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Extended Abstract
In many problems arising in biology, social sciences and various other fields, it is often necessary to
analyze populations of entities such as molecules or individuals that are interconnected by a set of
relationships. Studying networks of these kinds can reveal a wide range of information. While there
is a rich literature on modeling static networks, much less has been done towards modeling dynam-
ically evolving networks. Recently, [1] proposed the hidden, temporal Exponential Random Graph
(htERGM) as a framework for modeling hidden, temporarily evolving networks. In the htERGM,
the network structure at each time step t, At, is modeled as a hidden variable that evolves according
to a Markovian dynamics, and at each epoch t, a set of data points {Xt

1:Dt
} are emitted. Putting

everything together:
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P (At+1|At, θ)P (Xt
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|At,Λ) (1)
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Φ(xt
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t
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t
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Where At
ij is a binary variable that denotes the existence of an edge between nodes i and j, Ψ

and Φ are vector-valued features that encodes the sufficient statistics of the exponential families
which are parameterized by θ and Λ respectively. The htERGM defines a family of models that
depends on how these sufficient statistics are defined. For instance, in [1], Ψ = (Ψ1, Ψ2,Ψ3),
where Ψ1 =

∑
ij −At

ij capturing network density, Ψ2 =
∑

ij I(At−1
ij == At

ij) capturing edge
stability, and finally Ψ3 capturing transitivity (see [1] for more details). Moreover, in [1], all nodes
were assumed for simplicity to be binary. Given a sequence of observation traces {X1:T

1:Dt
}, and

the model parameters, the inference problem is to find {A1:T }. A Gibbs sampling algorithm was
proposed to carry out this task which can handle a dozen of variables (e.g., 10-20). In this extended
abstract we show that for certain htERGM subfamilies, the inference problem can be approximated
via an efficiently-solved optimization problem. Specifically, we keep the emission model as defined
in [1] and restrict the transition to only capture density and stability features Ψ = (Ψ1, Ψ2). This
setting is not restrictive and captures the set of evolving pairwise binary Markov random field (MRF)
(for example, time varying Icing-model, time-varying regulatory network, etc.). Below we provide
two extensions of the technique proposed in [2] for learning the structure of binary MRF. The basic
idea in [2] is to regress each node, i, in the graph using an l1-regularized logistic regression over
the remaining nodes, −i. This involves solving N optimization problems each of which results in a
coefficient βi of length N whose non-zero components define the neighborhood structure of node i.

Unconstraint Optimization Formulation
In this formulation we still regress each node using an l1-regularized logistic regression over the
remaining nodes, −i, however, we vary the regression coefficient over time, {β1:T

i }, and to account
for stability constraints, we enforce an L2−penalty over successive coefficients1. Putting everything
together, for each node i in the graph,we solve the following optimization problem:
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(3−b)

(3)

1It is also possible to use L1-penalty instead — it is not clear to us which one is better at the moment
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Where (3-a) is the time-specific l1-regularized logistic regression, and (3-b) encodes edge stability.
xt

d,−i is data point xt
d with the ith component replaced with 1, and βt

−i is βt
i with the ith component

removed (i.e. βt
i acts as the bias term [2]). Each optimization problem has NT variables and results

in a set of smooth, sparse time-specific regression coefficients {β1:T
i } for each node that when

combined, define the neighborhood structure at each time step [2].The smoothness and sparsity are
controlled via θ1, θ2.
Integer Programming Formulation
One problem with the previous formulation is that it ignores the role of Λ, the shared emission
parameters [1]2. In fact Λij measures the correlation between nodes i and j and thus plays a similar
role as a single βt

ij , thus the solution provided by the above formulation is approximate at best. To
account for that, we replace β1:T

i in (3) with the time-invariant correlations vector λi = Λ′i. and
explicitly model the existence of an edge between node i and j at time t via the binary variable At

ij .
We also denote the neighborhood of node i at time t via At

i = At
i., putting everything together, for

every node i, we solve the following integer optimization:
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(4−b)

(4)

Subject to At
i ∈ {0, 1}N ∀ t (5)

where yt
d,−i = xt

d,−i × λi and ’×’ denotes component-wise multiplication. Intuitively, we factored
βt

i from (3) into two parts: one real part that gives the coefficients vector λi,which is fixed, and
another binary part that controls whether a given coefficient is in or out, At

i, which becomes the
variable in the optimization in (4). We then folded the fixed part, λi, with the fixed covariates with
respect to node i, xt

d,−i, to obtain yt
d,−i just for the sake of readability. It is quite straightforward to

note the equivalence of (4-a,b) to (3-a,b). In order to solve the above problem efficiently, we relax
the integrality of {A1:T

i } and constrain them to be between 0 and 1. Solving the above optimization
problem results in real values for all edges that can be later thresholded to recover the the network
at all time points. It is interesting to note that even though we relaxed {A1:T

i }, the l1-penalty should
force most of them to be zero and hopefully the remaining variables would be moved towards 1.
Clearly this formulation is more tight, and slightly expensive than the one in (3).
Current Status and Future Work
We implemented the optimization problem in (3) in matlab using the CVX generic optimization
package3. On a standard desktop, we were able to solve problems with 100-300 nodes and 66 time
points efficiently (we used the Drosophila network in [1] that contains up to 4000 genes and 66 time
points). The time to solve each optimization problem in (3) varies from 1.5 minutes (100 variables)
to 12 minutes (300 variables), which is compared to days when using Gibs sampling over 20 vari-
ables. We believe that we can scale the model up to 1000 variables via moving to a C-environment.
Moreover, the CVX solver is a generic convex solver, thus the structure of the problem is not utilized,
in the future we intend to extend the interior-point method in [3] to account for the time-dependent
constraints (part 4-b). We are still in the process of implementing the relaxed integer-programming
formulation. In the final NIPS poster, we will provide a comparison of these two formulations, along
with Gibbs sampling, in terms of the trade-off between the precision achieved and the computational
resources used. It should be noted that the result of the optimization problem in either (3) or (4) can
be used as an approximation to the posterior mode, or can be used to initialize the Gibbs sampler so
that the sampler would not wander over states with low-probabilities and quickly enhances over the
obtained approximate solution — we are investigating this direction as well.
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2We followed [1], but Λ can be time-specific and (4) can be generalized accordingly
3http://www.stanford.edu/ boyd/cvx/
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