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ABSTRACT
Given a large, real graph, how can we generate a synthetic
graph that matches its properties, i.e., it has similar degree
distribution, similar (small) diameter, similar spectrum, etc?
We propose to use “Kronecker graphs”, which naturally
obey all of the above properties. We present a fast lin-

ear time algorithm for fitting the Kronecker graph gener-
ation model to real networks. Experiments on large real
and synthetic graphs show that Kronecker graphs indeed
mimics very well the patterns found in the target graphs.
Once fitted, the model parameters and the resulting syn-
thetic graphs can be used for anonymization, extrapolations,
and graph summarization.

1. INTRODUCTION
Large, real graphs have a lot of structure: they typically

obey power laws in their in- and out-degree distributions;
they have small diameter; and they often have a self-similar
structure, with communities within communities.

Although several graph generators have been proposed in
the past (like the preferential attachment, the small-world
model, the forest fire model, etc.), very little work exists on
how to fit the parameters of such models.

This is exactly the problem we examine. Given a large
real network, we want to choose the most realistic generator
and estimate its parameters, so that our resulting synthetic
graph matches the statistical properties of the real graph.

We examine the Kronecker graphs [2] which are based on
Kronecker matrix multiplication. Kronecker model can gen-
erate graphs that obey many of the patterns found in real
graphs. Moreover, we develop a fast and scalable algorithm
for fitting Kronecker graphs by using maximum likelihood.
When calculating the likelihood one needs to consider all
mappings of nodes to the graph adjacency matrix, which
becomes intractable for graphs with more than a few nodes.
Even when given “true” mapping evaluating the likelihood is
prohibitively expensive. We present solutions to both prob-
lems: We develop Metropolis sampling algorithm for node
mapping and approximate the likelihood to obtain a linear

time algorithm that scales to large graphs.
Once the model is fitted to the real graph, there are several

benefits and applications: (a) The parameters give us infor-
mation about the structure of the graph itself; (b) Extrap-

olations: we can use the model to generate a larger graph,
to predict how the network will look like in the future. (c)
Sampling: conversely, we can also generate a smaller graph,
which may be useful for running simulation experiments.

∗This a short version of the paper that appeared in the Pro-
ceedings of the International Conference on Machine Learn-
ing (ICML) 2007.
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Figure 1: Kronecker multiplication: Top row: struc-

ture of adjacency matrices. Bottom: corresponding

graphs – “3-chain” and its Kronecker product with

itself; each of the nodes gets expanded into 3 nodes,

which are then linked.

2. KRONECKER GRAPHS
Kronecker matrix multiplication was recently proposed for

realistic graph generation, and shown to be able to pro-
duce graphs that match many of the patterns found in real
graphs [2]. Kronecker graphs are based on a recursive con-
struction. A procedure that is best described in terms of the
Kronecker product of graph adjacency matrices.

Deterministic Kronecker Graphs The main idea is
to create self-similar graphs, recursively. We begin with an
initiator graph G1, with N1 nodes, and by recursion we pro-
duce successively larger graphs G2 . . . Gn such that the kth

graph Gk is on Nk = Nk
1 nodes. Kronecker product is a

perfect tool for this goal:
Definion 1 (Kronecker product of matrices). Given

two matrices U = [ui,j ] and V of sizes n × m and n′ × m′

respectively, the Kronecker product matrix S of dimensions
(n ∗ n′) × (m ∗ m′) is given by

S = U ⊗ V
.
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Kronecker product of two graphs is defined as Kronecker
product of their adjacency matrices. We denote kth Kro-

necker power of G1 as G
[k]
1 , where Gk = G

[k]
1 = Gk−1 ⊗ G1.

Figure 1 shows the recursive construction of Kronecker
graphs. We start with G1, a 3-node chain, and Kronecker
power it to obtain G2. To produce Gk from Gk−1, we “ex-
pand” (replace) nodes of Gk−1 by copies of G1, and join the
copies according to the adjacencies in Gk−1 (see fig. 1). Intu-
itively communities in the graph grow recursively, with com-
munity recursively getting expanded into miniature copies
of the community. Nodes in the sub-community then link
among themselves and to nodes from other communities.



Stochastic Kronecker Graphs Here we will be working
with a stochastic version of Kronecker Graphs. The differ-
ence is that now initiator matrix is stochastic: we start with
a N1 × N1 probability matrix Θ = [θij ], where the element
θij ∈ [0, 1] is the probability that edge (i, j) is present. We

compute the kth Kronecker power P = Θ[k]; And then for
each puv ∈ P , include edge (u, v) with probability puv.

3. FITTING KRONECKER GRAPHS
Suppose we are given a graph G on N = Nk

1 nodes (for
some positive integer k), and a N1 by N1 Stochastic Kro-
necker Graph initiator matrix Θ. Θ is a parameter matrix,
a set of parameters that we aim to estimate. Assume N1

is given (see [3] for the solution of how to relax this as-
sumption). Next, we create a Stochastic Kronecker Graph

probability matrix P = Θ[k], where every cell pij of P con-
tains a probability that node i links to node j. We evaluate
the probability that G is a realization of P . The task is to
find such Θ that has the highest probability of generating
G. Formally, we are solving:

arg max
Θ

P (G|Θ) (2)

A permutation σ of the set {1, . . . , N} defines the mapping
of nodes from G to stochastic adjacency matrix P . The node
labeling is arbitrary and carries no significant information.
A priori all labelings are equally likely. To evaluate the
likelihood of G one needs to consider all possible mappings
of N nodes of G to rows of P . We work with log-likelihood

l(Θ), and solve arg maxΘ l(Θ), where l(Θ) is defined as:

l(Θ) = log P (G|Θ) = log
∑

σ

P (G|Θ, σ)P (σ|Θ)

= log
∑

σ

P (G|Θ, σ)P (σ) (3)

To obtain P (G|Θ, σ) we use Θ to create the Stochastic

Kronecker graph adjacency matrix P = Θ[k]. Permutation σ

defines the mapping of nodes of G to the rows and columns of
stochastic adjacency matrix P . Modeling edges as binomial
random variables we evaluate the likelihood:

P (G|P, σ) =
∏

(u,v)∈G

P[σu, σv]
∏

(u,v)/∈G

(1 −P[σu, σv ]), (4)

where we denote σi as the ith element of the permutation
σ, and P [i, j] is the element at row i, and column j of matrix

P = Θ[k]. The products go over all edges present in graph
G, and all edges missing from G.

As the problem is introduced we are summing over ex-
ponentially many permutations in equation 3. Third, the
evaluation of equation 4 as it is written takes O(N2) and
needs to be evaluated N ! times. So, naively calculating the
likelihood takes O(N !N2).

In short, we [3] develop a linear O(E) time algorithm
for fitting Kronecker graphs. To get around the super-
exponential sum over the permutations we use Metropolis
sampling. When given a permutation we need to evaluate
the likelihood. Here we exploit the structure of Kronecker
multiplication. We calculate the likelihood of an empty
graph (graph with no edges) in constant time and then just
need to iterate over all the edges to correct the likelihood.
This way we can evaluate the full likelihood (gradient) in
time O(E). We then use stochastic gradient descent to ob-
tain parameters. For details see [3].
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Figure 2: Autonomous Systems: Overlayed patterns

of real graph and the fitted Kronecker graph. Notice

that the fitted Kronecker graph matches patterns of

the real graph.

4. EXPERIMENTS
As the optimization problem is not convex [3] we check

whether we can recover the parameters of a synthetic Kro-
necker graph. We generated 100 synthetic Kronecker graphs
on 16,384 (214) nodes and 1.4 million edges, with a randomly
chosen 2×2 parameter matrix Θ∗. For each of the 100 graphs
we start gradient descent from a different random location
Θ′, and try to recover Θ∗. In 98% of the cases the descent
converged to the true parameters.

Next, we take real graph G, find parameters Θ̂ using the
tools we just developed, then generate synthetic graph K

using Θ̂, and compare their statistical properties.
Figure 2 shows properties of Autonomous Systems graph,

and compares them with the properties of a synthetic Kro-
necker graph generated using the fitted parameters Θ̂ of size
2 × 2. Notice that properties of both graphs match swell.

Autonomous Systems is undirected graph and the fitted
parameter matrix Θ̂ = [.98, .58; .58, .06] is also symmetric.
This means that without a priori biasing the fitting towards
undirected graphs, the recovered parameters obey this. Fit-
ting AS graph from a random set of parameters, performing
gradient descent for 50 iterations and at each iteration sam-
pling half a million permutations, took less than 20 minutes
on a standard desktop PC. This is a significant speedup
over [1], where by using a similar permutation sampling ap-
proach for just calculating the likelihood of a preferential
attachment model on similar AS graph took two days on a
cluster of 50 machines.
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