veclois @ and bin V.
cla + b} = ca + ¢h.

11.2 Distributivity. For all scalars ¢ and k and every a in V.

:

{¢c + ka =&t ka.
VBB aanrdios ! . . .
Regardless of what they actually arel this convention Causes no confusion because n any
speaific case the nature of those elements 1§ clear from the context.
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1.3 Associativity. For all scalars ¢ and &k and everyain V,
clkay = (cka {(written cka).
I1.4 Foreveryam V,
la = a. i

A complex vector space is obtained if. instead of real numbers, we take
complex numbers as scalars.

Basic Concepts Related to Vector Space

EXAMPLE 1

EXAMPLE 2

EXAMPLE 3

These concepts are defined as in Sec. 7.5,
A linear combination of vectors a,,, -+ -, a, , in a vector space Vis an

expression <

H EERENEN o505 o ; o
i T oA,y , ¢,,, any scalars).

These vectors form a linearly independent set (briefly, they are called linearly
independent) if

(1 Cagy * o By = 0

implies that ¢; = 0, - - -, ¢, = 0; otherwise they are called linearly depen-

dent. Note that (1) with m = 1 is ca = 0 and shows that a single vector a
is linearly independent if and only if a # 0.

V has dimension n, or is n-dimensional, if it contains a linearly independent
set of n vectors, called a basis for V, whereas any set of more than n vectors
in V is linearly dependent. Then every vector in V can be uniquely written-
as a linear combination of the basis vectors.

Vector space of matrices
The real 2 % 2 matrices form a four-dimensional real vector space. A basis 13

foo lo {E fo o] o {}”’E
By, = ia e By o 1 Ba= e Bpm
i 0] o g R 4] 5 [

sl = ay By B b oay By ¢ oay, B, in a snigue fashion. Simdatly,
the teal m = n matnices with fixed m and » form an ma-dimensional vecior space. What is the
dimension of the vector space of all skew-symmetric 3 % 3 matrices? Can you find a basis 7l

Polynomials

The set of all constant, hnear and quadratic polvromials in ¢ together forms & vector space
under the usual addition and multiplication by a real number, since these two operations give
polynomials of degree not exceeding 2, and the axioms in our definition follow by direct
calculation. This space has dimension 3. A basis s 11, x, 19} ]

Second-order homogeneous linear differential equations

The solutions of such an equation on 2 fixed interval 2 < 1 < b form a vector space under the
usual addition and multiplication by a number since these two operations give again such a
sotution, by Fundamental Theorem 1 in Sec 2.1 and L1 to 114 follow by direct calculation.
Do the solutions of a nonhomoegenesus linear differential equation form a vector space? ]
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If a vector space V contains a linearly independent set of n vectors for
every n1, no matter how large, then Vis called infinite dimensional, as opposed
to a finite dimensional {n-dimensional) vector space as defined before. An
example is the space of all continuous functions on some interval [a, b] of
the x-axis, as we mention without proof.

Inner Product Spaces

From Sec. 7.3 we know that for vectors a and b in R™ we can define an
inner product asb = a'b. This definition can be extended to general real
vector spaces by taking basic properties of a«b as axioms for an “abstract”
mner product, denoted by (a, b).

Definition of a real inner product space

A real vector space V is called a real inner product space {(or real pre-
Hilbert'® space) if it has the following property. With every pair of vectors
a and b in V there is associated a real number, which is denoted by (a, b)
and is called the inner product of a and b, such that the following axioms
are satisfied.

I. For all scalars g, and g, and all vectors a, b, ¢in V,
(g,a + g,b, ¢) = g,(a, &) + g,(b, ©) (Linearity).
H. For all vectorsaand bin V,
{a, b) = (b, a) (Symmerry).
IH. Foreveryain V,

(a, a) = 0, and
(Positive-definiteness).
{a,a) =0 ifandonlyif a=0
Vectors whose inner product is zero are called orthogonal,
The length or norm of a vector in V is now defined by
2 lal = Via,a) (2 0),
This generalizes (&) in Sec. 7.12.

A vector of norm 1 1s called a unit vector.

BDAVID HILBERT (18621943}, great German mathematician, taught at Konigsberg and
Gottngen and was the creator of the famous Gdttingen mathematical school. He is known for
his basic work in algebra. the calcutus of variations. integral equations. functional analysis,
and mathematical logic. His ~Foundations of Geometry™ helped the axiomatic method to gain
general recognition. His famous 23 problems {presented in 1900 at the International Congress
of Mathematicians in Paris) considerat nfluenced the development of modern mathematics,

IV us finvte dimensional, it is actually a so-called Hilbert space. sce Ref 191, p. 71 listed
n Appendic |
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From these axioms and from (2) one can derive the basic inequality

3) i(a, b)| = Jall IIbi] (Schwarz® inequality),
from this

(4 da + bl = flal + {bl {Triangle inequality),

and by a simple direct calculation

3
FA

(8 fa + bi% + Ja — b2 = 2(Jal> + [b®) (Parallelogram equality).

n-dimensional Euclidean space
R™ with the inner product of Sec. 7.3,

(6) (a, by = a'b = ab, + -+ ab,.

is called n-dimensional Euclidean space and denoted by E" or again simply by R™.
Axioms 1-111 hold, as direct calculation shows. Equation (2) gives the ""Euclidean norm” (8)
of Sec. 7.12,

N lafl = Via, a) = Va'a = VaZ+ - +al
i ]

An inner product for functions

The set of all real-valued continuous functions f{x), g{x}, - - - ona given interval a 2 x = B
forms a real vector space under the usual addition of functions and multiplication by scalars
treal numbers). On this space we can define an inner product by the integral

B
{83 (f.g) = J fliglxy dx.

Axioms 1-111 can be verified by direct calculation. Equation (2) gives the norm

[ 5
- x‘E?ﬁ - \‘s;j f{x)E dr. B

{9

Our examples give a first impression of the great generality of the abstract
concepts of vector spaces and inner product spaces. Further details belong
to more advanced courses {on functional analysis, meaning abstract modern
analysis: see Ref. [9] listed in Appendix 1) and cannot be discussed here.
fnstead we now take up a related topic where matrices play a central role.

WHERMANN AMANDUS SCHWARZ (18431921}, German mathematician, successor of
Weierstrass at Berlin known iz iconformal mappingh. differential
sations (mmmmsl m{faw@?

- his work in complex analys
geometry, and the calculus of var
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Linear Transformations

Let X and Y be any vector spaces. To each vector x in X we assign a unique
vector y in Y. Then we say that a mapping (or transformation or operator)
of X into Y is given. Such a mapping is denoted by a capital letter, say F.
The vector y in Y assigned to a vector X in X is called the image of x and is
denoted by F(x) {or Fx, without parentheses].

F is called a linear mapping or linear transformation if for all vectors v
and x in X and scalars ¢,

(10) F(V -+ X} e P‘(V} + [:(x}
Flex) = cF{(x).

I

Linear transformation of space R" into space R™

From now on we let X = R" and Y = R™. Then any real m X n matrix
A= {a]-k} gives a transformation of R™ into R™,

(1 y = Ax.

Since Alu + x) = Au + AX and A(cx) = cAx, this transformation is hinear.
We show that, conversely, every linear transformation F of R into R™
can be given in terms of anm X n matrix A, after a basis for R™ and a basis
for R™ have been chosen. This can be proved as follows.
Leteg, = " €y be any basis for R™. Then every x in R™ has a unique
representation

X = X8, e o X €0

Since F is linear, this implies for the image F(x):

F(x) = Flxpeq + +ox e )= "‘1F{e<n) + oo an(e{m).

1o {nd

Hence F is uniquely determined by the images of the vectors of a basis for
R™. We now choose for R™ the sestandard basis"

-y -

i 0 0
. 0 ! 0
(1) ey, = 1.1 = |.|v T w7
0 0 : |

where e, has its jth component equal to 1 and all others 0. We can now
determine an m % n matrix A = [a,] such that for every x in R™ and image
y = Fix}in R™. ,

y = Fixj = Ax.
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Indeed, from the image y'V = Fle,) of €., we get the condition

", (] ™ P T

¥y a4y Ay 1
48] DN

Y3 31 ay, | |0

1 = =
y .

[¢3] A

__}’ m | _aml amn, _0_

from which we can determine the first column of A, namely a,; = y{V,
ay, = yP, -+, a,, = yV. Similarly, from the image of e We get the
second column of A, and so on. This completes the proof. ]

We say that A represents F, or is a representation of F, with respect to
the bases for R™ and R™. Quite generally, the purpose of a *‘representation’
is the replacement of one object of study by another object whose properties
are more readily apparent.

s

The standard basis (12) for R3 is usually written ey = I e = J

€s = k; thus

1 0 0
(13) i= 10}, y= 11, k=10
0 0 i

Linear transformations
Interpreted as transformations of Cartesian coordinates in the plane, the matrices

R e O

represent a reflection in the line x, = x,, a reflection in the x,-axis, a reflection in the origin,
and a stretch {(when a > 1, or a contraction when 0 < g < 1} in the x,-direction,
respectively. |

Linear transformations ,
Our discussion preceding Example 6 is simpler than it may ook at first sight. To see this, find
A representing the linear transformation that maps {xy, xy) onio (2xy, — Sxy, 3r, + 4xy)

Solution, Since

and are mapped onto and 5
0 i_t - 3 , 4

respectively, we obtain, according to our discussion,

[ -5
A= .
34

We check this, finding
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The reader may obtain A also at once by writing the given transformation in the form
R
¥y 2xy Sxy

y, = dxy + 4xy ]

If A in (11) is square, n X n, then (11) maps R™ into R™. 1If this A is
nonsingular, so that A~ ! exists (see Sec. 7.7), then multiplication of (11) by
A~! from the left and use of A~'A = I gives the inverse transformation

(14) x = A" ly.

It maps every y = y, onto that x which by (11) is mapped onto y,. The
inverse of a linear transformation is itself linear, because it is given by a
matrix, as (14) shows.

This is the end of Chap. 7 on linear algebra, which was concerned with
algebraic operations on matrices and vectors and applications to systems of
linear equations and eigenvalue problems. The next chapter is devoted to
the application of differential calculus to vector functions in 3-space, a field
of basic importance in engineering and physics.

Problem Set 7.15

Vector spaces, bases

Is the given set (taken with the usual addition and scalar multiplication) a vector
space or not? (Give reason.) If your answer is yes, determine the dimension and find
a basis. {See Sec. 7.5 for similar problems.)

All polynomials in x, of degree not exceeding 4.
All symmetric real 3 % 3 matrices.

. All skew-symmetric real 2 % 2 malrices.

Al vectors in R¥ satisfying o, — 20, + vy = 0.

EE S

All real 4 % 4 matrices with positive entries.

All real 2 x 3 matrices with the first row any multiple of [ 0 2]
All functions fix) = {ax + ble~% with arbitrary constant z and b.
All ordered quintuples of nonnegative real numbers.

Bl

e

Linear independence, bases. (See Sec. 7.5 for further problems.)

9. If a subset 5, of a set S is tinearly dependent, show that § is itseil hnearly
dependent.

10. Show that a subset of a linearly independent set is itself linearly independent.

11, Find three different bases for B%.

12. {Uniquenessy Show that the representation v = ca, + - + Ca
of any given vector v in an n-dimensional vector space Voin terms of a basis
a,,. . a, for Vis unique. :
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Inner product, orthogonality
Find the Euclidean norm of the vectors:
13001 3 -1’ M2 4 1t 37 5.3 0 0 417

16. (4 2 07 17.05 1 0 67 18. 15 3 4 2

Using the Euclidean norm, verify:

19. The Schwarz inequality for the vectors in Probs. 13 and 16.
20, The Schwarz inequality for the vectors in Probs. 14 and 18.
21. The triangle inequality for the vectors in Probs. 15 and 17.

22. The parallelogram equality for the vectors [2 1] and [1 3]". Graph the par-
allelogram with these sides and explain the geometric meaning of this equality.

23. Find all vectors v orthogonal to a = [1 2 0]". Do they form a vector space?
24. Using (6), find all unit vectors v = {vy v,] orthogonal to [3  —4).

Linear transformations
Find the inverse transformation:

25y, = 3xy - x, 26. y, = 4x; + 3x,
vy = —5x; + Ix, Yo = 3x, + 2x,

27. yy = 2xp 4 4, + xy 8.y, = x + 3x,
Vo= X b 2x, + Yy = 2, + Xy
¥3 = 3x; + 4x, + 2xg ¥y = 3x + x; + 10x,

29. ¥ = OZXI - 0,11‘2 30. ¥y, = 3;{1 = Xy b Xy
Yy = = 0.2x, + 0.1y, yp = —15x; + 6x, — 5x,
¥y = 0.1x, + 0.1x, Yy = Sxy = 2x, + 2xy

Review Questions and Problems
for Chapter 7

1. Let A be a 20 x 20 matrix and B a 20 x 10 matrix. Indicate whether or not the
following expressions are defined: A + B, AB, A'B, AB7, BYA, A%, AA", BZ,
BB, B'BA. (Give reasons.)

2. What properties of matrix multiplication are “unusual™ (i.e., differ from those
for the multiplication of numbers)?

3. How can the rank of a matrix be given in terms of row vectors? Column vectors?
Determinants?

4. What do you know about the existence and number of solutions of a nonhom~
ogeneous system of linear equations? A homogeneous system?

5. What is the Gauss elimination good for? What is its basic idea? Why is this
elimination generally better than Cramer’s rule? What does pivoting mean?

6. What is the inverse of a matrix? When does it exist? How would you practically
determine 1t7



Chap. 7 Review Questions and Problems 423

. Give simple examples of linear systems of equation without solutions. With a

unique solution. With more than one solution.

. Write down the formulas for (AB)T and (AB)~! from memory. Work an example.
. Can the row vectors of an 8 x 6 matrix be linearly independent?
10.

What are symmetric, skew-symmetric, and orthogonal matrices? Hermitian, skew-
Hermitian, and unitary matrices?

11. Show that the symmetric 4 X 4 matrices form a vector space. What is its
dimension? Find a basis.
12. What is the nullity of a matrix A? The row space of A? The column space of A?
13. State the definitions of an eigenvalue and an eigenvector of a matrix A. What is
the spectrum of A? The characteristic equation?
14. What do you know about the eigenvalues of the matrices in Prob. 107
15. Do there exist square matrices without eigenvalues? Can a real matrix have
complex eigenvalues? Does a real 3 X 3 matrix always have a real eigenvalue?
2 6 4] 0 5 6 -2 2
lLeta = 0l,b= |-4].C= |0 4 -21,D= |8 3 2. Find
-~ 1 3 i 3 2 1 5 -9
16. 8C - SD 17. a + 4b 18. Ca,a’C 19. Cb
20. CD, D'CT 21. C} 22. rank D 23, rank (b'D)
4. C + CT 25, CC7 26. DCab” 27.a + bb
28, C* 29. (C -~ D)a 30. a'b, ab” 31. aa", a"a

Solve the following systems of equations or indicate that no solutions exist.

32.

Sx + 3y — 3z = -1 33 2y - z = —1| M, Tx -4y — 2z = 6
Ix 4+ 2y - 2z = -~} X + 3z = 1} ox + 2y + 7z =
2~ y+ 2= B x — 4y + 2z = 6
. 6x + 4y = 4 36, 4y + 7z = —13 3. 40 + 2y - 67 = 6
8x - 6z = 7 Sx ~ 3y + 4z = =23 5x 4+ 3y — Bz = -9

—~ By — 2z = ~1 -x + 2y — Rz = 29

3x - 2y = -2 39, Bx+d4y+6z= | 40, 4x - y + 7=
5x + 4y = 26 ~2x + By ~ 4z = 2 X+ 2y ~ 7z o=

x — 3y = 8 4 ~ 8y + Bz = 2 3x+ oy + Sz =0

Determine the rank of the following matrices.

41,

3"9 ;} 31 4 [ 1 3 6]
o 4{ 2. 00 5 8 43. § 0 3 2 2
12 6] -3 4 4 [~8 -t -3 4

Find the inverse or indicate that it does not exist. Check your result,

44,

[ 03 f},z’; o ﬂ [ o6 03]
loa ¢ Los) “ |
~04  02] ' 8

! C e - asj

!
L
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Find the inverse or indicate that it does not exist. Check your result,

2 4 1 -1 t 2 02 0.1 02
47. 11 2 i 48. 3 -1 1 49. | 0 0.5 04
3 4 2 -1 3 4 0 0 0.1

“. [0 0] st | o} . 1.4 0,5}
0 - 2 -1 |-1.0 0.1
15 0 -15 3 1 4] C1 2 4
53, |-3 6 9 5. |0 2 6 55, |-2 -4 2
s 0 -5 0 o 5] L2 4 3.
0 1 0 0 2 0] 0 2 0
6. |1 0 0 57. |3 -2 3 s8. [0 0
o o 1 0 3 0] 12 0

Find a basis of eigenvectors and diagonalize:

o o 0 1 -2 0 0

59. 60. {0 2 0 61. |—2 0 0
g 0

3 0 0 o 0 2

What kind of conic section is represented by the given quadratic form? Transform
it to principal axes. Express [x; x,)7 in terms of the new coordinates.

62. 10x,2 — 9xpx, + B2 P =13 63. Tx2 + Bxx, — Tt =25
64. 4x,x, + 3x? = 1 65. 801x,2 — 600x,x, + 1396x,7 = 169
Find xTAx where
{ i W 2]
664 A = | ) X = l
-2+ i 3
i

2i 4
67. A = L X =

-4 G
i i i}“} =) ]~ 2 g
68, A = |—1i 0 Ji.x o= | xy 69. A = i i 0l x= 11
0 EJ Xy -2 0 i i

70. (Pauli spin matrices) Find the eigenvalues and eigenvectors of the so-called Pauli
spin matrices and show that 8,8 = iS,, 8.8, = - S, 872 = ng =8t =1,

where
‘ {(} i) o Jo i ! ﬂ
7 0] STl o) %~ o -1}
[
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Networks. Find the currents in the following networks.

71. 72. 110 woits 73.
20 chms 10 ohms
I ]-—
I 5 chms 1 I T 10 volts
I 10 ohms 30 ohims T
e A AN e @ Y Y Y —
10 ohms I I P I3 l
L 2 20 ohms 2 20 ohms ]- 130 volts
G s
100 volts 120 volts
o o
s ol 33

Fig. 138. Four-terminal network

Four-terminal networks. Assume that the input current i, and voltage u, of the four-
terminal network in Fig. 138 are related to the output current i, and voltage u,
according to

u t, ! u

1 1 fiz 2

v, = Tv,,  where v, = : = ] v, = [ _}
i L, ¢ i
i 2 faz 2

and where T is called the transmission matrix of the network. Verify the form
of Tt

74. 75. 76.
A T T B
z 12y

Pz o0 |+ 2,02, Z
T = 1 Tz( T = v
o 1] \vz 1 vz, 1

77, Show that for the networks in cascade in Fig. 139 we have vy = Tv, with T =
T, T, and v, and v, as before.
78. Use Prob. 77 to get the matrix in Prob. 76 from those in Probs. 74 and 75.

i iz

; B . e e e i‘
i |

3 Ty Ty g

H (SR, SOO— Lo

Fig. 139. Four-terminal networks in cascade
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Summary of Chapter 7
Linear Algebra:
Matrices, Vectors, Determinants

Anm X nmatrix A = {ajkj is a rectangular array of numbers (*‘entries”’
or “‘elements”’) arranged in m horizontal rows and n vertical columns.
If m = n, the matrix is called square. A | X n matrix is called a row
vector and an m X1 matrix a column vector (see Sec. 7.1).

The sum A + B of matrices of the same size (i.e., both m X n)is
obtained by adding corresponding entries. The product of A by a scalar
¢ is obtained by multiplying each ay by ¢ (see Sec. 7.2).

The product C = AB of an m X n matrix A by an r X p matrix
B = [b,] is defined only when r = n, and is the m x p matrix
C = {cjk] with entries

(row j of A times

H e = by + apby + o+ ap b, column & of B).

J
This multiplication is motivated by the composition of linear transfor-
mations (Secs. 7.3, 7.15). It is associative, but is not commutative: if AB
is defined, BA may not be defined, but even if BA is defined, AB # BA
in general. Also AB = 0 may not imply A =0o0rB=00rBA =90
(Secs. 7.3, 7.7):

3 3 | 36
[ z}( = (1], 1 2= .
'LJ Lj 4 8

A main application of matrices concerns linear systems of equations
2 Ax = b {Sec. 7.4)

{m equations in n unknowns Xy, 00, x5 b given). The most important
method of solution is the Gauss elimination {Sec. 7.4}, which reduces
the system to “‘triangular’” form by elementary row operations, which
leave the set of solutions unchanged. (Numerical aspects and variants,
such as Doolittle’s method are discussed in Secs. 19.] and 19.2.)
Cramer's rule {(Sec. 7.9) represents the unknowns in a system (2} of
n equations in # unknowns as quotients of determinants: for numerical
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work it is impractical. Determinants {(Sec. 7.8) have decreased in im-
portance, but will retain their place in eigenvalue problems, elementary
geomelry, etc.

The inverse A~! of a square matrix satisfies AA~! = A~1A - L It
exists if and only if det A # 0. It can be computed by the Gauss—Jordan
elimination. See Secs. 7.7, 7.9.

The rank r of a matrix A is the maximum number of linearly inde-
pedent rows or columns of A, equivalently, the number of rows of the
largest square submatrix of A with nonzero determinant (Secs. 7.5,
7.9). The system (2) has solutions if and only if rank A = rank [A b],
[A  b] the augmented marrix (Fundamental Theorem, Sec. 7.6). The
homogeneous system

3) Ax = 0

has solutions x # 0 (‘“'nontrivial solutions™) if and only if rank A < ».
in the case m = n equivalently if and only if det A = ¢ {Secs. 7.6,
7.9).

Hence the system of n equations in n unknowns
4) AX = Ax or (A - Alx = ¢
has solutions x # 0 if and only if A is a root of the characteristic equation
(5) det (A — ADx = 0 (Sec. 7.10).

Such a (real or complex) number A is called an eigenvalue of A and that
solution x # 0 an eigenvector of A corresponding to this A. Equation
(4) is called an (algebraic) eigenvalue problem (Sec. 7. 10). Eigenvalue
problems are of great importance in physics and engineering (Sec. 7.1 1),
and they also have applications in economics and statistics. They are
basic in solving systems of differential equations {Chap. 4).

The transpose A7 of a matrix A = la,lis AT = la;): rows become
columns and conversely (Sec. 7.1). For a product, (AB)" = BTA7 (Sec.

7.3). The complex conjugate of A is A = fa, ). Six classes of square

matrices of practical importance arise from this: a real matrix A is

called real symmetric if AT = A, real skew-symmetric if AT = - 4,
orthogonal if AT = A1 (Secs. 7.2, 7.12): a complex matrix is called
Hermitian if A' = A, skew-Hermitian if A = = A, and uanitary if

AT = Al (Sec. 7.13). The eigenvalues of Hermitian tand real-sym-
metric) matrices are real: those of skew-Hermitian (and real skew-
symmetric) are pure imaginary or 0: those of unitary (and orthogonal)
matrices have absolute value | (Sec. 7131

The diagonalization of matrices and the transformation of quadratic
forms to principal axes are discussed in Sec. 7.14.

General vector spaces and inner product spaces are discussed in
Sec. 7.15. For R" and (™, see also Secs. 7.5 and 7.13.
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