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Many relational classification problems involve estimat-
ing joint probability distributions over sets of nodes (and
possibly edges) in relational graphs. Since exact estimation
is infeasible even for moderately sized graphs, a variety of
approximate methods have been proposed. One such ap-
proach is relaxation labeling, or label propagation, which
works iteratively by propagating the labels (or associated
probabilities) of initially labeled nodes throughout the net-
worked data. Different label propagation techniques have
been used for approximate inference making in graph–based
semi–supervised learning problems.

From the perspective of network dynamics, label propaga-
tion corresponds to some kind of an activation spreading in
the network. Clearly, such an activation process is affected
by the structural and statistical properties of the network.
There has been an extensive amount of work on modeling
various dynamical processes on complex networks. For in-
stance, recent research has examined the role of scale–free
degree distribution on the critical behavior of various epi-
demic models. Here we focus on another important property
of networks, modularity, which is the tendency of nodes to
partition themselves into clusters. Specifically, we are inter-
ested in how the activation process is affected by the network
modularity.

We consider a random graph consisting of N = Na +
Nb nodes of two different type, a and b. The probabilities
of edges between nodes of different types are γaa, γbb and
γab = γba, and the average connectivity between nodes of
the respective types are then zaa = γaaNa, zbb = γbbNb,
zab = γabNb and zba = γabNa. We want to find out how
the modularity of the network, as described by the coupling
between the groups, affects the cascading process.

Each node is either active or passive (e.g., labeled and un-
labeled). Initially, only a small fraction of seed nodes are
active. During the activation process, a passive node will
be activated with probability that depends on the state of its
neighborhs. In Watt’s original model (Watts 2004) this prob-
ability is p = Θ(hi/ki − φ), where Θ is the step function,
hi and ki are the number of active neighbors and the total
number of the neighboring nodes, respectively, and φi is the
activation threshold for the i–th node. Here we use a thresh-
old condition on the number of active neighbors rather than
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their fraction: p = τ−1Θ(hi −Hi), where τ determines the
time–scale of the activation process. We will assume that all
nodes have the same activation threshold, Hi = H for all i.
Note that this activation mechanism is reminiscent of simple
relational neighbor classifier(Macskassy & Provost 2007).

Let ρ0
a and ρ0

b be the fraction of seed nodes in each popula-
tion. Further, let Pa(h; t) and Pb(h; t) be the probability dis-
tribution that a randomly chosen node of corresponding type
is connected with exactly h active nodes at time t. Clearly,
Pa(h; t = 0) and Pb(h; t = 0) are Poisson distributions with
means zaaρ0

a + zabρ
0
b and zbbρ

0
b + zbaρ0

a, respectively. To
study the activation dynamics, we need to estimate these dis-
tributions for later times. This is particularly straightforward
to do within the annealed approximation, e.g., by “rewiring”
the network after each iteration (Derrida & Pomeau 1986;
Derrida & Stauffer 1986). Indeed, since all edges of cor-
responding type are equally likely, it is easy to see that
Pa(h; t) and Pb(h; t) are still given by Poisson distribu-
tion, with the means that now depend on the fraction of ac-
tive nodes ρa(t) and ρb(t): Pa,b(h; t) = Poisson(λa,b(t)),
where λa = zaaρa(t) + zabρb(t) and λb = zbbρb(t) +
zbaρa(t). One can then show that in the continuos time limit
the activation dynamics is governed by the following equa-
tion (Galstyan & Cohen 2007):

τ
dρa,b

dt
= 1− ρa,b − (1− ρ0

a,b)Q(H;λa,b) (1)

where Q(n, x) =
∑

k<n e−xxk/k! is the regularized
gamma function.

Let ρ(t) = αρa(t) + (1− α)ρb(t), α = Na/(Na + Nb),
be the fraction of active nodes in the whole network. In
Figure 1 we compare the solutions obtained from Equa-
tions 1 with the results of simulations on randomly gener-
ated graphs for the same network parameters but two differ-
ent values of the threshold parameter. The parameters of the
network are Na = 5000, Nb = 15000, zaa = zbb = 15,
zab = 4. The fraction of seed nodes is ρ0

a = 0.1, and
τ−1 = 0.1. The simulations are averaged over 100 random
realizations.

The agreement between the analytical prediction and re-
sults of the simulations is quite good. The network settles
to the same steady state for both values of the threshold pa-
rameter H: that is, all of the nodes are activated at the end of
the cascading process. However, the transient dynamics de-
pend on the threshold parameter H . For H = 2, activation
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Figure 1: Analytical (solid lines) and simulation (circles)
results for the activation dynamics. The upper panel shows
the fraction of active nodes vs time for threshold parameter
H = 2 and H = 4. The lower panel shows the activation
rate dρ/dt vs time for H = 4.

spreads very quickly through both communities and after a
short interval all of the nodes are activate. For H = 4, on
the other hand, the fraction of active nodes seems to saturate,
then, in later iterations, ρ(t) increases rapidly and eventually
all the nodes become active. In Figure 1(b) we plot the rate
of activation process dρ/dt vs time for H = 4. Apparently,
the peak rates of activation in the two communities are sepa-
rated in time. We call this phenomenon two-tiered dynamics.

Our analysis of the activation dynamics presented in (Gal-
styan & Cohen 2007) revealed that the activation spreading
in the two–cluster Erdos–Renyi graph defined above is char-
acterized by a doubly–critical behavior. Consider, for in-
stance, activity spreading in a single population: Our calcu-
lations show that for a fixed fraction of the seed nodes there
is a critical connectivity zc

aa so that for zaa < zc
aa the ac-

tivation dynamics dies out, while for zaa > zc
aa it spreads

throughout the network. In the limit of small ρ0
a the crit-

ical connectivity scales as zc
aa ∝ (ρ0

a)−
H−1

H . Also, at the
critical point the convergence time of the activation process
diverges as Tconv ∝ (z − zc

aa)−1/2. Similar results hold

for the second population: Namely, for a fixed within–group
connectivity zbb there is a critical across–group connectiv-
ity zc

ab(ρa) so that for zab > zc
ab(ρa) the activity will surely

propagate through class b provided that at least fraction ρa

of a nodes have already been activated. Furthermore, it is
easy to see that the critical value zc

ab(ρa = 1) corresponds
to the marginal case where the activation will not spread to b
nodes at all. At this marginal point, the two–tiered dynamics
is most pronounced: This is because the convergence time
for the b nodes, and thus, the separation between two peaks,
is infinite (in other words, the second peak never develops).

We have shown that the two–tiered activation dynamics
can be used for building an efficiently parameter–free clas-
sifier in semi–supervised settings (Galstyan & Cohen 2005).
Our results show that such an algorithm achieves a good
classification accuracy provided that the overlap between
two classes is not very strong. Furthermore, an important
advantages of our approach is that it requires initial knowl-
edge only about the class of interest, while most of the other
homophily based classification algorithms require labeled
instances from both classes. This might be very important
when the class of interest is just a tiny fraction of a much
larger number of benign entities, so that providing an ade-
quate number of negative examples is very costly. We also
note that the algorithm can be used both for explicit classi-
fication and for ranking entities according to their similarity
to the class of the interest. A good criterion for ranking en-
tities is the activation time (i.e., nodes that are more similar
to the class of the interest are activated earlier).
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