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Data collections representable as networks appear now frequently in many
fields, and inferring properties of the vertices from the relations has become a
common data mining problem. We introduce a model for the case where no a
priori defined characteristics for the vertices are available, and the task is to
infer latent vertex or edge properties from the topology. Depending on the hy-
perparameters, the properties are either latent blocks (“communities” in social
networks) or more graded, hidden-variable like structures. As a demonstration,
musical tastes of people are induced from the friendship network of the online
music service Last.fm (www.last.fm), with over 105 vertices and edges.

The model generates edges, and is fitted with collapsed Gibbs sampling.
Mixture components have a Dirichlet process prior. The model structure allows
a sparse implementation, with which analysis of millions of vertices with models
including thousands of latent components come feasible.

The generative process out of which the network is supposed to arise is the
following; it is parameterized by (α, β): (1.1) Initialize by generating a multino-
mial distribution θz over an infinite number of latent components z, generated
by the Dirichlet process DP(Z|α); (1.2) to each z, assign a multinomial distri-
bution over the M vertices i by sampling the multinomial parameters mzi from
the Dirichlet distribution Dir(β)—the prior is constant over the vertices. (To
clarify, we have

∑
i mzi = 1 for each z, and

∑
z θz = 1.); (2) Then, repeat for

each edge l: (2.1) draw a latent component z from the multinomial θz; (2.2)
generate two vertices, i and j, independently of each other, with probabilities
mz; set up a non-directed edge between i and j.

Note that within components edges are generated independently of each
other and “randomly”; the non-random structure of the network emerges from
the tendency of components to prefer certain vertices (that is, mz). There
is no explicit hierarchy level for vertices, but because vertices typically have
several edges, they are implicitly treated as mixtures over the latent components.
Finally, the model, in its current form, is parameterized to generate self-links
and multi-edges although they are not present in typical data sets. This allows
sparse implementations that would be impossible for an equivalent Bernoulli
model.

Although the number of potentially generated components is infinite, the
Dirichlet process gives a very uneven distribution over them. With a suitably
small value of α, we observe much fewer components there is edges, and the
model is useful. On the other hand, β describes the unevenness of the degree
distribution of the vertices within components: a high β tends to distribute
edges evenly over the vertices, and therefore give components spanning over all
vertices, while a small β prefers mutually exclusive, community-like components.

In the collapsed Gibbs sampling algorithm, the unknown model parameters
mzi and θz are marginalized away, and only the latent classes of the edges, zl,
are sampled one at a time.

Given the simplicity of the sampling scheme, it is easy to make it highly effi-
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cient. For example, the degree of a vertex poses an upper limit for its component
heterogeneity, so that in most real-life networks only few of the counts kzi are
simultaneously non-zero, allowing sparse implementation and a high number of
components. (We have experimented with 106 vertices and 104 components.)
Edges can be sampled in parallel by locking vertices in the count table kzi. For
M vertices, L edges, C components, and I iteration rounds, memory consump-
tion scales as O(MC + L + C), but with hash tables this can be reduced to
O(Md + L + C) where d is the average degree. Because d = L/M , memory
consumption scales as O(L + C). After optimizing the sampling with trees,
running time can be lowered down to O(I L d log C). That is, running time
scales linearly in the number of edges and logarithmically in the number of
components—excluding the required number of iterations I.

In the figure, the component structure reflecting musical tastes resulted
from a run with 147,610 (anonymous) Last.fm users claiming to be from US, and
their 352,987 self-announced mutual friendships. The parameters of the model
(α=0.2, β=0.2) were chosen to prefer a small number of diffuse components.
As a result (10,000 iterations in just under four hours), each user gets a prob-
abilistic profile over eight latent components. The components were afterwards
correlated with user’s listening habits; in the figure songs are aggregated by tags
given to them. Users have mixed tastes, while tags are intuitively grouped into
components. The tastes emerge from the friendships, which makes the approach
usable in customer relationship management and personalization tools.
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