Reasoning about Large Populations
with Lifted Probabilistic Inference

Kristian Kersting, Brian Milch, Luke S. Zettlemoyer, Michael Haimes, Leslie Pack Kaelbling
MIT CSAIL, Cambridge, MA 02139
{kersting,milch, lsz, mhaimes, lpk}@csail .mit.edu

Abstract

We use a concrete problem in the context of planning meetings to show how lifted
probabilistic inference can dramatically speed up reasoning. We also extend lifted
inference to deal with cardinality potentials, and examine how to deal with back-
ground knowledge about a social network.

Lifted inference: An example. Suppose that n people (say, n = 100) have been invited to a
NIPS workshop, and we are wondering whether the attendees will overflow the 40-seat room we
have reserved. A graphical model for this scenario is shown in Fig. 1(a). In this simple model,
the attendance variables attend(p;) for each person p; are conditionally independent given the
workshop’s popularity. We get noisy information about each person’s attendance based on the reply

EEINT3

they have sent us: “yes”, “no”, or “no reply”.

Assume for the moment that we just want to estimate the workshop’s popularity (ignoring the
roomOverflow variable for now). In this case, we need to compute the marginal distribution
for the popularity random variable given the reply variables. One commonly used algo-
rithm, variable elimination (VE), computes this marginal by eliminating each attend(p;) vari-
able in turn: for each p;, it first multiplies together the factors ¢(attend(p;),reply(p;)) and
¢(attend(p;), popularity), then sums out attend(p;) to get a factor on popularity alone. The
resulting n factors on popularity are then multiplied together and normalized to yield a posterior
distribution. The time required is linear in n.

The basic insight of lifted inference algorithms such as first-order VE (FOVE) [3, 1] is that be-
cause this model treats the n invitees interchangeably, VE ends up doing the same multiplications
and summations over and over. We can avoid this repeated work if we explicitly represent the in-
terchangeability of entities. Fig. 1(b) shows how this is done. Instead of specifying factors for
each person separately, we use parameterized factors or parfactors, where the random variables
involved in the factor are parameterized by logical variables. In our case, we need just two par-
factors ¢(attend(P),reply(P)) and ¢(attend(P), popularity), which apply to all people P.
Given observations about people’s replies, the FOVE algorithm shatters each of these parfactors
into three copies, one for the n, people who said “yes”, one for the n_ who said “no”, and one
for the ng people who did not reply. It then performs elimination just three times, once for each
of these groups, rather than n times as before. This yields three factors on popularity, which
we will call ¢, ¢_, and ¢g. The posterior distribution on popularity is now proportional to
¢+ (popularity)™ X ¢_(popularity)™= X ¢o(popularity)™. Assuming unit cost for expo-
nentiation, this lifted algorithm takes constant time, removing the linear dependence on n.

Cardinality potentials. Now consider our original goal of predicting whether the attendees will
overflow a 40-seat room. For this purpose, we can query the roomOverflow variable in Fig. 1,
which deterministically indicates whether more than 40 attend(p;) variables are true. The first dif-
ficulty here is that a tabular representation of the factor linking roomOverflow to all the attend(p;)
variables would require space exponential in n. Although more compact representations for such
factors have been developed [4], the FOVE algorithm [1] does not exploit them.



(c)

@ ®

popularity
L]
attend(P)

popularity

attend(P1)
attend(P2)

Tollab(P1,P2)

roomOverflow

Figure 1: Meeting Markov networks using (a) standard factors and (b,c) parfactors. Ovals denote random
variables (shaded if observable). White boxes denote standard parfactors whereas black boxes encode parfac-
tors with cardinality potentials. In contrast to (b), (¢) also encodes the social network among invitees using
the deterministic (shaded, dashed oval) relation collab(P1,P2). The dotted edge between attend(P1) and
attend(P2) indicates that they refer to the same set of random variables.

We extend FOVE to take advantage of what Gupta et al. [2] have called cardinality potentials.
We represent these potentials with notation such as ¢(roomOverflow, #p[attend(P)]), indicating
that the value of the potential depends only on how many of the attend(p;) variables have each
particular value. This restricted form of dependency can be exploited to speed up inference. For
example, when summing out the attend(p;) variables in our model, we do not need to iterate over
their 2™ possible instantiations: it suffices to iterate over all possible histograms assigning counts to
true and false that add up to n (actually, we need to do three separate iterations over histograms,
one for each group of people with the same reply). The number of such histograms is only linear in
n, so we have an exponential speed-up.

This is the same insight exploited by counting elimination in the existing version of FOVE [1].
However, we extend FOVE by allowing cardinality potentials as input. We also allow cardinality
potentials to be stored as intermediate results of the elimination process, which extends the set of
cases where inference can be performed at a lifted level.

Social networks. In reality, people’s decisions about whether to attend a workshop depend on
how many of their friends or collaborators are attending. Fig. 1(c) shows a model where the
attend variable for each person P1 is linked to the attend variables for P1’s neighbors in a known
social network, represented by the relation collab(P1,P2). In our extended version of FOVE,
we can represent this linkage using a cardinality potential with collab(P1,P2) as a constraint:

p(attend(P1), #(p2: cor1ab(p1,p2)) [at tend(P2)]).

The social network creates distinctions among the invitees, making lifted inference more difficult;
indeed, the existing version of FOVE does not allow relations as constraints [1]. However, lifted
inference should be able to avoid repeated work when the network has many small connected com-
ponents — such as research groups or families — that are isomorphic to each other. In other cases,
it may be possible to approximate the network using structures that are amenable to lifted inference.

Conclusions. With the goal of applying lifted inference “in the wild”, we have extended FOVE to
deal with cardinality potentials. Other aspects of this research program include lifted filtering for
temporal models, and approximate lifting methods that treat some entities as interchangeable even
when their potentials are not exactly the same.

Acknowledgments. This material is based upon work supported by the Defense Advanced Research
Projects Agency (DARPA), through the Department of the Interior, NBC, Acquisition Services Di-
vision, under Contract No. NBCHD030010.

References
[1] R. de Salvo Braz, E. Amir, and D. Roth. Lifted first-order probabilistic inference. In Proc. 19th IJCAI,
pages 1319-1325, 2005.

[2] R. Gupta, A.A. Diwan, and S. Sarawagi. Efficient inference with cardinality-based clique potentials. In
Proc. 24th ICML, 2007.

[3] D. Poole. First-order probabilistic inference. In Proc. 18th IJCAI, pages 985-991, 2003.

[4] N. L. Zhang and D. Poole. Exploiting causal independence in Bayesian network inference. J. Artif. In-
tell. Res., 5:301-328, 1996.



