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Given observations about a collection of nodes, the goal of graph reconstruction is to predict a
set of edges that connect the nodes in a realistic fashion. A number of similar formulations of
the problem have been introduced across research areas, notably social sciences, epidemiology and
biology. What is common across domains is the understanding that interesting properties of the
system are known to depend on the graph structure.

As a example, consider the cell signaling network previously studied in [4, 2]. Gene expression
modulations are a by-product of a living network of activity. In this application, the expression levels
of 11 signaling molecules have been measured using a technology called flow cytometry, and the
goal is to recovery the causal influences of one molecule on another in this network. An important
aspect of this data is the inclusion of interventions, whereby external factors are used to perturb the
expressions of individual molecules, as these help to identify the directionality of influence between
two molecules.

The authors use Bayesian networks to infer the causal relations. In this framework, the expression
levels of signaling molecules in a cell are modeled as discrete random variables whose dependency
structure is assumed to form a directed acyclic graph. Then, using this well-established probabilistic
model, they demonstrate with remarkable success how structure learning is able to explain the causal
relationships in an unsupervised fashion. The authors point out two limitations of their approach: 1)
the inferred dependency graph is acyclic, and 2) effective inference requires many observations.

We adopt an alternative approach to analyze this cell signaling data based on the structured outputs
framework [1]. In this setting X ∈ X is an input feature vector representation of an object and
Y is a multi-variate output that specifies the structure of the object. Note that Y is restricted to a
combinatorial family of structures Y defined for each application, where Y ( {0, 1}N . Common
structures and the applications that use them, listed in parentheses, include: chains (label-sequences),
trees (parse trees), matchings (word and sequence alignments), and partitions of graphs (image
segmentations).

Due to the natural occurrence of cycles in biological networks, which are not easily modeled with
chains, trees, matchings etc., we have chosen to combine degree-constrained subgraphs (DCS) with
the structured outputs framework. DCS are described mathematically in terms of n2 structure vari-
ables yj,k corresponding to the graph’s 0-1 adjacency matrix. A graph is degree constrained if∑

j yj,k = δin
k ,∀k, and

∑
k yj,k = δout

j ,∀j, where the 2n constants δin
k , δout

j are node in-degrees
and out-degrees that are assumed to be known. DCS have received considerable attention in opera-
tions research due to their attractive computational properties; namely, there is a O

(
n3

)
algorithm

that identifies the maximum-weight DCS: argmaxY∈DCS
∑

j,k yj,ksj,k, given a set of weights sj,k.

Using DCS in this framework allows us to learn a function that maps intervention data into a causal
graphs. First, we parametrize the edge weights sj,k = wT xj,k using a linear parameter w. Then,
as in standard learning to predict structured outputs, a risk minimization framework is typically
employed, leading to a max-margin problem formulation. For details see [1].

Flow-cytometry data was collected and discretized into 3 levels by [4]. The data is summarized by
two 11×5400 matrices. The first contains discrete expression levels 1-3, and the second contains
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(c) negative training
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(d) our completion
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(e) true completion

Figure 1: The train-test partition of the adjacency matrix is depicted in (a). Most of the entries in
the training subset will be 0, which we call negative edges. The positive and negative edges used for
training are shown in (b) and (c). The completed graph after learning (d) and the ground truth in (e).
False-positives are demarked by open arrows.

T 2700 1350 675 364 i.i.d. SVM T=2700
auc (recall) 0.97 (80) 0.96 (79) 0.96 (77) 0.96 (77) 0.94 (73)

Table 1: Results of structured-outputs model averaged over 5 repeated trials. A trial randomly selects
two disjoint 11× T slices of the expression data for training and for testing. The final column is the
performance of an i.i.d. support vector machine trained on the edge features.

the assumed perfect intervention state. We use pairwise flow-cytometry measurements to describe
each possible directed edge j → k by a feature vector xj,k. Our representation is: 1) invariant to the
ordering and number of flow-cytometry measurements; 2) sensitive to correlations but invariant to
their sign; and 3) sensitive to both parent and child interventions, under the assumption that they are
not coincident. The second and third conditions are imposed so that we can predict causal influences,
and not simply correlations, between signaling molecules. To construct xj,k we first remove pairs
where both molecules have been intervened. Next, assuming the expression levels for j and k are
positively correlated on the non-intervened measurements, we construct 3x3 normalized histograms
over all remaining measurements. We use a separate histogram for each of the three intervention
cases: j∧k, ¬j∧k, and j∧¬k, for a total of 27 dimensions. If the expressions levels are negatively
correlated on the non-intervened measurements, the expression levels of the child node are flipped
before constructing the histogram features.

For our first experiment, the goal was to see if we could generalize across different subsets of the ex-
pression data. We randomly sampled two disjoint subsets of size T from the original 5400 measure-
ments, for training and testing. Using structured output learning on the training sample, we found
the weight vector w that robustly separated the true network from the remaining DCS. Switching to
the testing sample, and computing all new edge features xj,k, we computed the maximum-weight
DCS for comparison. The results included in Table 1 show that we can generalize well from sam-
ple to sample, and that performance does not degrade for small sample sizes. In fact, the average
recall of 77% can likely be attributed wholly to the degree constraints. For comparison, we have
included the performance of an i.i.d. SVM on subsets of size T=2700. Note that the true network is
not used during testing, although it is used during training. Also note that the node degrees of the
true network are used during both training and testing to define the set of DCS.

For our second experiment, we tested whether we could complete a network that was partially ob-
served, this time using all 5400 samples. We followed the protocol of [5], using a 2:1 bipartite
split of the nodes (see Figure 1). Here, we discovered that we could complete the network with an
average area under the curve (AUC) of 0.93 and recall of 80%.

This work combines DCS with the structured outputs framework for learning to complete graphs.
This model is able to learn cycles, and appears to be robust to small sample sizes. Therefore, this
approach is promising in situations where degree information is available, which is not that unusual.
Two examples are: 1) the social networking web site LinkedIn (www.linkedin.com), and 2) the
structural interaction network (SIN) of [3]. Further comparisons of the structured outputs model and
the Bayesian structure learning are needed.
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