Stat 521A

Lecture 1
Introduction; directed graphical models




o Administrivia

e Overview

* Local markov property, factorization (3.2)
e Global markov property (3.3)

* Deriving graphs from distributions (3.4)



* Class web page
www.cs.ubc.ca/~murphyk/Teaching/Stat521A-spring08

 Join groups.google.com/group/stat521a-spring09
e Office hours: Fri 10-11 am

« Final project due Fri Apr 24th

 Weekly homeworks

e Grading
— Final project: 60%
— Weekly Assignments: 40%



 |f you want to ‘sit in’ on the class, please register for
It as ‘pass/fail’; you will automatically pass as long
as you show up for (most of ) the class (no other
requirements!)

 If you take it for real credit, you will likely learn
more...



Homeworks

Weekly homeworks, out on Tue, due back on Tue

e Collaboration policy:

— You can collaborate on homeworks if you write the name
of your collaborators on what you hand in; however, you
must understand everything you write, and be able to do
It on your own

» Sickness policy:

— If you cannot do an assignment, you must come see me
INn person,; a doctor's note (or equivalent) will be required.



Workload

e This class will be quite time consuming.
o Attending lectures: 3h.

 Weekly homeworks: about 3h.
 Weekly reading: about 10h.

e Total: 16h/week.




* You should know
— Basic applied math (calculus, linear algebra)

— Basic probability/ statistics e.g. what is a covariance
maitrix, linear/logistic regression, PCA, etc

— Basic data structures and algorithms (e.g., trees, lists,
sorting, dynamic programming, etc)

— Prior exposure to machine learning (eg CS540) and/or
multivariate statistics is strongly recommended



Textbooks

* “Probabilistic graphical models: principles and
techniques”, Daphne Koller and Nir Friedman (MIT
Press 2009, in press).

 We will endeavour to cover the first 900 (of 1100)
pages!

« Copies available at Copiesmart copy center in the
village (next to McDonalds) from Thursday

| may hand out some chapters from Michael
Jordan’s draft book, “Probabillistic graphical
models”

e | am writing my own book “Machine learning: a
probabilistic approach”; | may hand out some
chapters from this during the semester.



Matlab

e Matlab is a mathematical scripting language widely
used for machine learning (and engineering and
numerical computation in general).

 Everyone should have access to Matlab via their
CS or Stats account.

e You can buy a student version for $170 from the
UBC bookstore. Please make sure it has the Stats

toolbox.

 Matt Dunham has written an excellent Matlab
tutorial which is on the class web site — please
study It carefully!



PMTK

* Probabilistic Modeling Toolkit is a Matlab package |
am currently developing to go along with my book.

* |t uses the latest object oriented features of Matlab
2008a and will not run on older versions.

 |tis designed to replace my earlier ‘Bayes net
toolbox’.

« PMTK will form the basis of some of the
homeworks, and may also be useful for projects.
(Currently support for GMs is very limited.)

o http://www.cs.ubc.ca/~murphyk/pmtk/
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Learning objectives

By the end of this class, you should be able to

— Understand basic principles and techniques of
probabilistic graphical models

— Create suitable models for any given problem

— Derive the algorithm (equations, data structures etc)
needed to apply the model to data

— Implement the algorithm in reasonably efficient Matlab

— Demonstrate your skills by doing a reasonably
challenging project
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Ask questions early and often!

I will use Google before atking dumie questions. 1 will vie Google lefore
asking dumb quertions. 1 will use Gooale before asking dumls Zuestions.
I will use Google before asking dumie questions. 1 will use Soogle before
asking dumls quertions. 1 will use Google kefore asking dumle guestions.
wwwLmrlsurninl before atking dumbs questions. 1 w4l uie Google before
asking dumle quertions. T will use Google keforr asking dumb questions.
I will uie Google before atking dumia questzns 1 will vie Googleganre
asking dumb quertions. 1 will vse Google wefore asthing dumle qu '
1 will use Google before asking duml questions. 1 will vse Gooe;

asking dumb quertions. T will uir Zoogle before asking dumb o'y
I will use Google before atkirg dumie questions, 1 will vie Googn

asking dumle quertions. 1 will vse Gooale before atking dumbs -2

—
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o Administrivia
—e Qverview
* Local markov property, factorization (3.2)
e Global markov property (3.3)
* Deriving graphs from distributions (3.4)
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Supervised learning

e Predict output given inputs, ie compute p(h|v)
« Regression: h InR
e Classification: hin {1,...,C}
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Structured output learning

 Model joint density of p(h,v) (or maybe p(h|v))
e Then infer p(h|v) - state estimation

« MAP estimation (posterior mode)

h* = arg max, ..., arg rrillaxp(h\v, 0)
1 n

e Posterior marglnals
Z Zp h|v,0)
* Also need to estlmate parameters and structure

Swrvied Univperviged
, — T

9 0 O Labels Diseases Genotype Low-dim rep

V i 4 ¢ Pixels Symptoms Phenotype Features
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Density estimation

 Model joint density of all variables

« No distinction between inputs and outputs: different
subsets of variables can be observed at different

times (eg for missing data imputation)
e Can run model in any ‘direction’
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Inference

e Prior that sprinkler is on

1 1 1
p(Szl)zy:y:y:p(C:c,S:1,R:r,W:w):O.S

c=0 r=0 w=0
e Posterior that sprinkler is on given that grass is wet
p(S=1W =1) = PE=LW=1) 4

p(W =1)
e Posterior that sprinkler is on given that grass is wet

and it Is raining

p(S=1W=1,R=1) =

Explaining away
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Bag of words model

» bag-of-words representation of text documents

o Xi=1 iff word 1 occurs in document
« Define a joint distribution over bit vectors, p(x1,...,xn)

Lrai ing ssl

1 2 3 4 5 3] 7
Words = {john, mary, phone, mancy, send, meeting, unk}

by

Ty =
- v '
T Ea L e
i I™=-3r
= I
it A gt e
=y -'Ti-';:"'fl o' e A "r L .
3 = IOSLPE MR ool S ) - 1 o
o Tmed Tag ¥ WY il | e, B =
iy E oy P gl o
T b i

e

“John sent morey to Mary after the mesting about monay”
| Stop word removal

LR
i ;é%ﬁ“
“iohin senl money mary aller meeling aboul money® A R e
Tokenization e G AR :
1 7 4 i K & 7 4 LAk
l Word counting
1,1,0,2,0,13]
l Thresholding (binarization) :
[1,1,0, 1,0, 1,1] 3¢
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Inference

e Given word Xi occurs, which other words are likely
to co-occur?

 What Is the probability of any particular bit vector?
e Sample (generate) documents from joint p(x)
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Bayesian classifiers

e Define joint p(y,X) = p(X|y) p(y) on document class
label and bit vectors

e Can infer class label using Bayes rule

: Class-conditional density Class prior
Class posterior
/ -~

/
"oy — Py =c)ply =)
Py =€) = S~ ey = dyply = &)

/

Normalization constant

 If y is hidden, we can use this to cluster documents.
* |n both cases, we need to define p(x|y=c)
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Naive Bayes assumption

e The simplest approach is to assume each feature is
conditionally independent given the class/cluster Y

Xi 1 Xj Y =c¢
e |n this case, we can write

p(xly =c) = Hpaj]y—c

 The number of parameters IS reduced from
O(C K9) to O(C K d), assuming C classes and K-ary
features
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Conditional independence

* In general, making Cl assumptions is one of the
most useful tools In representing joint probability
distributions in terms of low-dimensional quantities,
which are easier to estimate from data

 Graphical models are a way to represent ClI
assumptions using graphs

 The graphs provide an intuitive representation, and
enable the derivation of efficient algorithms
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Graphical models

 There are many kinds of graphical models

* Directed Acyclic graphs — “Bayesian networks”

* Undirected graphs — “Markov networks”

* Directed cyclic graphs — “dependency networks”

« Partially directed acyclic graphs (PDAGS) — “chalin
graphs’

« Factor graphs

 Mixed ancestral graphs

e Etc

 Today we will focus on DAG models
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o Administrivia
e Overview
—e | ocal markov property, factorization (3.2)
e Global markov property (3.3)
* Deriving graphs from distributions (3.4)
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CI properties of DAGs

 Defn 3.2.1. A BN structure G is a DAG whose
nodes represent rvs X,,...,X,. Let Pa(X) be the
parents of X, and Nd(X;) be the non-descendants
of Xi. Then G encodes the following directed local
Markov assumptions:

I,(G) = {Xi L Nd(X;)|Pa(X;)}

Loif floulty Intelligence G 1 S|D7 I
W1 I 1D
e SA
o A\ /

\_J3 0

Student network
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Another Example

A :'!_r-:."_!"uﬁ.*fl-" X, ey "

T A i ;

e .__.'- . . L

AR o N

i o e

A= i oy
L f oy

Red (X8) L pink | blue
27



 Def 3.2.2. Let I(P) be the set of independence
assertions of the form X L Y | Zthat hold in P

P=X 1Y|Z
 Def 3.2.3. We say G is an I-map for set | if I(G) C |

(hence the graph does not make any false
Independence assumptions)
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I-maps: examples

« Examples 3.2.4, 3.2.5

PiX.Y]

X ¥ | XY X ¥
CEETEN I LTS DA
=t 4| 0o 2 y1| 03
=1 y®| 012 =1 U 0.8
2t ' | DAS R TE 0.1
. T X Y :
o 0.08 0.32 0.4
' \(0.12 0.43> - (o.es) (0:208)
(¢.{) = PLX) PLY) ’
: Pk X LS

P KLY

Imaps=X->Y, X<-Y
Imaps = X Y, X->Y, X <-Y P
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I-map to factorization

e Def 3.2.5. A distribution P factorizes over a DAG G
If It can be written In the form

p(X1,- ., Xn) = | [ p(Xi|Pa(X))
e Thm 3.2.7. If G is an IFmap for P, then P factorizes
according to G.
* Proof: by the chain rule, we can always write
p(X1,..., Xpn) = Hp(Xi|X1:7;—1)
1=1
By the local markov assumption, we can drop all
the ancestors except the parents. QED.
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Student network

i Ficu ity Intelligence

m

Grade SAT

|

Letter

p(I,D,G, S, L) = -
p(D)p(DM)p(G|T, D)p sru_’f Ap(LIT, DG, S)

= p(I)p(D|)p(G|I, D)p sum
;z(L/ <)
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Naive Bayes classifier
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Bayes net = DAG + CPD

A DAG defines a family of distributions, namely all
those that factorize in the specified way.

e Def 3.2.6. A Bayes net is a DAG G together with a
set of local Conditional Probabillity Distributions
P(X_1|Pa(X _1)).

i . g r K
0& 104 o7 o
[ |f..|.|.|'|l Irllt.-'|_|-|:r|n|!
| | @ m
CPTS . . "d*| oa i & (v | e e SAT
Each row is a different 7 dlaos| om| o7 l
multinomial distribution, vd"| 09| om| ooz Fl ¥
One per parent combination ia | on| oa| oz T

Pidt, d®, g% a' 1%) = PYPHCP | dP P | 20 o8

= 0.3-06-0.08-0.E- 0.4 = 0.OMBE0E, ¥| oAl o
|om| om
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Water sprinkler BN

P(C=F) P(C=T)

0.5 0.5

C ‘ P(S=F) P(S=T) C | P(R=F) P(R=T)
F 0.5 0.5 / F 0.8 0.2
T 0.9 0.1

% S ISR

S R|P(W=F) P(W=T)

F F 1.0 0.0
T F 0.1 0.9
F T 0.1 0.9

T T 0.01 0.99

p(C, 5, R, W) = p(C)p(S|C)p(R|C)p(WI[S, R)



Joint distribution for sprinkler network

p(C, S, R, W) = p(C)p(S|C)p(R|C)p(W]S, R)

| P(S=F) P(S=T)

C
F
T

0.5
0.9

0.5
0.1

P(C=F) P(C=T)

0.5 0.5

i

S R|P(W=F) P(W=T)

F F

T F

F T

T T

1.0 0.0
0.1 0.9
0.1 0.9

0.01 0.99

e | P(R=F) P(R=T)

F

T

0.8

0.2

0.2

0.8

P PP P PRPPPPOOO0OO0OO0OOOCODON
P P PP, OO 0000 kR, FRP PR EFP,POOOODMNm
P P OORPRPFPOOFRPLRRPLPOORFRP,REPL,LROORH
P OPrRrPORPRORFRPROFRPLRORPLROPFP, O OT=
©000000000000000
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 CPDs can be any conditional distribution
p(X_i|Pa(X_ 1))

 |f Xi has no parents, this is an unconditional
distribution

 For discrete variables, it iIs common to use tables
(conditional multinomials)

 However, CPTs have O(K/Pal) parameters; we will
consider more parsimonious representations (such
as logistic regression) — see ch 5

 For continuous variables, it IS common to use linear
regression to define CPDs (see ch 7)
p(Xz|PCL(XZ) — U, 07,) — N(X73|11T0i, O',Lz)
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Representing parameters as nodes

>(\ Xz, Xol
roT T
d)‘ Dy, Dy

We will return to this representation when we discuss parameter estimation

DAGs are widely used for Hierarchical Bayesian models 37



Genetic inheritance

 G(x) = genotype (allele) of person x at given locus,
say {A,B,0O} x {A,B,0O}

 B(X) = phenotype (blood group) in {A,B,O}
* P(B(c)|G(c)) = penetrance model

* P(G(c)|G(p),G(m)) = transmission model

* P(G(c)) = priors for founder nodes

38



Factorization to I-map

e Thm 3.2.9. If P factorizes over G, then G is an I-
map for P.

° PI’OOf (by example) Loif fleulty Intelligence

m
 We need to show all the Grade SAT
local Markov properties J
hold In P eg. RTP

p(S|1,D,G, L) = p(5[I)

e By factorization and elementary probabillity,
p(S,1,D,G, L)
p(I,D,G, L)
p(I)p(D)p(G|L, D)p(L|G)p(S|I)
p(1)p(D)p(G|I, D)p(L|G)

p(S|I,D,G, L)

= p(S]1),



o Administrivia

e Overview

* Local markov property, factorization (3.2)
—e Global markov property (3.3)

* Deriving graphs from distributions (3.4)
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Global Markov properties

 The DAG defines local markov properties
I,(G) = {X; L Nd(X;)|Pa(X;)}
 We would like to be able to determine global
markov properties, I.e., statements of the form
I(G)={X L1YI|Z: f(X,Y,Z,G)}

for some function f.
 There are several equivalent ways to define f:
 Bayes ball
o d-separation
* Ancestral separation (ch 4)

41



e Consider the chain
X >T7T>3

p(z,y, 2) = p(x)p(y|z)p(2|y)
 If we condition and y, x and z are independent

p(z)p(y|x)p(z|y)

_ plz,y)p(2ly)
| o p(y)
/N = p(z|y)p(z|y)

42



Common cause

e Consider the “tent”

-

N

X \’3;
p(z,y,z) = p(y)p(z|y)p(2|y)

e Conditioning on Y makes X and Z independent

_ p(z,y,2)
p(:z:,z\y) o p(y)
/:@r _ p(y)p(;j(‘zip(z‘y) _ p(m‘y)p(z‘y)
/TN

X X 43



V-structure (common effect)

Consider the v-structure

p(z,y,z) = p(z)p(z)p(yl|z, 2)
X and Z are unconditionally independent

= p(x,y,2) Zp p(ylz, z) = p(z)p(2)

v
but are conditionally dependent

p(z)p(2)p(y|z, 2)
o) # f(z)g(2)

p(x,z|y) —

44



Explaining away

e Consider the v-structure

¥ o |
XX Ox\ \///o XM/ Eox AT
N7 &/

e Let X, Z € {0,1} be iid coin tosses.

e LetY =X+ Z.

* |f we observe Y, X and Z are coupled.
x ¢ T
@, 0 )

o | |

l V) /

| L
45



Explaining away

e LetY =1 iff burglar alarm goes off,
o X=1 iff burglar breaks in
e /=1 Iff earthquake occurred

X T
\vb/

v
l

« X and Z compete to explain Y, and hence become
dependent

o Intuitively, p(X=1|Y=1) > p(X=1]Y=1,Z=1)

46



Bayes Ball Algorithm

« X, L Xz | Xc If we cannot get a ball from any node

In A to any node in B when we shade the variables
In C. Balls can get blocked as follows.

X >E) >y X (D> %

—> f— >
| :
\ d
\
NP
X P A
X X 2
=Y/ W\ Y

% ® .



gy a6
yd ~

48
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Observing descendant of a v-structure

s
(g
|
(S
X % % l L Eg if W=Y (deterministic)
Current rules do not give this. X ->Y -> Z is blocked.

What happens when ball goes X ->Y ->W?
We want the ball to “bounce back” and thengo W ->Y -> Z,

50



Boundary conditions (source X = destn Z)

b
X\,/
— D
X 5@ )(g Z
X at
(Vg
D
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Observing descendant of a v-structure

52



Markov blankets for DAGs

e The Markov blanket of a node Is the set that

renders it independent of the rest of the graph.
MB(X)=minima setUs.t. X L X\ {X}\U|U

e This Is the parents, children and co-parents.

(X5, X 3)
> (X, X 5)
P(Xi, Urin, Yi:ms Z1:m, R)
Yo (@, Uty Yiimy Z1.m, R)
p(XilUrn) (L1, p(Y;| X3, Z5)|P(Utiny Z1:m, R)
> o P(Xi = 2|Un)[[1; p(Y;1Xs = =z, Z;)|P(Ut:n, Z1:m, R)
p(Xi|Urn)[I1; p(Y;]Xi, Z;)]
Do P(Xi = z|Unn)[]; p(Y;|Xs = =, Z;)]

p(Xil X)) =

p(XilX_i) «x p(X;|Pa(X;)) || p(Y;|Pa(Y;)
Y, ech(X,)

Useful for Gibbs sampling 53



Another example

i

| ! T
iz gk Eeo
II.'- -_{.':rll_:--‘f.r.!' 7 ¥ -li.1 3 F'l-

LI HI- -_l- = I

r 4 II._ i i

!.II' _.I"I':.': .'_'l_"l:'-_::_—" F e i

I -I -I- ™ i

Red node (X8) indep of rest (black) given MB (blue parents, green children,
pink co-parents)
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Active trails

 Whenever influence can flow from to Y via Z, we say that
the trail X <-> Y <-> Z is active.

e Causal trail: X -> Z -> Y. Active iff Z not obs.
e Evidential trail: X <- Z <- Y. Active iff Z not obs
e« Common cause: X <-Z ->Y. Active iff Z not obs

e Common effect; X -> Z <- Y. Active iff either Z or one of its
descendants is observed.

e Def 3.3.1. Let G be a BN structure, and X1 <-> ... <-> Xn be
a trail in G. Let E be a subset of nodes. The trail is active
given E if

 Whenever we have a v-structure X, ; -> X <- X,,4, then X; or
one of its desc is in E

 No other node along the trail is in E

55



e D-> G <-1->S not active for E={}

e D->G<-1->Sis active for E={L}

e D-> G <-1->S not active for E={L,l}
« Non-monotonic

i Ficulty Intelligence

m

Grade SAT

|

Letter

56



 Def 3.3.2, We say X and Y are d-separated given
Z, denoted d-sep_ G(X;Y|2), Iif there is no active
trail between any node in X to any node in Y, given
Z. The set of such independencies is denoted

I(G) = {X LY|Z:dseps(X;Y|Z)}
e Thm 3.3.3. (Soundness of ds%p). If P factorizes
according to G, then I(G) C I(P).

e False thm (completeness of dsep). For an[g P that
factorizes accordingto G, if X LY | Zin I(P), then

desps(X;Y|Z) (i.e., P is faithful to G)
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e DAGs
— global Markov (3.3)
— deriving graphs from distributions (3.4)

e UGs

— Global Markov property (4.3.1)

— Parameterization (4.2)

— Gibbs distributions, energy based models (4.4.1)
— Local and pairwise Markov properties (4.3.2)

— From distributions to graphs (4.3.3)



Active trails

 Whenever influence can flow from to Y via Z, we say that
the trail X <-> Y <-> Z is active.

e Causal trail: X -> Z -> Y. Active iff Z not obs.
e Evidential trail: X <- Z <- Y. Active iff Z not obs
e« Common cause: X <-Z ->Y. Active iff Z not obs

e Common effect; X -> Z <- Y. Active iff either Z or one of its
descendants is observed.

e Def 3.3.1. Let G be a BN structure, and X1 <-> ... <-> Xn be
a trail in G. Let E be a subset of nodes. The trail is active
given E if

 Whenever we have a v-structure X, ; -> X <- X,,4, then X; or
one of its desc is in E

 No other node along the trail is in E



e D-> G <-1->S not active for E={}

e D->G<-1->Sis active for E={L}

e D-> G <-1->S not active for E={L,l}
« Non-monotonic

i Ficulty Intelligence

m

Grade SAT

|

Letter



 Def 3.3.2, We say X and Y are d-separated given
Z, denoted d-sep_ G(X;Y|2), Iif there is no active
trail between any node in X to any node in Y, given
Z. The set of such independencies is denoted

I(G) = {X LY|Z:dseps(X;Y|Z)}
e Thm 3.3.3. (Soundness of ds%p). If P factorizes
according to G, then I(G) C I(P).

e False thm (completeness of dsep). For an[g P that
factorizes accordingto G, if X LY | Zin I(P), then

desps(X;Y|Z) (i.e., P is faithful to G)



Faithfulness

e Def 3.3.4. A distribution P is faithful to G if, whenever X L Y

| Zin I(P), we have dsep_ G(X;Y|2Z) i.e., there are no “non-
graphical” independencies buried in the parameters

e A simple unfaithful distribution, with Imap A->B:

'] J..' ']

W

TT04 0.6
L1044 06

- =

Such distributions are “rare”

« Thm 3.3.7. For almost all distributions P that factorize over
G (ie except for a set of measure zero in the space of CPD
parameterizations), we have that I(P)=I(G)



Markov equivalence

A DAG defines a set of distributions. Different DAGs may
encode the same set and hence are indistinguishable given
observational data.

e Def 3.3.10. DAGs G1 and G2 are I-equivalent if I(G1)=I(G2).
The set of all DAGs can be partitioned into I-equivalence
classes.

 Def 3.4.11. Each can be represented by a class PDAG: only
has a directed edge if every membper shares that edge.
o eced e igen meny

X
y 7 o ! !
e Y ‘;’ ; - f
L 0 ! i I
t Y
t 2 ¢ fpA & ¢ ?ox G
Xl} X1t
XL Y XY 7



Identifying I-equivalence

Def 3.3.11. The skeleton of a DAG is an undirected
graph obtained by dropping the arrows.

Thm 3.3.12. If G1 and G2 have the same skeleton
and the same v-structures, they are I-equivalent.

However, there are structures that are I-equiv but
do not have same v-structures (eg fully connected
DAG).

Def 3.3.13. A v-structure X->Z<-Y is an immorality if
there Is no edge between X and Y (unmarried
parents who have a child)

Thm 3.3.14. G1 and G2 have the same skeleton
and set of iImmoralities iff they are |-equiv.
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Markov properties of DAGS

e DF: F factorizes over G
« DG: I(G) C I(P)

. DL: I,(G) C I(P)

- —> 06 = DL
Dr '1'1_-_;‘ tri/i

ov‘/\/’\“ )

1.2 1

Based on Jordan ch 4 10
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Deriving graphs from distributions

So far, we have discussed how to derive
distributions from graphs.

But how do we get the DAG?

Assume we have access to the true distribution P,
and can answer guestions of the form

PEX 1Y|Z

For finite data samples, we can approximate this
oracle with a Cl test — the frequentist approach to
graph structure learning (see ch 18)

What DAG can be used to represent P?

12



Minimal I-map

 The complete DAG is an |-map for any distribution
(since it encodes no ClI relations)

e Def 3.4.1. A graph K is a minimal I-map for a set of
Independencies | if it iIs an |-map for |, and if the
removal of even a single edge from K renders it not
an I-map.

e To derive a minimal I-map, we pick an arbitrary
node ordering, and then find some minimal subset
U to be X/s parents, where

Xi L{Xy,..., Xs 1} \UU

e (K2 algorithm replace this CI test with a Bayesian
scoring metric: sec 18.4.2).

13



Effect of node ordering

« “Bad” node orderings can result in dense,
unintuitive graphs.

e EgL,S5,G,I,D. Add L. Add S: must add L as parent,
since P /&=L 1 SAdd G: must add L,S as parents.

b T 1 ok

SR Nl \\7@\
T

M o= 0

14



Perfect maps

 Minimal I-maps can have superfluous edges.

o Def 3.4.2. Graph K is a perfect map for a set of
Independencies | if I(K)=I. K is a perfect map for P if
1(K)=I(P).

* Not all distributions can be perfectly represented by
a DAG.

 Eglet Z=xor(X,Y) and use some independent prior

on X, Y. Minimal |- maP Is X -> Z <-Y. However, X
1 ZinI(P), but not in I(G)

- EgALC|{B,D}and B L D |{A,C}, Adep | B,C,
etc o

B B o g LD

"-.E- %
Reofs e el
e @t .



Finding perfect maps

e |If P has a perfect map, we can find it in polynomial
time, using an oracle for the Cl tests.

 We can only identify the graph up to I-equivalence,
so we return the PDAG that represents the
corresponding equivalence class.

 The method” has 3 steps (see sec 3.4.3)
— ldentify undirected skeleton
— ldentify immoralities
— Compute eclass (compelled edges)

e This algorithm has been used to claim one can infer
causal models from observational data, but this
claim Is controversial

Algorithm due to Verma & Pearl 1991, Spirtes, Glymour, Scheines 1993, Meek 1995 16
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Global Markov property of UGs

e Def4.3.1. The path X _1-...- X kis active given E
If none of the nodes on the path are in E.

e Def 4.3.2. The global Markov assumptions
assoclated with a UG H are

I(H) = {X LY|Z: spy (X;Y|2)}

eg.ALC|{B,D}and B L D |{A,C}

A A
5y W P
\ 7 N7
C ¢
Monotonic, unlike d-separation AJ < / B, D

sepy (X;Y|Z) = sepy (X; Y| Z)WZ C Z 18
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Parameterization

» To specify a specific distribution, we need to associate
parameters (local distributions) with the graph.

« CPDs cannot be used because they are not symmetric, and
the chain rule need not apply.

« Marginals cannot be used because a product of marginals
does not define a consistent joint.

* Instead we multiply a product of factors (potentials), one
per maximal cligue, and then compute a global
normalization constant Z (partition function)

/4 P(A,B,C,D) = 1/Z ¢A,B,D) ¢(B,C,D)
b 7N A
AN / Z=Y {AB,C,D} ®A,B,D) ¢B,C,D)
C

20



Misconception network

A Azsignment | Unnormalized | N ormalized

Y4 \ a o e |a L] 0.0 |

D ‘B a” | 67| e | at LN 0.0y

a” | 67| et | a? ALK 0.04

\ / a® | 8 [ et | gt 30| 41-10-F

a” | B | & | g S 6.0 - 10—

é af | AL | &9 | gl S .0 . 10-%

a” | B | et | g SN 0.3

SAE &IEC @0 D ADA '1:' E.: E; f_: =0 5-5"1'3":
a - . a a | & 1000 1.4-10-
A A I ST e PN N R L0000 .14
:t ::l: u; :: :: 1:-; i :: mil it :': 100 '1: DIJ et | d? 100 14-10-*
al | 67| et | gt 100 1.4-10-*

al |6t [ o 0| 14-10-°

al [ Bt ]|t L (000D .04

al [ B ]et | af 100000 0.014

at | Bt et | at L D0 ] 0.014

P(A,B,C,D) = 1/Z ¢(A,B) ®A,D) ¢(C,D) @(C,B)
21



Multiplying factors

o Def 4.2.2. We multiply factors by matching up

corresponding dimensions
PXY.Z) = @ (X)Y) - ¢,(Y.2)

22



Factors are not marginals

In the misconception network, the marginal on A,B

IS A
al &
gl kD

e

gl &

Pl

0.13

(LG0
.14

.04

But the local cligue potential is

IJ.':I

1
i L
i

F

a1 a0
ol 5
1
pt 10

Factors are local affinities or preferences, but get
combined with other terms in a non-local way

23



Factorization and I-maps

Thm 4.3.3. If P factorizes over H, then H is an I-
map for P, ie. I(H) C I(P). (Soundness of

separation.)

Proof. Suppose Z separates X from Y. Then we can
partition the factors such that

p(x)=(1/2)f(X,2)g9(Y, 2)
QED.

Def 2.1.11. A distribution is positive if P(x)>0 for all
X.

Thm 4.3.4 (Hammersley Clifford). If P Is positive,
and H is an I-map for P, then P factorizes over H:

p(x) = (1/2) | [ oe(xc)

24
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Gibbs distributions

e Def 4.2.3. A Gibbs distribution is defined as

p(Xi,. . Xa) = 261(D1) X - X byu(D)

* The D, are the domains or scopes of the factors.
We can infer the graph by connecting up all nodes
In the same domain. If the D, are on pairs of nodes
(edges), we call it a pairwise Markov random field.

 For a complete graph, we could have one factor per
edge or a single cligue potential for the whole
graph.

26



Factor graphs

e For a complete graph, we could have one factor per
edge or a single cligue potential for the whole
graph.

e Factor graphs can distinguish these cases.
 Def4.4.1. Square nodes = factors, ovals =rv’s.

Vo (& —| Va

(Bmd  |dw) 1Beg) Bad



Energy based models

* |t iIs common to work with energies = negative log
factors/ potentials (low energy = more probable)

m
$(D) = exp(—€(D))  p(x1,-..,20) = 1/Zexp[= > &(D;)]
i=1
c1[A, H] ca[ B, ] &a[C, D] calD, A
a? B =34 L L. I FLa: o 1] d® a® -—4.61
a? Bt —1.61 ool 0 o dt —4.61 ar al 0
at & (1 L 1 P S W | dl g ]
at B —-2.3 Mo —46] o dt ] dl gl —4.81
dald, B #a B, ] #alC, D a0, A]
a? B30 i S [ 1 o g i d? a9 100
al Bt I il el i o dt 100 ol gt
at B9 | at o i Pl S (1 1 dt  a” |
at B 10 L L [ 1 o gt 1 dt ab 100

28



Ising model

e X I=+1ifatomis spinup, X _|I=-1If spin down
. "'WJ O -
 Define edge energy as 2% e v - Y
€ (i, ;) = —w; jx;2; €w"“’ e

 |f spins equal (aligned), product is +1, else -1.

 w_{i,J} = 0.5 (E(anti-aligned)-E(aligned)). If +ve,
model aligns atoms (ferromagnetic). If —ve, spins
should be different (anti-ferromagnetic).

 Define local node energy (external field) as
€i(T;) = —u;m;
e Overall distribution

p(T1, .., Tpy) = —exp (Zw”m g +Zu@xz>

1<J 29



Ising models capture pairwise correlation

e Energy can be written as
G(X) = — Zwi,jxixj — ZU@ZCZ
1<J )
= —% "Wx —u'x
= —s(x—p)'Wx—p)+ec
g = —-Wlu
c = ' Wy

30



Phase transition

* The strength of the interactions is modulated by a global
temperature parameter T

p(x) = — exp (—e(x)/T)

o Large temperature “flattens” the energy landscape and
makes the uniform distribution most probable

« Small temperature makes the distribution “peaky”

 One can compute the density of pure vs mixed state

configurations as a function of T _gas the number of atoms ->
o0). There Is often a phase transition: as T exceeds a critical

temperature, there is a sudden regime change.

« This has computational analogs in the mixing time of
Markov chains.

31



Samples from an Ising model

tial 3 temg 540

L S e B PR e
T A B

See GibbsDemolsing in PMTK/bookCode 32



Image denoising

/ / p(x,y) = px)p(ylx)= H Gij (i, ;) Hp (yilas)
o /@

<l]>

argmax_x P(x|y) is best guess of denoised image

See GibbsDemolsing in PMTK/bookCode 33



Hopfield network

* A Hopfield network is a stochastic, recurrent neural
network.

|t Is equivalent to a fully connected Ising model.
* Weights are learned.

e Often used for associative memory/ pattern
completion.

Trdir'lir'lg Ir'n.ﬂ.g,q

Test Images
0% Occlusson

Interm Fesut | i

Afer G leralions ,*'L ‘*“ iﬁi‘ ﬁL

34



Boltzmann machine

« A Boltzmann machine is a Hopfield network (Ising
model) with hidden nodes.

e Arestricted Boltzmann machine (RBM) Iis a
bipartite BM. This supports efficient block Gibbs
sampling (see ch 12).

PR A

35
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Local Markov assumption

e So far, we have defined the global Markov
assumptions using simple graph separation.

e \We now consider some variants.

 The boundary of a node a, bd(a), is all nodes which
are directly connected to It.

 The closure is cl(a) = bd(a)U a.
 Def 4.3.9. The local Markov properties of H are
II(H)={a L S\ ca)bd(a)} |

e |.e. ais indep of rest given /‘
Its Markov blanket bd(a). .w-_;_.
\. i & 4 cl(a)

37



Pairwise Markov assumption

 Def 4.3.7. The pairwise Markov independencies
associated with H are

I,(H) = {a L 8IS\ {o, 8} : 0 — B & H}
e |.e., alis independent of b given rest if not directly
connected.

38



Markov properties

. G: I(G) C I(P)
* L:1(G) C I(P)
* P:1(G) CI(P)

 If P Is positive, all are equivalent.

tve [rZ/Z b2
,/f\ C—

=L

\&L)

L 3.0

Based on Jordan ch 4, thm numbers refer to Koller&Friedman 39



Problems caused by determinism

 |f the distribution Is not positive, pairwise indep
does not imply local or global indep.

« Ex4.3.15. Let P be any distribution over (X4,...,X,).
Make 3 identical copies of each variable, X, X/, X.".
Let H be the empty MRF on this expanded state
space. This satisfies the pairwise Markov properties
eg X, and X/ are independent, because the
remaining nodes contain X,”. Also, X_i1and X_| are
Independent, because the remaining nodes contain
X_I'. However, H does not satisfy local or global
Indep.

40
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From distributions to graphs

 How do we derive a graph from a distribution?

e For positive distributions, there are two
approaches, based on pairwise and local prop.

e Thm 4.3.17. Let P be a +ve dist. Let H be an MRF
In which we add an edge X-Y for all X,Y which
cannot be made independent when conditioned on

any other set:
P X LY[X\{X,Y})

Then H is the unigue minimal I-map for P.

42



From distributions to graphs

« Thm 4.3.18. Let P be a +ve dist. For each node X,
let MB_P(X) be a minimal set of hodes U rendering

X indep of the rest:
X LX\{X}\U|U €I(P)

Add an edge X-Y for all Y In MB_P(X). Then His a
unique minimal I-map for P.

43
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Announcements

 Hw1 out today, due back Thur 22" (in class)
« How many people will do hw?
 Matlab access?

e Join groups.google.com/group/stat521a-
spring09 email list

 How many people have bought/ will buy book?
o Auditors: please fill out form




« Hammersley Clifford theorem (4.4.2)

* Log-linear models (Wasserman ch 19)

e Directed vs undirected graphs (4.5)

« Conditional random fields, chain graphs (4.6)




Hammersley Clifford Thm

e Thm 4.4.9. If I,(H) C I(P), and P Is strictly positive,
then P factorizes over the max cliques of H, I.e.

Px) = [ velx



Mobius inversion lemma

 LetV be a finite set with elements. Let W and ® be
functions defined over all possible subsets. Then
U(a) =)  ®(b)
b:bCa

IS equivalent to the statement

®(a) = ) (1)@ (p)

b:bCa



Mobius inversion lemma

* Proof
. RTP 20) =) (=1)"¥(e) =) b

c:cCb b:bCa
and vice versa.

Y2 = ) > (="

b:bCa b:bCa c:cCb

= Y N (1)h}\1f(c)

c:cCa | h:hCa\c
= ¥(a)
Since the inner sum is zero unless a\c={} (ie c=a),

since number of subsets of even cardinality is equal to the number of subsets
of odd cardinality.



Over parameterization

« A standard parameterization of an MRF Is over
parameterized eg the information about B Is stored
In both cliques {A,B} and {B,C}.

 We can shift probability mass from one factor to
another without affecting the overall distribution.

61[4, B] «a[B,C] epfd, H] ig[H, ]
a? B -34 | & P& —dii a® B —44 | M & 381
g B =161 | & A 0 a® B 181 (L +1
at B i Lol ] Bl -1 e 0
at Bt —23 | M A 451 al Bt 2.3 Mo 461



Canonical parameterization

Choose a distinguished setting of the variables,
S =(s{, ... S;). Augment any partial setting by filling in the
rest with these default values.

A

Sa = (Saa Sia)
Define the log probability of a partial assignment

A

Ha(s) — logP(Sa)
Define the canonical energy function as
6a(S) = Y (1) H(S)
b:bCa

This defines energy for {A,B,C}, subtracts off influence of
{A,B}, {B,C}, {C,A}, adds back influence of singletons,
subtracts off baseline



Misconception : canonical params

518, C 310, I 1D, A

a0 1] Pl o a g & a
[ O o dt 9.9] dl gl 9.92]
at af o Pl i dat g7 i
pt ol O2] Pl o i gt gt 184

—4.1E

e 0| af i
el 0 at  —9.0]

Z (—1)|{A’B}\Z|Hz(a1,b1,c, d)
2€{A,B},{A}{B}.{}
(-1)°H(a',b', c*,d*) + (1) H(a*, b*, c*,d*)
+(=D'H(a*, b, c¢*,d*) + (—=1)*H (a*,b*, c*, d*)
(—13.49) — (—11.18) — (—9.58) + (—3.18) = 4.09
9



Hammersley Clifford Thm

e Thm 4.4.9. If I,(H) C I(P), and P Is positive, then P

factorizes over the max cliques of H.
* Proof.
* Define
Ho(S) =log P(5,)  Pe(S)= D (FDI“VIH(S)
By Mobius inversion lemma

HS(S) — Z Qba(S)

a:aCS

* Define Y (S,) = exp @,(S,)- Then

10



Hammersley Clifford proof II

e \We have shown the distribution can be written as a
product of potential functions

P(S)= ]] ¢a(S)

. The final ‘Step is to show that @,(S) is zero unless a
IS a maximal clique.
 Leta, € abe 2 nodes without an edge, and let c =

a\{a,p}. LetH a=H_ a(S). Then

6a(8) = Y (=) (Hy — HyUa — Hyup + HyUfa,5})
b:bCe

11



Hammersley Clifford proof III

 Define d=S\{a,B}. By the pairwise Markov

roperty, a L d and hence
p p y B Sbasaasﬁas;\b)

SbsSa;y O S;\b)

o Sb’*g;lk\b) p(Ss, Sp, Sy b\d
a Sb,Ss\b) p(S%; Sp, Sy, b\d
;Sb,Sd\b) p(Ss, S, S} b\d
Sa Sbasz\b) ( Oy O b\d
p(Sh, S 56»52\17)
p(Se, ey S5 S;l"\b)

= Hyys — Hyp

Hence all the terms on the RHS below vanish whenever we can find an
a and [3 that are not connected within a.

Pa(S) = Z (—1)|C\b| (Hb — Hyyo — Hyup + HbU{a,ﬁ}) QED
b:bCc 12

HbU{a,B} _ HbUa — lOg D

g~
@)

= lo

03

g
N

g
N

= log

)
)
)
)

g~

p(
(
(
(
(
(
(

= log




e F: P factorizes over G
e G:I(G) CI(P)

* L:1(G) CI(P)
e P: |p(G)g|(P) L,Z/Z AN
T
F = & => f => L

+ ve
%
L L

HC) L .3

Based on Jordan ch 4, thm numbers refer to Koller&Friedman 13
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Log-linear models

e Let X=(X1,...,Xm), Xjin{1,...,r}. The joint density Is
a multinomial with N=r, x ... r., states. (Contigency
table.) Let S={1,..,m}.

« Thm (Wasserman p292), The pmf can be written as
logp(x) = ) pa(x)

ACS

where the | satisfy:

Yo(X) Is a constant

YA (X) only depends on Xx,, not other bits
o If1in A, and x;=0, then ,(x)=0

Based on Wasserman’s “All of statistics”, ch 19 T



Example: Bernoulli

e Let X ~Ber(0),0<0<1. Then

p(z) =60%(1—0)' " = pip; °

logp(z) = vy(z)+P1()
Yo(x) = log(p2)

Pi(z) = xlog(%)

e Multinom. Param space

8

{(p1,p2) : pj = 0,p1 +p2 =1}
* Log-linear param space

{(Bo = log(p2), B1 = log(p1/p2)) : e?°TF1 +efo =1}

16



Example: 2 way contingency

X_1in{0,1}, X_2in {0,1,2}.

logp(z) = Yp(z)+Y1(x) + ha(x) + Y12(2)
Yp(z) = logpoo

¢1 (CC) = {L‘l log (@)
Poo
po(z) = I(zz=1)log <&> + I(zy = 2)log (@)
Poo Po1
Y12(z) = I(x1=1,22 =1)log (pupoo) + I(z1 =1,20 = 2)log (p12p00)
Po1P1o D02P10

17



Graphical log-linear models

* Def. A log-linear model is graphical if \psi,(x)=0 iff
{i,)} € A and (i,)) is not an edge, I.e., if you can add
a term to the model and the graph does not
change, the model is not graphical.

e Eg this is graphical, since eg edge 1-5 is missing,
and all terms containing (1,5) are O

logp(z) = o+ 1(x) + Y2(x) + Y3(x) + a(x) + 5(7)

+1p12(x) 4 P23(x) 4 Y25() + P34(T) + P35(x) + Va5 ()
+1)235(T) + 345 ()

S — Lr If we remove the 3-way terms,
the graph is the same.
) \ \ This would not be graphical.
[— T — )
18



Hierarchical log-linear models

Def. A log-linear model is hierarchical if (A)=0 and
A C B implies y(B)=0 7

Thm: graphical implies hierarchical but not
necessarily the reverse. |3

Eg. Hierarchical but not graphical -/

logp(z) = o(z) +Y1(z) + Y2(x) + ¥3(x) + 12(z) + Y13(x) + Ya23(T)

Eg. Not hierarchical.
logp(@) = o@)+va(@) +viel)  [— L S

19



Model generators

« Hierarchical models can be written succinctly using

generators.
e Eg. X=(X_ 1,X 2,X 3).M=1.2 + 1.3 stands for |
logp = o +1 + s+ s+ 1z + Prs 7 N3

« M =1.2.3Is the saturated model (complete graph)

logp = Yo+ Y1 + 2 + 3 + P12 + P13 + Yoz + Y123 PN
e« M=1+ 2+ 3Is the empty graph L —3
logp = o+ + ¥ + 15 23

e« M=1.2 represents
logp = o+ Y1+ Y2+ 12 | =2

20
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Moralization

 Def4.5.2. The moral graph M(G) of a DAG is
obtained by adding an undirected edge between X
and Y If both are unmarried parents of a common
child, and then dropping all the arrows.

22



DAG to UG

 |ntuitively, connecting the parents prevents any
unwanted independence assumptions: given Z, X
and Y are dependent (explaining away)

X X

W \ /

Y 1

e Thm 4.5.4. The moralization M(G) I1s a minimal
I-map for DAG G.

23



An alternative to d-separation
Suppose we want to determine if G .= X LY | Z

It Is tempting to think that simple separation in the
moral graph will yield d-separation. However, we
should not connect unmarried parents unless their
children or descendants are observed.

Therefore we remove all nodes except for U=X,Y,Z
and their ancestors (ancestral graph) - (Any loops
back to U via descendants must be via v-structures,
and are therefore blocked.)

We then moralize the resulting graph and use
simple separation.

24



Ancestral graph example

U={1,4,5,7} - remove 8,9,10

O *\3 10 40
ol o e, :

25



Ancestral + Moralization examples

Figure 4.12 Exmmpk of sllesrnsd ve delinilion of d-smpmrateon lmeed oo bler koy el -
werr ks, 4] A Bawnian mdvwuzk 1| The Kuzhin zcdmaxzk _.1.-1[.'12_[5'.1'. |:-|| ] Thar N
xa: trniad _.'|.-1[|'¢:_[E'..|'.A.S"

d-sep(D; I |L): false d-sep(D; 1| S, A): true

26



d-Separation revisited

e Thm4.5.6. LetU=XuYuZ Let G’ =GJ[U] be the
Induced BN over U and Ancestors(U). Let H =
moral(G’). Then d-sepgs(X;Y|Z) iff sepy(X;Y|2).

27



UG to DAG

 We may have to add many new edges

A A
A SN
B i H—
| | [ = ]
b E b 1
\F,s” \F/

e Add nodes in alphabetical order.
« When add C, not B L C | A hence add edge

28



Chordal graphs

e Def2.2.15. Llet X 1-X 2...-X 1lbealoopina
graph (ignoring edge directions). A chord Is an
edge connecting Xi, Xj for two non-consecutive
nodes. A graph is chordal (triangulated) if every
loop of length k>=4 has a chord.

(al (b

Figure 24.7; Left: this graph & not riangulated, even though it contains lots of littk wriangles. Mok the dotied 2-4-6-8 loop is a
chordless 4-cycle. Right: one possible triangulation, by adding the 4-6 fill-inedge. Alematively we could add the 2-8 edge.

29



UG to DAG

e Thm 4.5.11. Let H be an MRF and G be any
minimal I-map for H. Then G Is necessarily chordal.

 The process of converting UG to DAG, and DAG to
UG, adds edges.

 When does this conversion not add edges?
e Thm 4.5.16. I(H)=I(G) iff H and G are both chordal.

30
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* A Markov random field (MRF) is an unconditional
density p(y) represented by an UG

« A conditional random field is a conditional density

p(y|x) represented by an UG, where each y node Is
conditioned on (potentially) all the x nodes.

e Discriminative; no need to model input features.
=L —13

n
// Cf logistic regression with multiple
X

output nodes

p(ylx) = H(b (¥e; x

32



CRFs vs CBNs

e A conditional DAG can sometimes be inferior to a
conditional UG due to blocking of info flow

e Eg consider a conditional chain (aka Maximum
Entropy Markov Model): H1 1 V2 — no backwards

iInformation flow (“label bias problem™) due to v-
structure/ local normalization

L= 1= H
l \]’\' %l/% /‘\} p(hlv) = Hp(ht”lt—lavt)

| Y2 N

33



CRFs for text analysis

willkleswsl  Enn

kEY
Begin ! .
Inside/end 2 Mata i
Other A Adjoc

Part of speech tagging and noun-phrase segmentation
34



Skip-chain CRFs

KLY
IFER
LITEE
N1t
| 1.LK
iTTH

e SR e, T Fr 2
i |-|:.:'—|_--:|: '—:'---':-:-': ol |—'l.:'il-'\:|
’ i e

P wa'f:fr 5\ ”-f-'_':m".—-’f::_-_:”_._‘.”._..'.w

(e - II'I'--.l.l—ll--;.l'_l-'
l:‘- ] II-I i A | _Il

OO POPPOOOO E

Mrs Green spoke today in New York. Green chairs the finance committee.

S~
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CRFs for low-level vision

Super-pixels Local classifier CRF

36



Chain graphs

 Each chain component is an UG, connected
together in a DAG.

""_'i'”-'

=/

T, o o =
:.-I-I.H f‘| :H-I-II X |
" - oe ——
o S Al Fy
l.-.--".. l.-..-

—" .l-l - ..-...
L e T

LR .--.
[}
rd

p(4A,...I) = p(A)pB)p(C,D,E|A,B)p(F,G|C,D)p(I|C, H)p(H)
p(C,D,E‘A, B) — Z(f:ll, B) ¢A(A7 C)¢2(BaE)¢3(Ca D)¢4(D7E)
p(F,G|C,D) =
p(I’C,H) —

37
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e CS auditors: please turn in your form to Joyce
Poon, who will pass it to Laks for signing



e Aside on canonical parameterization (ex 4.4.14)
e Structured factors (4.4.1.2)

e Structured CPDs (5.2-5.6)

 Temporal models (6.2)



Degrees of freedom of a UGM

LA
N

& E

Sepg?

C

Why do we just need 8 numbers to uniquely parameterize the distribution?

Eg a™L, b™1, ¢, di, (a~1,b ), (bA,c ), (cL,dM), (arl,dn )



Num params = rank of feature matrix

e Let F(n, )=1 iff I'th bit vector turns on n’th feature

« Each feature specifies a value for every pair of
nodes connected by an edge, and hence Is a vector
In RM16}. 4 edges, 3 unigue settings = 12 rows.

Rank =8

Eg atl, b, e, dM, (atL,br), (bAL,c), (chL,dM), (anl,dM)



Rank of feature matrix

edges = {[1 2], [1 3], [2 4], [3 4]};
ndx =1;
F = zeros(0, 2™4);
for e=1:length(edges)
s = edges{e}(1); t = edges{e}(2);
for j=1:2
for k=1:2

If |==2 && k==2, continue; end
for x=1:16
xv=ind2subv([2 2 2 2], X);
If xv(s)==) && xv(t)==k
F(ndx,x)=1;
end
end
ndx = ndx + 1;
end
end
end
rank(F)






Log-linear factors

e A factor defined on m discrete rv’'s with K states
needs K™ parameters.

* Imagine a factor on triples of letters. Instead of
having 263 numbers, we can define binary features
that only turn on for certain values, eg fi,,(x) = 1 iff
X1='1"'X,="n",X3="g". This has weight w,,. We define

¢C(XC) — eXp(Z wc,ifc,i(xc))



Jordan, fig 19.1

Tables are a special case

Xi

X

- ]

filE xs)

Sfolxy x3)

Jalx x3)

s
a 1
2l 1
1 1
Xz
a 1
] |;IB=
1 1
Xz
a |
1 1
a1l 1
Xz
a 1
I 1
1 et
Xz
a |
E'E'l Eﬂl
%[ 29

&(xy= 0, x3=10]}

& (xy = 0, x3=1}

Filxy xs) = &(x;= L, xz=0]

Elmy=1, x:s=1)

sz (X, xa) = PP PR P



CRF features

« Typical features used in a CRF model for language
processing (X=words, Y=labels)

o Fi(YyuXp X, X+ L) = 1(X.,="New”, X="York”,
X1 ="Times”, Y="Object’)

* Fo(YuXuXe1, Xt 1) = I(Xp,="New”, X="York", X, #
“Times”, Y,="Place”)

 Models often have ~100k manually specified
features.

« Common to use L1 reqgularization to sparsify.

e Can also perform feature induction, by eg greedily
creating conjunctions or disjunctions

10



Exponential family (maxent) models

 Combining all the local potentials

p(x) = VA H Pc(Xc)
¢C(XC) — eXp(Z We zfc z(Xc))
p) = exp(3] wifilxe,)

DAGs are a special case where each @.(x,) = p(X|Pa(X)) sums to 1, so Z=1

See ch 8
11
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Tabular CPDs

e |f all nodes are discrete and have K values, we can
represent p(X_Ii|Pa(X_1)) as a table, with one row

per conditioning case (KMpa), and K columns
which sum to 1

 |f K and/or #pa is large, this is too many
parameters, so we seek more parsimonious

representations. —— e

i P iy InieiSyence

;y,m

vd*| na| oa| oa G e SAT
Pd|oos| o=| or l

vd'| o9 om| ooz Ll 3
g | oa| o3| oz Latter L L
; 7| onz| oa

#
w| oa| on
¥

13



Deterministic CPDs

* |In some cases, the child is a deterministic function
of the parents, eg bloodtype is determined by the 2
alleles

* Deterministic nodes often denoted by double-
ringed oval.

« Determinism can imply additional (non-graphical)
Independencies

« EgD L E|A,Bsince C =1fn(A,B)

A (BD

Y

Det-sep

0

> CED

14



Context specific independence (CSI)

¢ Sometimes, the set of edges which are “active”
depends on the value of the nodes

 Eg Y Is a noisy observation of object X1, or X2.

Z specifies the identity of the measurement. Let X
=multiplexer(X1,X2, Z). Then X2 L Y | Z=1. So our

posterior on X2 is not affected by the
measurement. (Data association ambiguity)

Xl KL
\
O+ 2
]

T

15



Contingently acyclic BNs

e Sometimes we can define a directed graph with
cycles, but where some of the edges are not active
for a given setting of certain variables C.

 |f we can guarantee that the graph is a DAG for
each context C=c, the result is a mixture of
differently structured BNs.

* This Is called a Bayesian multinet.

16



Tree-structured CPDs

« Different parents can be rendered irrelevant,
depending on the values

P(JIA,S,L)
. |A
Cyiff icu ity Intelligence i- _':'I
[
e e T (0E0.2) 5
' ' i 1
Grade SAT Semi
| L CIrT)
App by g == |
Letter "'-.____‘
Ny | msan  [mane
Jan

Eg. J| S,L if A=0 since we go down left branch of tree

17



Printer fault diagnosis in MS windows

e Uses tree structured CPDs, since different sets of
variables are relevant in different contexts

18



Rule-structured CPDs

o Specify a pattern and a value

darraxaan

19



Logistic regression (sigmoid BNs)

e Suppose all nodes are binary. We can use logreg
CPDs

k
1
ply = 1x) = o(wo + Y wizy) o)==
1=1

- A
| |
..... S Pt eaum

o sy |+ Fono

20



Multinomial logreg

e If Y Is K-ary, and the parents are binary or cts, we
can use a softmax function
exp(W X)

K
D =1 eXp(WJT,X)

p(y = jlx) =

YD

i T
g sthEa-—-
porm ey =,

ol | ¢
=

For K-ary parents, use 1-of-K encoding

21



Independence of causal influence

 We can model the effects of many parents by
assuming that each parent is corrupted by
Independent noise, and the results are
deterministically combined via a simple function
such as OR or MAX

22



Noisy-or model

e Each Xiin {0,1} gets passed through a noisy wire to
produce Zi in {0,1}. 0 maps to 0, 1 maps to O wp w.
(fallure probability). A=1-w;, Is the prob. that Xi alone
turnson Y.

 The Zi's are combined in an OR to produce Z. Then
Y=Z.

« The only way Y can be off is if all ZI's are off, which
means all the wires for Xi st Xi=1 independently

failed: k
p(y =0|x) = H w; = H w;
i=1

;=1
ply=1|x) =1-p(y = 0]x)

Popular in cogsci models of causality 23



» P(fever=0|cold=1, flu=0, malaria=0)=0.6
* P(fever=0|cold=0, flu=1, malaria=0)=0.2
» P(fever=0|cold=0, flu=0, malaria=1)=0.1

Cold Flu Malaria | p(Fever=1) | p(Fever=0)

0 0 0 0.0 1.0

0 0 1 0.0 0.1

0 1 0 0.8 0.2

0 1 1 0.98 0.02=0.2 x0.1

1 0 0 0.4 0.6

1 0 1 0.94 0.0.6 = 0.6 x 0.1

1 1 0 0.88 0.12=10.6 x 0.2

1 1 1 0.988 0.012=0.6 x 0.2 x 0.1

Russell & Norvig, p501 24



e If Y=0 and all Xi=0, the CPD assigns 0 probability
to this event. To prevent this, we add a leak node,
X0=1, which is always on, to model “any other
cause”. The leak can fail wp wO.

g TS :
S i :: ..i_.-"' _-"'
?f';.' I'II ) |||_Il | | | - r._f_"f—l'i_-"il-
[/ i II.-"|!-H-J-_ —I—_ =~ “_._ -
::--:H___'F'd—J_JI__l__.I | .F__'__'_—.:.l /
_I'IT_n_Ti_'n"'—"'_h-'-“'-:-.—_H]/ B
W0=1 W0=0.5

25



BN20 networks

* In medical diagnosis, It iIs common to construct 2
layered bipartite networks of binary nodes,
mapping diseases to symptoms (findings).

 Because of the large number of parents, the child
nodes use noisy-or.

e Conditional on F, the diseases D are correlated.

e The QMR-DT network is a standard testbed for
evaluating approximate inference algorithms.

(— $0°—>

'k I [ ] L 'k
.-I --J =
y Ta Ty @ mE § Tm

G— [ypov > .




Negative findings

e If FI=1, the disease parents fight to explain the
finding. Hence they become fully correlated.

e But if FI=0, the parents are independent! Hence the
p(FI=0|Pa(F1i)) likelihood fully factorizes, and does
not make inference harder (homework).

D,

9, L0 |F =o

27



Conditional linear Gaussian CPDs

* If Y Is continuous and all the parents are cts we
can define

p(ylx) = N (y[x' w,0?)
 Networks of linear Gaussian CPDs define a joint
multivariate Gaussian (see ch 7)

* For discrete parents u, we can use 1-of-K and LG,
or we can use a different set of parameters for each
discrete setting (CLG). The resulting distribution is
a mixture of Gaussians, where each discrete
setting defines a mixture component.

p(ylx,u=k) = N(y|x" wg,o})

28



Example of CLG network

025k
02
Q15F
0if
QS i
Op—

0 =

Russell & Norvig, p502 29



Hybrid network
Scbit) By

P(buys=1|cost) = logreg or probit. \
Joint distribution is no longer mixture of Gaussians. \//
Closed-form inference no longer possible (see ch14).

|\
Cog

]
=

Russell & Norvig, p502 30



Encapsulated BNs

« We can embed a BN inside a CPD, and “hide” the
Internal nodes using an interface layer.

* This, combined with parameter tying, yields OOBN.

i Compuir
f . E- -.-..-[ulp e -
i "'l'-: -.IL'. 1 :- | F ":_i: J.:;-.: h:'.:-1 l-_:.--l
! Ja T = t‘:ﬁ‘ l—lf =] [iie]
[rias] El-z'l ' e -

5 ik
% = LS ] £
DEE . RN
L] r

] | ;La-‘ﬁ_x_ ” > [
r 1 o '__ L /1 ] E e Py Capumy
E]""" T '_ ' == i

|—_.h,_.5| [hcsas]

—i.'nl:l'.n-rlnd i,'.::dh.ri.'l:l: —l:r.pl:ln:l: J|,| -]-Iu:ll'r-'.'l A

\ J | Age = Te=peratere
R =) i Y| [y ',
D % \\) l-‘:_l-l 2 2] 115 B
T '_"; - _:l.ll hpopEe ."l.. -
Merheatim "“-.‘_ - _ -
imEr Liak i —

31



32



 We can define a distribution over a semi-infinite sequence
X 1, X 2, ... by using a discrete-time Markov chain with
tied parameters (stationary)

7 l\\;

n
3
X\% )(L‘/S)(_g)s PR

p(x|0) = p(zi|m) [ ] p(Xe|Xi—1, A)
A(G,j) = p(Xe=j|Xso1 =1)

33



State transition diagram

Picture of the stochastic finite state automaton

1 — o ir Ty Tha 0O
T = a | — i T=| 0 Taa Tag

34



Hidden Markov Models

« An HMM Is a function of a Markov chain.
 We observe V,, hidden state is H; in {1,...,K}
 P(H=j|H._,=1) Is the transition model

* P(V{H;=)) Is the observation model (eg mixture of
Gaussians)

(/(l = A

35



HMMs for speech recognition

Bigram model of words Pronunciation model : word -> phonemes

ad b
I .
& Ty
1 1 s | B
[ 5
= [ T = a1 ]
N I 1 i | i
o : 1| | op= | | = L e ]|
e ; - — | !
= TN I | . | "
o | I
]
|'. = e

Acoustic model: phonemes -> observations

1 TpeIIDgTAm of 0T
I'r': Oy - "..r.’ =K =_..; "-"-:1‘-%'4 'iﬁ;
Tl Il_ o 2 gt e T R e
. : 2 -\.'. L -‘«v{;-.; R u\.l-l:I“
E - & —2 § g 5 'I.I i, il 10 -‘-,::,.,'i
= = PR
L L o _—
T = fh’g" ]
o U
. y Jis b ZSEnN]
C = J
, & o Lo
! *- i - .
: : v
i - I'f'l. T .
! - L
! % (]
~ e’
' : =
1 L ul
= L
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State space models

 Same graph (Cl assumptions) as HMM, but now X
and Y are real-valued vectors

e Special case: linear dynamical system (LDS)

p(Xt‘Xt—l) = N(Xt|AXt—1a Q)
p(Yt|Xt) — N(yt|HXt7 R)
X+t — A-Xt—l —+ N(O, Q)

Y HXt +N(07R)

37



Example: tracking in 2D

L1t 1 0 1 0 L1t—1 W1t
x| |0 1 0 1 Tot—1 Wat
iy | 7|0 0 1 0| | suer | T | wse
Tot 0 0 0 1 Tot—1 (o

H ==
i
bt b ,E.EW%H
- ‘n L
++-i|'i- i * *
T . -

+ = = .':1}1;-;.'-'.':1'115. 38



LDS as DGM

1 010
01 0 1
X — Xle A=10 0 1 0
t-’\ 7 \/\TI& 0 0 0 1
X >Xie
e a2 e
1 0 0 O
H—
)(lk’\ s (O 1 0 O)

For linear Gaussian systems, sparse matrices = sparse graphs

39



Dynamic Bayes Nets

X[ XI 0 1
t« — t _ 00 01101 0 :
| /2 (Tl
X 10
Xlé’« D) lE\_,> = 11 L .n 1

\ /') lLE ?

)Zlk“\ e
Xop L Xoe

If the variables are discrete, the transition matrix of the compound

model (all 4 variables) is not sparse or structured. So the graph
structure is crucial.

P(X1(t),X2(t) | X1(t-1),X2(t-1)

See ch 15
40
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 Template models (6.3-6.5)

e Structural uncertainty (6.6)
e Multivariate Gaussians (7.1)
o Gaussian DAGs (7.2)

e Gaussian MRFs (7.3)



Parameter tying

A DBN defines a distribution over an unboundedly
large number of variables by assuming that they all
share the same CPDs.

e This Is called parameter tying (weight sharing).

|t is useful even for fixed sized models in order to
help learning (pool the sufficient statistics).

 We now discuss notational conventions (“syntactic
sugar”) for representing large “unrolled” networks
with shared parameters.



» Plates are useful for specifying simple repetitive
patterns, as frequently arise in hierarchical
Bayesian models

O
0000
0000




Tntelligence

6 d w b
(a) e Students s C &(s,) ) ( 15{'532:)
@ Courses ¢

Tntelligence>

‘tgr'ade

Students s

Jntelligence

Students s




Unrolled network

i
T e |
C —sl
| F—
—
=1 F— |
; ==
"""" —
==
_____ —
----------- —
B Seorge
==
——
ipm— |
=]
sasy (nard IE-HQI'I
D, "'DLr
I
Grade(s,c) in {A,B,C} is encoded on edges. : &
Cf discrete probabilistic matrix factorization I L
\



Limitations of plates

* There are various structures that plates cannot
represent

e Eg DBNS

 Eg genotype(x1l) depends on genotype(x2), where
x2=parent(x1)

e \We can write programs to generate graphs of
specified structure, but we would like a declarative

representation language for such repetitive patterns
so that no new code has to be written



Beyond plates

 Probabilistic Relational Models (PRMs) encode
arge DAG models with tied CPDs

« Relational Markov Networks encode large MRFs
with tied factors

 Markov Logic Networks are like RMNs, except the
factors are represented in log-linear form, and the
features are represented as logical expressions




Markov Logic Networks

Table [. Examplk of a fist-order knowladge base and MLM. Fxi) is short for Friendsi]), Soi | for Smokeal |, and Cal]

for Cancex(].
English Fimst-Ordar Logic Clansal Form Welpht
Friends of foends ame friends.  wx%y%¥=z Frix,y) A Friy, =) = Frix, 2} —Frix,y) vV -Friy,=) Vv Frix, =z} Q07
Friendless peopls smoka. Yx (- Sy Frixz,¥)} = Smix}) Friz,gixz]] Vv Sunix) 2.3
Emoking canses cancar. Yx Soix} = Calx] —8mix} v Caix] 1.5
[f twao people are friends, either %%y Frix,¥) = (Smix} < Snly}) =Frix,y) VSolx) vV —Suly], 1.1
bath smake or neither does. =Frix,y) Vv ~Smix} v 3my] 1.1

 Friends' A B}
i

Friends AA | —— SmokesiA | — Smokes(B | — Frie nds BB}
- < 7\, -
] - - .'__ " : g ; e -
LCance A o . Cancer’H} )
= - :'_Fr'.-:ri:h:E,nL| i T



Directed vs undirected models

e Undirected models are simpler: no need to worry
about cycles, lots of freedom in defining factors

 However, in a UG, the probability of a node
depends on the *size* of the graph and/or Its
connectivity, even If all the other nodes are hidden.

e This may not be desirable.
X | —> XL X3 X1—¥) =X3

le\XL«\,---’\XLD X —xL— " —Xlio

ﬁ()(l) Sare P (2 Aff@rekt

10
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Structural uncertainty

e For a fixed domain, if we do not know the graph
structure, we may estimate it using model selection.

« But for relational domains, the structure may
change depending on the values of the nodes

 Eg. Genotype(x1) -> genotype(x2) is only active if
parent(x1,x2)=true

* |In addition, we may be uncertain about how many
objects exist in the world

 Eg. In tracking, 3 blips on the radar is consistent
with {0,1,..., infty} objects in the world!

12



Data association ambiguity

U J
1 1
T ’
GRS S R
R
X c———

\/ M 13




Citation matching

Are these the same article?
Huge industry concerned with database merging

Elston R, Stewart A. A General Model for the Genetic Analysis of Pedigree Data.
Hum. Hered. 1971:21:523-542.

Elston RC, Stewart J (1971): A general model for the analysis of pedigree data.
Hum Hered 21523-542.

14



DAG model

 Assumes there is an unknown number of authors
and papers, which generates the observed set of
citation strings.

’m Tl 2

Publications p

15



UG model

 No unknown objects. Just enforce that citations are
the same.

 Need 3 way factor to encode transitivity of
sameness relation: S(cl1,c2), and S(c2,c3) =>
S(cl,c3)

 And Iif 2 docs are same, text should be similar:
Factor(s(cl,c2), T(cl), T(c2))

16
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MVN: 2 parameterizations

e Moment form

e 1 _
Nl 2) % s expl= 50— ) =7 o — )

 Information (canonical) form

A ol precision (information) matrix
n € =l
‘A’1/2 1 T T —1 T
N(X|77, A) eXp[—§(x Ax+n" A" 'np—2x"n)]

(27)@/2

explc — 2x' Ax + x' 1]

18



Moment and anonical form

e Canonical form is denoted
x ~N¢g(b,Q) < p(x) x exp (—%XTQX + bTx)

e Moment form
N(I"’) Q_l) — NC(QH‘) Q)

19



Independencies in MVN

« Thm7.1.3. Let X ~ MVN. X; L X iff 2;;=0

e Thm 7.1.4. let X ~ MVN with info matrix J. Then

 Factorization thm.

x Lylz < p(x,y,2) = f(x,v2)9(y,vz)

20



Indep => uncorrelated

e Ex 7.2.1. For any p(X,Y), if X L Y then Cov[X,Y]=0.

Coviz,y] = // p(x,y)(x —T)(y — 7)dxdy

_ / (2)(z — B)da)( / p(y)(y — 7)dy)
= @Z-72)y—-y)=0

21



Uncorrelated & MVN => indep

e EX7.2.2. If p(X Y) is Gaussian, and Cov[X,Y]=0,

then X LY

 Pf. The bivariate Gaussian can be written as

1 1 (z1 — p1)?

plz1,@2) = 27701‘72\/@ exp[—2<1 — ,02)< o2
( lul) (332 - ,LLZ))]

02

—2p
e If\rho=0, then
1 ($1—,L01)2 (x2 — p2) )]

p(CC1 2132) a 27‘(’0’10'2 eXp[—g( O'% * O'%

= f(z1)g(x2)

 Hence by factorization thm, x1 \perp x2.

22



Uncorrelated not imply independent

« Ex 7.2.3. Find an example where Cov[X,Y]=0 yet
not X LY.

e Let X~ U(-1,1) and Y=X"2. Clearly Y Is dependent
on X yet one can show (exercise) that Cov(X,Y)=0.

 Let X~ N(0,1) and Y=W X, p(W=-1)=p(W=1)=0.5.
Clearly Y Is dependent on X, yet one can show
(exercise) that Y ~ N(0,1) and Cov[X,Y]=0.

23



Independencies in MVN

« Thm7.1.3. Let X ~ MVN. X; L X iff 2;;=0

 Pf. By ex 7.2.1, we have => direction.
« Byex 7.2.2, we have that <= direction.

« By ex 7.2.3, we have that X ~ MVN Is necessary for
<= direction to work.

24



Conditional Independencies in MVN

e Thm 7.1.4. let X ~ MVN with info matrix J. Then

e Pf. Let mu=0.

1
p(iﬂi,iﬂjax—zg X exp —§E kaz-’L‘l
k,l

X exp (%l‘ﬂ%(@z] + ng) — % Z CUkal33l)
{k,1#{i,5}

 The second term does not involve X; x;, and nor

does the first iff Q;=0. Hence this factorizes into
fx,x5) 9(x;,x) 1ff Q;=0. QED.

25



Structural zeros

. Zeros in the precision matrix correspond to missing edges in the UGM

4 2 =2 0.3125 —0.125 0
=2 5 5], A=¥X"'=1[-0.125 0.5833 0.3333
—2 -5 8 0 0.3333  0.3333

><\ ‘/ ><l XS

26



Marginals and conditionals

Margina p(xs)
Moment | NV (x2|py, 32)
Info N (x2|m5 — Aa1 A7 01, Asa — Ag1 AT Aqo)

Conditional p(x2|x1)
Moment | NV (x1|p; + 21230y (Xo — f1o), B11 — D12309 Bo1)
Info N(Xg\nl — Aq12X9, All)

Marginalization easy in moment form.
Conditioning easy in canonical form.

27



Conditioning in canonical form

 Thm (Conditioning).
x ~N¢g(b,Q) = xalxp ~ Neo(ba — Qapxp, Qaa)
 Thm (soft conditioning) .

x~Ncgb,Q) ad ylx~N(x P

x|y ~ N¢c(b+Py,Q + P) Precisions add

 We can accumulate evidence by addition of matrix-
vector products, and then compute posterior mean
at end by solving Qb = mu.

28



Partial correlation coefficient

e Let X ~ Mvn with precision matrix
W11 ... Wid

Q=31=

Wd1 .-
 The conditional dlstrl ution p(x1,x2|x3,...,xd) Is

bivariate Gaussian with covariance

—1
W11 W12 o 1 W22 —W12
W21l W22 wi1iwae — (w12)? \—w21 w11

 The partial correlation coefficient is given by

, def Cov| X1, X2| X3.4] _ Twa
2B T N X | XV [Xo| Xaa]  v/@11w22

29



Conditioning in moment form

« Thm (Rue&Held p26).

x ~ N@pQ')=
XaAlXp ~ N(.U'A|B7Q;Ll4)

HaB — Ha— QZ,laxQAB(XB —Kp)
e Thus to find the mean we need to solve the linear
system

Quattap = Qaatta — Qupxp + Qaphp
e Eg If A={i} we have

1
Wi —

Qi
prec(x;|x—;) = Qy

Elzi|x—i] = > Qij(m; — py)

J:j7Ft

30



e Assume \mu=0 for simplicity. Then

o) o (<36 xa) (S0 Q) ()

X exp (—%XﬁQAAXA — (QABXB)TXA)

 Compare this to a Gaussian with precision K and

mean m
p(z) o« exp(—1z'Kz+ (Km)'z)

« We see that Q {AA} Is the conditional precision and
the conditional mean is given by

Quattap = —QapxB

QED
31



Soft conditioning in moment form

x ~ N )
ylx ~ N(x,8)
X‘y ~ N(u’x|y72x|y)
S, = S 1487

Sogbey = X pu+STly

x

Bayes rule for linear Gaussian systems

32
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Linear Gaussian DGMs

e A CPD is linear Gaussian if
p(i|wr,) = N (i Z wi;j + b, vg)
JE™T;
e A DGM is linear Gaussian if all CPDs are LG.

e Such networks define a joint Gaussian. Each node
IS given by

r; — Z wijxj -+ bz -+ \/v—iez-

JET;
where g ~ N(0,1) and E[g, 5]] =i

* Wis lower triangular matrix: w_{i,j} = weights into i from j.
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LG DGM to MVN

 We can compute the global mean and covariance
recursively, in topological order

r; — E wz-j:cj—kbi#—\/viei
JET;

JET;

Covlz;,z;] = E[(x; — Elx;])(x; — Elx;])]
= E|(zi— Elz){ D wir(ze — Elzg]) + /565 ¢
\kij J _
— Z w;LCov|zs, k] + I; v
k:Eﬂ'j

Bishop p371 35



LG DGM to MVN

: : (2
» Consider a chain x1 -> x2 -> X3 % x ;
B = (b1,ba + wa1b1, bs + w3abs + w3owa1b1) c x X
Slo ML X
V1 Wo1 V1 W32W3171
= w211 Vg + ’w%l’vl wsa (V2 + w%lvl)
W32W21V1 W32 (’02 + wglvl) V3 + UJ%Q (’02 -+ wg’lvl)

* |In general, when add
I

~

Ing node (k+1)

"\
s . L
K&F Thm 7.2.2

b : Wk, k)




Alternative parameterization

* The results are much “prettier” if we write

Xj=pj+ Y win( Xy — ) + /052

kET&'j

Where the offset Is given by

= M5 — Z Wik MUk

kemn;
 Then we havé
(x—p) = Wx-—p)+S'z2=W(x-p)+e
e = Slz=IT-W)x—pn)
[ ] \
(61\ — W21 1 (331 B 'ul\
6.2 _ —wsy —ws 1 L2 fM2
\ed) \—wdl —Wq2 ... —Wqd-—1 1) Kmd B 'ud)

37



DAG weights = Cholesky Decomposition

(I W) 1 def

Ue = USTz ¥ AT,

Var [x] = Var [x — p
Var [ATz] = AlVar [z]A = ATA
Usisu?! = ubpu?

U D lutl =

( 1
— W21 ]_
—wW32 —W31

1

\—wdl —Wq2 ...

I-W)I'D 1 I-W)=

_wd,.d—l 1)

def

T!'D-'T
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 Considerachain X1 -> X2 -> ... -> X5
« The DAG and UG are both sparse (same ClI)

n = 5;
w=randn(n,1);
W = spdiags([w zeros(n,1) zeros(n,1)], -1:1, n, n)

T = eye(n)-W;
D = diag(ones(n,1));
K= T «D+T,
>> full(W)
ans =
0 0 0 0 0
1.1909 0 0 0 0
0 1.1892 0 0 0
0 0 -0.0376 0 0
0 0 0 0.3273 0
>> K
K =
2.4183  -1.1909 0 0 0
-1.1909 24141  -1.1892 0 0
0 -1.1892 1.0014 0.0376 0
0 0 0.0376 1.1071  -0.3273
0 0 0 -0.3273 1. 0000

39



Diamond

 DAG is sparse, Sigma and Sigmalnv are dense

0 0 0 3
0.5488 0 0 0
0.7152 0 0 0 N /
0 0.6028 0.5449 0 O
>> K L\/
K =
1.8127 -0.5488 -0.7152 0
-0.5488 1.3633 0.3284 -0.602 8
-0.7152 0.3284 1.2969 -0.544 9
0 -0.6028 -0.5449 1.000 0
>> nv(K)
ans =
1.0000 0.5488 0.7152 0.720 5
0.5488 1.3012 0.3925 0.998 2
0.7152 0.3925 1.5115 1.060 2
0. 7205 0. 9982 1.0602 2.1793
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Gaussian MRFs

 Defn. A GMRF is a Gaussian of the form N(py,Q1)
where Q; # 0 iff G # 0 (Q=precision matrix)

« Thm. For a GMRF, the following properties are
equivalent.

e Pairwise Markov: z; L zj|x_;; if G;; =0andi # j
o Local Markov: =; L x_; ne()|Xne()
 Global Markov: ;, | 25|z

o O

Rue&Held p25

Black indep
striped given gray4 5

Blacks indep given gray Black indep of white given gray



MVN to Gaussian UGM

 We can convert any MVN into a UGM with pairwise
potentials which are quadratics

J € =
h © Ju
N(x/h,J) = explc—3ix"JIx+x"h]
logp(x) = C__Z Hx + h;x;] — QZZJ”%%

— c—l—Zqﬁz T; —I—ZZ@] Ti, X;)

T J>1
— LT3 + ]

1
2
¢i,j(53iamj) = —J; jLiL

43



Pairwise UGM to MVN

e Consider a UGM in which the node and edge
potentials are quadratics

Ez(il?z) — d% + d?’liEl + dzzx?

A . _ 1,] (25 iy . 1] o iJ .2 17 .2
€ij(Ti, Tj) = agy +agi Ti +ajgTj + a1 TT; + agyT; + AT

 We can always rewrite the corresponding
unnormalized distribution as

p'(x) = exp[—ix"JIx+x"h]
e But the normalization constant Z will only be finite if
J Is positive definite.
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Sufficient conditions on info matrix

Def 7.3.1. A matrix J Is attractive if, for all i \neq |,
we have that all partial correlations are non-neg

My >0

\/J’I,’L ]j

Thm 7.3.2. If J Is attractive, then p is a valid MVN.
Def 7.3.1b. A matrix J is diagonally dominant if, for
all rows I, Ji > S il

j#i
Thm 7.3.2b. If J Is diagonally dominant, then p is a
valid MVN.
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Pairwise normalizable

 Def 7.3.3. A pairwise MRF with energies of the form

€ij(ix5) = agy +aglws + afhyw; + afyzizs + aghad + agyr;
IS called pairwise normalizable If
i : ij ij
dy > 0,Vi  ang ( %02 a’l%j 2) is psd for all i,]
ar1/2  asg

« Thm 7.3.4. If the MRF Is pairwise normalizable,

then It defines a valid Gaussian.
e Sufficient but not necessary eqg.

1 0.6 0.6 May be able to reparameterize the node/

edge potentials to ensure pairwise normalized.

06 1 0.6
0.6 0.6 1 46



Conditional autoregressions (CAR)

 We can parameterize a GMRF in terms of its full

conditionals
Elrix—;] = w— Z Bij(xj — pj)
LY
preclz;|x_;] = Kk; >0

e From before, we have
1
Elr|x_;] = p— 0. Z Qij(T; — 1j)

J:jFt

prec(z;|x—_;) = Qi

e To be a valid MVN we must set
ki = Qu,Bi = %ﬂ%ﬁij = k;Bj;
Q = diag(k)(I+ )

Rue&Held 029 47



Stat 521A
Lecture 6



« Exponential family: what?(8.2)

« Why? (Extra)

e Connection with GMs (8.3)

e Entropy (8.4)

* Projections (8.5)

e Querying a distribution (“inference”) — 2.1.5

* Worst case complexity of exact inference (9.1)






Exponential family

e Def 8.2.2. The exponential family Is a set of
distributions of the form

1

p(x[0) = mh@c) exp (t(8)" T (x))
Z0) = Y h(x)exp(t(8)"T(x))
XeS

Where x € X are the variables, h(x) defines the
support (must not depend on 6), T(x) € R are the
sufficient statistics, 6 € © C RM are the parameters,
t(0) in RK are the natural parameters, and Z(8) € R*

IS the partition function.

We would like © to be a convex open subset of RM,
and to be non-redundant (iff t(0) Is invertible).



« X ~ Ber(0).
Te) = [I(z=0),I(z=1)
t(0) = [log8,log(l—0)] O =[0,1],xX = {0,1}
ZO) = 1
p(z) = exp(T(z)"t(0))
* X~ N(u,09%).
p(z) = \/21_7“7 eXP(_T;$2 + (%a? — T;,Lﬂ)
T(z) = |[z,27]
t(p,0%) = [:2 _2(1;2] O=RxR",¥=R
Z(p,0%) = V2mo eXP(%‘g) .



Non-examples

e Let X~ Unif(a,b). Then

1 1
p(z|@) = I(a <z <b)=-exp(log

— NI(a <z <b)

b—a —

e Support depends on \theta.

o Let X~ 2, T f(X,@)— mixture model. Cannot be
written in required form.



Linear exponential family

e Consider the set
O = {0 c R" /eXp(HTT(X))dx < oo}

* |If ©Is open and convex, and t(0)=06, we say it is a
linear exponential family.

« We write
plxln) = s (o) explnT(x)
Z(n) = /h x) exp[n

* Or .
p(x|n) = h(x)exp[n T(x)— A(n)|

A(mn) = logZ(n)



Bernoulli try 1

T(x) = [{(x=0),I(x=1)]
n = [logb,log(l—0)]
p(z) = exp(n' T(z))

 However, (log \theta, log (1-\theta)) is a curve, not a
convex subset. Also, it iIs redundant.



Bernoulli try 2

e Define
T(z) = [I(z=1)]
0
n = logr—0p ©=R
p(z) = Z(ln) exp(nT(x)) = (1~ 6) exp(zlog )
plx=0) = (1-90)
pa=1) = (1-6)—— =0



Gaussian — natural params

7 1
n = [?7 _ﬁ]
T(z) = [z,27]

The natural parameter spaceis R X R~

10
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Finite sufficient statistics

« Defn. A statistic Is a function of the data, T(D),
where D=(x1,...,xn). A sufficient statistic Is one that
contains all the information in the data. More
formally, T Is sufficient for 0 if 8 -> T(D) -> D.

o Let Xi ~ ExpFam. The likelihood is given by
p(D|6) Hp t(6)" > T(x:))
=1

e Hence the dlstrloution has sufficiept statistic_:s of
size K, independent of n T(D) =3 T(x:))

« Thm (Pitman-Koopman-Darmois). The expfam is
the only family (amongst those where support is
Indep of theta) with fixed sized suff stat.

12



Non-parametric models

» Parametric = fixed sized theta
o EXxp fam = fixed size suff stat

f
9(«(><CJ YU fer / es finke

J

13



LogZ is MGF

e Consider a linear expfam

e Define
Th L‘%’?) = Zm)= / h(x) exp[n’ T (x)]dx
° en
1 = g(n)/h(X)eXp[nTT(x)]dX
0 = vg(n)/h(X)eXp[nTT(x)]dx

/ p(xmT(x)dx = —Vg(n) / h(x) expln” T(z)]dx

14



LogZ is MGF

/ pxmTx)dx = —Vg(n) / h(x) expln T T()]dx
_Viegg(n) — —Vgig)z—wg(n))( [ 19 expin® Txlax)
ET(X)] = —Vlogg(n) = VlegZ(n)

15



MLE is moment matching

* Proof
logp(D|@) = —nlogZ(0)+ 61 T(D)
Vgl@) = -nVglogZ(0)+T(D)=0
ET(X) = ~T(D)

n

 Example. Gaussian, T(X) = (X, X*2).

_ 1
E[X] = ,uzgza:'i
Var [X] = (EX?) —(EX)?
_ 1
EX2 — 2 2:_ 2
X o +p nzw
2 _ lzxz—/f
n (2

16



Conjugate priors

« Defn. A prior p(0) € F Is conjugate to a likelihood
pP(D|O) if the posterior satistifes p(0|D) € F, Ii.e., has

the same functional form as the prior.

 Thm. All dist In expfam have conj prior.
« Most distrib with conj prior are in exp fam.

17



Maximum entropy principle

 Defn. The entropy of a pmfis

= —Zp )log p(z), H(p) > 0

* The differential entropy of a pdf can be —ve
h(e) <~ [ p(e)logp(a)ds
S

* The relative entropy, or KL divergence, from p to g
IS given by

KL(p,q) = Zp(w)log%

T

KL Is always >= 0, even for pdf’s.

18



Maxent principle

e Suppose we want to pick the most uncertain
distribution (principle of least commitment) subject
to the constraints that

> fu(@)p(z) =

* Optimize the Lagrangian
J(p) = —Zp ) log p(= +>\0<1_ZP(37>)+Z>‘1<:<F1<:_Zp<x>fk(x>)

k x

oJ

- _1-1 ~ Ao —

op(z) ogp(z) — Ao Z)\ksz
1
p(z) = EeXp(_Z)\kka
k
Z = eltho

19



Gaussian maximizes entropy

1

 MVN is In expfam. »rkx) = Eexp(—%xTKx)z%exp(ZAkfk(x»
k

fis(x) = xizj, A = 5K

Theorem 0.1. Let g(x) beany density satisfying [ g(x)z;xz; = %;;. Let¢ = N(0,X).
Then h(g) < h(9).

Proof. (From (?, p234).) We have

0 < KL(gll¢) (1)
_ Aloe ) 1
_ /g( )log 55 e
= _h(g)—/g(x) log ¢(x)dx 3)
= —h(g) — /gb(x) log ¢(x)dx (**) (4)
= —h(g) +h(¢) (5)
where the line marked (**) follows since g and ¢ yield the same moments for the
quadratic form log ¢(x). i

20
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Some GMs are expfam models

 We showed earlier that many +ve UGM can be
represented as an expfam

p(x) = —eXp ZOT
 Most CPDs can be represented as expfam
e Eg table p(X|U). T(X,U)=[I(X=x), I(U=u)],
t(\theta) = [\log p(x|u)].
e Eg lingauss.

1 1

p(zju) = exp (——2(:13 — (wg + wruy + -+ + wkuk))2)
210 2

T(z,u) = |[l,z,uq,..., Uk, TUL, . . ., TUR, UT, UL U, - . - uz|

* Product of expfam is expfam.

22



DGMs are curved expfam

* In general, the fact that CPDs sum to 1 locally
means that they are not linear expfam

e See p248 of K&F

e Geiger'0l1 shows that DGMs are curved expfam
models (curved means the params are not linearly
Indep, so \theta is smaller than t(\theta)).

e Geiger'01 also shows that GMs with hidden
variables are stratified exponential families (SEFS) -
a finite union of CEFs of various dimensions
satisfying some regularity conditions.

Stratified exponential families: Graphical models and model selection
Dan Geiger, David Heckerman, Henry King, and Christopher Meek
Source: Ann. Statist. Volume 29, Number 2 (2001), 505-529. 23
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Entropy of an expfam model

e Thm 8.4.1. If X ~ ExpFam(theta), then
H(Pg(x)) = log Z(6) — E[T(x)"t(6)]

e Ex 8.4.2. Gaussian.

B 1 1 2 X 1 2
p(r) = N exp( 952 F + R )
T(ZE) — [33,332]
L 1
t(/”'? 02) — [;7_ﬁ]
2 e exp( L
Z(u,0%) = 2ﬂaexp(r‘2)
2
peoop 1
H = §@ro’) + 55— SEle] + 55 B[]
2 2
o 1 2 2% 2:“ 1 2 2
= §ln(2ﬂ0)+202—202+r‘2(ﬂ +0%)
= $In(2ro%) + § = §In(2r0”) + flne = §In(2m0’c) 25



Entropy of a GM

« Thm 8.4.3. If P(X) = 1/Z []. @.(X) Is a UGM, then

H(Pg(x)) =log Z(8 +ZE In ¢ (x

ZH (X;| X )

y Pf- HP(X) = Bl-logp(X) = B[ 3 logp(X,{X)
_ ZE[ log p(X;|Xx,) ZH (X Xoxr,)
= ZZP (%, ) H(P(Xi|%x,))

e Thm 8.4.6. If P(X) IS a DGM then
meH (Xi|xx,)) < ) < ZmaxH (Xi|xx,))

26
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 Def8.5.1. Let P b a distribution and Q a convex set
of distributions.

* The I|-projection (Information) Is

Q' = arg &%D(QHP) Zero forcing: P=0 => Q=0  Mode seeking
 The M-projection (moment) Is
QM = arg min D(P||Q) Q=0 => P=0 High variance
QeQ
T
a
/\/\
«

28



M-projection is moment matching

« Thm 8.5.5. Let P be any distrib over X, and let Q be
expfam. If there Is a set of params 6 st E(6)[T(X)] =
Eo[1(X)], then the M-projection of P onto Q is Q.

 EX. Let Q = fully factorized distribution. Then Q*M
IS given by product of marginals.

QY (x) = p(X1)...p(Xa)
 EX. Let P = mix Gaussians, Q = single Gaussian.
p(x) = Y mN(xuy, k)
k
QY (%) = N(xlug,Zq)

Ko = Z Tk H

o = > m(Zk+ (1 — o) (B — 1o)T)

29



I-projection

 |-projection requires computing expectations of
log(P) — which often factorizes - wrt Q, and the
entropy of Q.

Q! = arg min D(Q||P) = arg minz Q(z)log
QeQ -

Q(z)
P(z)

 We can choose Q to be “simple”, so that it Is easy
to compute these expectations and entropy terms.

e This Is the basis of variational inference.

e By contrast, M-projections require expectations wrt
P. Usually this can only be done locally, as in
expectation propagation.

30
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Querying a distribution (“inference”)

Suppose we have a joint p(X4,...,Xy). Partition the
variables into E (evidence), Q (query), and H
(hidden/ nuisance). We might pose the following
gueries

Conditional probabillity (posterior):.

p(XQ|XE) X ZP(XQ7XE7XH)

MAP estimate (H=0) (posterior mode)
Xy = arg rr}lcaCJ?Xp(xQ\xE) = arg Iglc%?xp(xQ,xE)

Marginal MAP estimate (mode of marginal post):

xg = arg maxp(xqlxp) = argmax }_ p(xq, Xp, Xn)
Xy

32



MAP vs marginal MAP

e Max max # max sum
e Ex2.1.12. Jointis

=0
at = argmngp(a,b):l -
b N-@| 0ok
b* = argmax a,b) =1
arg g;p( ) To38]03 [oge
(a,b)" = argn;aéxp(a,b):(O,l) D/I/ J
oLl 06

* One can show that max sum is strictly
computationally harder than sum, which is in turn
harder than max

33



Speech recognition

 EQg speech recognition. Let Q=words, H =
pronunciation (phonemes sequence), E = signal.

 We often make the following approximation, which
lets us use the Viterbi algorithm

w* = arg mvgx%:p(w, hle) ~ arg max mﬁxp(w, hle)

 Eg. Consider W1="a back”, vs W2="aback”. There
might be 10 alternative state sequences for W1,
each with prob 0.03, but just one sequence for W2,
with prob 0.2. Viterbi would choose W2, but W1 is

actually more likely.

34



Bayesian statistics

e Bayesian statistics amounts to defining a single
joint distribution for both “variables” — latent and
observed - and “parameters” (often fixed In
number), and then guerying the parameters.

35



Probability of evidence

 To compute conditional queries, we need to
evaluate p(Xg)
ZXHp(XQ7XE7XH>
p(xE)

p(xg) = Z ZP(XQ, XE,XH)

Xo Xy

e This may be a high dimensional integral

p(0) I1; | p(2:0)p(y;|xi, 2, 0)dz;
p(X,Y)

p(X,Y) = / p(0) [H / p(z|0)p(y,|x:, z:,0)dz; | dO

* p(Xg) can be used to decide how likely x¢ Is to have
come from this model (classification and model
selection)

p(Xglxp) =

p(@‘X,Y) —

36



Sampling

o Often the posterior is too big to even store explicitly.

 Marginals and MAP estimates are one summary, but may
be unrepresentative.

 Samples may provide a better summary.

o eg Attractive Ising model has 2 modes, all 0 and all 1. The
marginals are [0.5, 0.5].

« We want to be able to sample from p(xQ|XE)

e Sometimes we can do this even if we cannot evaluate p(xE)
— this is the key idea behind MCMC

37



Monte Carlo integration

e Sometimes we want to E[f(xQ)|XE], where f()

depends on global properties of Q, so we cannot
use marginal distributions.

 However, If we sample from p(XQ|xE), we can use

Bl (Xo)lxe] = [ fxq)plxalxe)ixg ~ - 3 £(xh)

38



Inference in discrete state spaces

We will mostly focus on the case where Q and H
are discrete rv’s (E can be cts or discrete).

Thus everything amounts to computing a large
number of sums as quickly as possible.

We will also consider the case where Q, Hand E
are all jointly Gaussian, where exact answers can
also be obtained.

For general distributions (eg for applications in
Bayesian statistics), exact inference is usually not
possible (except 1 layer of parameters with
conjugate priors and no latent variables).

39
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Complexity of inference

e Consider computing p(X_Q), p(X_Q|x_E), or p(x_E)
for a discrete state space.

o Later we will show that Iif P is representable by a
GM, then we can compute these guantities
efficiently, if the graph has special properties.

 However, in general, the problem is
computationally expensive.

41



Complexity of exact inference

« Thm 9.1.1. Given a DGM, deciding if p(X=x)>0 Is
NP-complete.

 Pf. Easy to see is in NP (linear time to check if
pP(x)>0.) Can show is NP-hard by showing how to
reduce 3-SAT to a poly-sized DGM.

X=(Q1V-Q2VQ:3)N(Q2a2VQsVQ3)---

P(X=1) = #satisfying assignments/ 2”*n

42



Complexity of exact inference

 Defn. NP is the class of problems of the form “are
there any solutions x such that f(x) Is true”. #P is
the class of problems “Count the number of
solutions x st f(x) Is true”.

e Thm 9.1.2. Given a DGM, computing p(X=Xx) Is #P-
complete.

43



Complexity of approximate inference

Def 9.1.3. A estimate p has absolute error € if

P(xQlxe) — p[ < €
Def 9.1.4. An estimate p has relative error ¢ if

T S plxglxe) < p(1 49

Thm 9.1.5. Given a DGM, finding a number p which as
relative error € for p(X=x) is NP-hard.

Thm 9.1.6. Given a DGM, flndln%a number p that has
absolute error € for p(X|e) is NP-hard for any O <e<0.5.
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« Variable elimination (9.2-9.3)

 Complexity of VE (9.4)

e Conditioning (9.5)

 From VE to clique trees (10.1)

 Message passing on clique trees (10.2-10.3)
e Creating clique trees (10.4)



Inference

e Consider the following distribution

P(C,D,I,G, S, L, J, H)
_  P(C)P(D|C)P(I)P(G|I, D)P(S|I)P(LIG)P(J|L,S)P(H|G,.
P(C,D,I,G,S, L, J, H)
= Yc(C)vp(D,C)Yr(I)Ya(G,1,D)ps(S, 1)
v (L, G)Yy(J, L, S)Yu(H, G, J)




Brute force enumeration

 Compute marginal probability someone has a job

S:S:S:S:S:S:S:POD I1,G,S,L,J, H)

S G H




Variable elimination 1

e Push sums inside products (distributive law)

Py = XY YSNMSDNMY NN preDnlI1,G,SLJH)
L S G H I D C
= D DYDY DYDY we(C)vn(D, C)r(De(G, I, D)ws (S, I)

L S G H I D C
ZpL(L7 G)¢J(J7L7 S)wH(Hv G7 J)

_ ZZ¢J(J,L,S)ZwL(L,G)Zwﬂ(H,G,J)Zws(SJ)wI(I)

Z¢GGID ch Jp(D,C)



VE 2: work right to left

P = YD s L,S)Y wu(L,G)Y bu(H,G,J) > vs(S, Dvr(1) > va(G,1,D) > ¢e(C)n(D,C)
L S G H I D C

-

leb)

¥ (J, L, S) ZwLLG ZwHHGJ Zwsswf ZszGID)Tl(D)

\ 7

7'2(G,I)

Yo(J,L,8) Y Wr(L,G)> Yu(H,G,J) Y s(S, Dvr(I)m(G,1)
G H

A -

]

=[]

73(G,S)

V(L L,8) Y Wr(L,G) Y vu(H,G,J)73(G,S)
G H

=]

g

T4(G’J)

D s, L,8) Y (L, G)ra(G, J)73(G, S)
S

A -

I
=1

T5(‘;727‘S’)
> ¢s(J, L, 8)75(J, L, S)
S

I
=

-

76(J.L) Variable elimination
= > 76(J,L) Bucket elimination
L Peeling
() Non-serial dynamic programming

5



Pseudocode

Algorithm 9.1 Sum-Product Variable Elimination algorithm

Procedure Sum-Product-Variable-Elimination |

iy Set of factors
Z, Set of variables to be eliminated
- Ordering on Z
]
1 Let Z1,..., Zg be an ardering of Z such that
2 £y < Z;iffe <
3 for i=1,....k
i @ «— Sum-Product-Eliminate-Var{®, £;)
5 ¢ — lsca®
(i return o
Procedure Sum-Product-Eliminate-Var |
iR Set of factors
Z Variable to be eliminated
]
1 D {pc® : ZE Seope[d]}
2 [ P I
3 U — H¢E¢, Llf.l
1 T ZE?__.":
5 return &7 U {7}




Dealing with evidence

e Conditional prob is ratio of uncond prob

P(J,I=1,H =0)

PJII=1,H =0) = PUI—T =0

» Soft/ virtual evidence: @(X,) = p(y,|X)
P(J,I=1H=0)=

ZZ%JL S)Z¢LLG)Z¢HHGJ¢H H)Zwsswmm()
ZwaGID Zzpc Jp(D,C)

. Hard ewdence: @(X) = I(Xi=x")
P(J,I=1,H=0)=
Z Z%(J, L,S) ZWL, G)yu(H =0,G, J)¢s(S,1 = 1)y (I =1)

Z¢GGID ch )p(D,C)



Reduced graph

* |f nodes are instantiated (fully observed), we can
remove them and their edges and absorb their
effect by updating all the other factors that
reference them

« Egif Gis observed
Coherence

| L ]

Difficulty — Intelligence
-.-'"-.____ d______d-F-'_“-q_H_h___- Difficutry — Infelligence
/ J'_:.|"-a::|1'_ SAT =
/ / ; SAT
.". | \><4 - ..
lIl.-"I Letier ¥ o ." Lerter |
""-. ! G i
5 }
.-"l \-\ Ty _~~_ Jah
J e JE N >
i e apy
Happy i



VE with hard evidence

Procedure Cond Prob VE |

K. A network over X

b Set of guery variables

E=e¢ Evidente

|

] $ — Factours parameterizing K
2 Replace siich ¢ £ @ by o[E = €]
g Selert an elimination ordering <
| L— =4A-Y —E
y a* +— Sum Product Vanable Elimination{$, <, Z')
G a— 3 e vaiyy® (W)
T return o, o’

10
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Complexity analysis of VE

» At step I, we multiply all factors involving x; into a
large factor, then sum out x; to get 1.

* Let N, be number of entries in factor ..

 The total number of factors is m+n, where m =
original number of factors in model (m > n), and

n=num. vars.

« Each factor gets multiplied into something bigger

once. Hence #mult Is at most
(n+m)N; < (n+m)Npmaz = O(MNpaz)

 When we sum out a node from a factor, we touch
each entry once, so #adds Is at most

nNma:B
12



Complexity analysis of VE

 If each variable has v values, and factor y; involves
ki variables, then N, < v&

o S0 complexity is exponential in the size of the
largest factor.

13



Different elimination ordering

P(J) = ZZ%DD(DaC)ZZZ%(J,L,S)wa(I)ZDS(SaI)Z@DG(GJ,DWL(L,)IDH(H,GJ)
D C H L S I G

-

71 (I,D,L,J,H)

= S N w0 3N w4 L,8) Y wr()es(S,I)n(1,D, L, J, H)

D C H L S \I )

TQ(D,LTS,J,H)

= S S w0, S (I, L, S)7(D, L, S, J, H)

D C H L \S )

7'3(DI,J,H)

= > > Wp(D,C)> > (D, L, JH)

D C H \L |

T4(5T]H)

= Y D yp(D,C)Y (D, J H)

D C H y

T5(EJ)

= Y 4p(D,C)rs(D, J)

D\C ,

TG(B,J)

— ZT@(D J)

L

77 (J)

14



Effect of ordering

e A bad ordering can create larger intermediate
factors, and therefore Is slower

Step Variabls Fartars Variahles New
el st el TEER | prrvinlved frartar
1 i del O aplD C) oD L)
2 I dgl G L DN, o (I &, I, D Tol 0
4 { g (L) eg(&5 1) mid, ) oo 0 Tl s, &)
I H dg (5T g e J =, )
3 s ml, JL ml L 5) @il &) (gL, 5 [—‘/
b s (S LS apld LS} J LS Ta(.J. L)
T I m(J, L) J, L ()

Table 9.1 A run of variable elimisation for the guery P{J).

Step | Vanabl: Factars Variables New
elirinated L e frrtor
i gl G I 0). e (LG eg(H. G T) ( D r..J nil, DL J ) é
2 I érll). ¢s(S.0). m{1,D,L, 5,0 H) &I DL, L) m(D.L. 5.1 H) {
; S gl L LSy D LS. JH) D LS JH myl DL T H)
! L O L, J H ) oL.aH DI H )
7 H ml DT H) noaH el T}
fi o oD, L ap(D.C) ooa o el J)
7 I (T o el

Table 9.2 A different run of variable elimination for the guery P{J).

15



Graph theoretic analysis

 Every time we eliminate a node, we build a new
factor which combines variables that may have
previously been in separate factors. Let us add an
edge (fill-in edge) between such nodes to create

tha inAiirad naranh

¢ Coherence > Go hz en E  Coherence
Difficulty "—— Intelligence it |:_|r,r “—— Intelligence -f_'_'r:i“i:_lr,r'j;-------:_'_Ir.rg||igar.:éj.-
- o ey "--..._r_. s g T — "--_..,—\.-_---'
= s B '-.--"'--- = -
L Erode S5AT 4. rode SAT i Brode eemme 54T
/ %, 7 II_-' 5 e ; III.-' x -
! | , | / | LY - / | o |
f - i - i
i LY II.'I I,'I \"\:_‘_.- i l.llII \"\-\.}:_. i |
/ Letter / / Letter / / Letter ¥ % Il
[ i i LY .
i i ' i S
F; \\ \“" f II.-' \\\ R h III." \\ y _,-'
/ . J o Job / L Job
Happy ~ Happy - Happy

When we eliminate |, we add a fill-in between G and S

7'3 G S Z’(ﬂs S I Zp[( )TQ(G I)

16



Induced graph

 Def 9.4.3. Let I(G,<) represent the graph induced
by applying VE with order < to graph G.

« Thm 9.4.4.Every factor generated by VE Is a clique
In 1(G,<). Also, every maximal clique in I(G,<)
corresponds to some intermediate factor.

! mmﬂ_a. Variables
' l ! iy vl ved
Yo Difflouly = Intelligénte "1,

e Vi g - &, 1D

R v mtn e &80
bl Grode ——c— S5AT 5 |
I,'i‘-.- A N AT a H.G.J
/i N, | G.aL, 8
I J‘ff’r"_-’_-_?,-_', JL,S
Fa / N e, | J L
A AT D
Happy 7 . e o

{C, D-}, {D,I,G},{G,L,S,J},{G,J, H},{G,I,S}

17



Treewidth

e Def 9.4.5. The width of an induced graph is the
number of nodes In the largest clique minus 1. The
minimal induced width of a graph, aka the
treewidth, 1s defined as

Wa = minmax ;| — 1

* The treewidth of a tree iIs 1, since the max clique

(edge) In the original graph has size 2, and the

optimal elimination order (eliminate all the leaves,
then the root) adds no fill-in edges.

)
1,2,3 : ZZQb(CBg,CBQ)Z(b(SIZ:;,ZIZl) / \

r3 T2 1 I Z

3,2,1 . S:S:S:gb(mg,wl)gb(mg,wg)

r1 X2 I3 18




Finding an elim order

« Thm 9.4.6. Finding the optimal elimination order
(which minimizes induced width) is NP-hard.

 Typical approach: greedy search, where at each
step, we eliminate the node that minimizes some
cost function

 Min-fill heuristic: the cost of a node Is the number of
fill-in edges that would be added.

« Min-weight heuristic: the cost of a node Is the
number of states In the factor that would be created
(product of cardinalities).

19



Empirical comparison of heuristics

IRESIEIS BIESIRE Blip e Y h:ﬂ
oo et ol | 1L ol

Min-fill is often close to best known ordering (computed with simAnneal) 20



Chordal graphs

e Def2.215. Let X;—X,-... X, —X;bealoopina
graph. A chord is an edge connecting X; and X; for
two nonconsecutive nodes. An undirected graph is
chordal (triangulated) if every loop of length k >=4

has a chord.
Y\\“/XL X "/XL
l X | l /Kl\ l
X\»r/-——' £ ¢ Xy — K¢

« Thm 9.4.7. Every induced graph is chordal.

« Thm 9.4.8. Any chordal graph admits a perfect
elimination order which does not introduce any fill-
In edges.

21



Finding perfect elim order

The max cardinality search algorithm will find a
perfect elimination ordering for a chordal graph.

Procedure Max Cardinality |
H An undirected graph over A

I
| lnitialize all nodes in A as unmarked
i}

for &= |A4...1

i X — unmurked varinble in & with largest number of marked neighbors
| mX)— &
5 Mark X
i return m
kil Coharence Coharence

| Coherence

fl’ ulf ellge

i r‘ }' Int Eﬂc 9 D"r‘.l]';.'—ﬂ Ilgn: D”r‘.l]}" Lr
e, ? e m — Infelligence

5” Erod o 3 r = —
f /f ] st 54 ;; st 5.-! H__,g' e ‘g
/ o / / /f / / | {&/’ /. Grade , SAT
LEffer

LE l"‘-u

[ @B f@xx L f et /
/ f / s e /' CLetter /
/ I G 1 / g, / J / s q
Heapy = e ! -d_____.--'”_ Lk s e ab / N /
Hoppy i 7 i Job
Heppy )

For non-chordal graphs, the MCS ordering often results in large induced width 29
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Conditioning

 We can condition on a variable to break the graph
Into smaller pieces, run VE on each piece, and then
add up the results. We also need the probability of
each conditioning case.

P(Y)=> P(Y,u) 7= 7(u)

LOnErEnc e
Caheresce o ==
Dffigulry  —— Tntelligence here
-H-\'-\-.“\"'-\."----F--F--ﬂ---\“"‘-\--\_\. Defficubyy _.I"'"h'":gﬁ'r" Giif ety —— Intelligence
p.. Erade SAT e
i - !l"_r
/ | “xxx - ..-" !
.I J .
.lll LATTR .-{ / LeTler ! Lettrer
Ilrl x"\..\ -\,..‘\I I.'Il . :
I.-" T, e Tak it
: — Heppy -
Hapgy Fagpry
' = ndition on
Evidence G=¢ Condition on S

24



Conditioning + VE

Procedure Sum-Product-Conditioning |

i Set of factors. possibly reduced by evidence
Y Set of query variables
[ Set of variables on which to condition

I for each u € Val(lT)

2 Gy — (U =u| : ¢ d}

3 Construct He,

| Izlft'ﬂ.tlf.'ﬂ“’";]:l «— Cond-Prob-V t[;Heﬁu.. F-.'E'J
5 oY) — ZuulX)

KD

(i Heturn q:'a*[}“’TJ

25



Cutset conditioning

 If we Iinstantiate a set of nodes such that the
resulting network Is a tree, we can apply a simple
message passing algorithm on the tree (see later).

 This Is called cutset conditioning.

« Thm 9.5.2. Conditioning + VE Is never more
efficient than VE.

Left: condition on A,. Repeatedly

1 | .ﬁ"‘“w re-eliminate A, ... A_, instead
) ' E\A“} of reusing computation (as in DP/VE).
i ﬁ Right: condition on A, k odd.
G \4&/ Exponential in k. But induced width is only 2.
(B & @& o .
L i Space-time tradeoff.

26



27



VE on chain = forwards algorithm

)
) m1(z1)p(y1|z1)
de(xy) = plyslxe), t > 1
¢<517t 1 iUt) — p<33t|33t—1)
p(zsly1:3) ¢3(5L’3)Z¢2(5€2 V(22,3 Z¢1 T1)Y(z1, T2)

28



What's wrong with VE?

Consider a chain X1 — X2 - .. — XT, where the local
evidence has been absorbed into the node factors.

If we use VE to compute p(XT|y(1:T)), itis
equivalent to the forwards algorithm for HMMs, and
takes O(T K?) time, where K = #states.

Suppose we also want to compute p(X(T-1)|y(1:T)).
We could rerun the algorithm for an additional O(T
K2) time.

We now discuss how to reuse most of the
computation we have already done in eliminating
X(1:T-2). We can then compute all marginals in
O(2 K2 T) time (FB algorithm).

29



Cluster graphs

 Def 10.1.1. A cluster graph for a set of factors on X

IS an undirected graph, each of whose nodes | is
associated with a set C; C X. Each factor is

contained in precisely one cluster. Each edge
between a pair of clusters C;, C; is associated with
a sepset (separating set) S;.  S;; = C;NC;

W I Dafficulty =—{Inteligence ™.
i R el - V)
=N ey B oy W ey B e Bl oy
e D LT Y | D Gl G2 G.l
| x, Ly |
;": $-=- .
I. .-. J':h—
by il

30



Cluster graph from VE

 We can create a cluster graph to represent the process of
VE. Before we marginalize out x;, we create factor g, (its
bucket potential); make this a cluster. When we marginalize
out x;, we create factor 1, which is stored in bucket j; think of
this as a message from i to J. Draw an edge C; - C..

Step Variable Factors Variables New
eliminated nsed involved factor
1 ' b (C). ap (D, C) (D 0 (
2 D DG I, D). 1LD.F |l (G T) C
3 I ar(I), os(S.I), G, 5.1 (G, S)
I H o (H. G, Jj H, G.J TG T)
3 e G T), (GOS8, e (LG | GO LS | ms(J L, 5)
i S melJ LS, @gi(d L, S) J L5 TalJ, L)
’C (,D) i L TelJ. L] J L T (J)
D '
1: ¢.DFH2: 61023 6.8
dcs
J.S,L JL \
5: G,J, S, Limmmems 6: J,S,L T[?: JL |
Ty
4HGY

31



Properties of VE cluster graph

 The VE cluster graph is a tree, since each message gets
sent to a single bucket (so each cluster connects to at most
one other cluster)

« Def10.1.3. Let T be a cluster tree. T has the running
Intersection property if , whenever X in Ci and X in Cj,
then X is also in every cluster on the unique path from Ci to
CJ.

e Thm 10.1.5. The VE CG has RIP.

« Pf (sketch). A variable appears in every factor from the
moment it is introduced to when it is summed out.

1:C.DFH2: GI.D=H3: G

32




Messages

« Thm 10.1.6. The scope of the msqg T, from C; to C; is ;.

1: c,n]%z: G.D=H3: G,S|
- ~ - 1 G,é
K—I—-J,S,Lr JL !
. G,J.8, 6:J,SL==T7:JL

 Def. For any sepset S;, let W_; be the variables in the scope

of the clusters on the C; side, and W_; be the vars on the C,

side.
« Thm 10.1.8. T satisfies RIP iff for every Sij,
Wg L Wy | S

* Hence msg from C; to C; is sufficient statistic for all info to
left of C; — C..

* RIP ensures local communication => global consistency.

33



Clique trees

 Def 10.1.7. A cluster tree that satisfies RIP is called
a clique tree or join tree or junction tree.

e Thm 4.5.15. A graph has a Jtree (where the
clusters are the maxcliques) Iiff it is chordal.

« Thm 10.4.1. We can always remove non maximal
cligues from a Jtree without violating RIP.

Coherenc .--;
D4 Thiculey ;-.i.’—'}:ﬂr:":q-:'.-ﬂ'_;:h"
LY o gl
.;.'_"“‘.'-.‘.;‘.:‘._."' """ g e R Fi
0 Grode S 54
"'\-'i:F-_'____. .._.ﬂ.-':;"..-. .-...-_ ...............
..- II". ,l. et ter
-._.-l-- .I —_
4 %, Jab
:-'x —
. cn GI[I| [_GSIJ LG,JSLH G,J|
4: H,G,J] 7 R By N

F(D| C) F(G | 1,D) | (1) 'fF'..'_|u- I F“"S"'J
F{ C) PSIH | |PUILS) 4
- L. . &, )
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Message passing on a clique tree

 To compute p(X 1), find a cligue that contains X |,
make It the root, and send messages to it from all
other nodes.

e A cligue cannot send a node to its parent until it Is
ready, ie. Has received msgs from all its children.

e Hence we send from leaves to root.

| P 36



Message passing on a clique tree

P(J) = > > (LS Yu(L,G)Y ¢u(H,G, )Y vs(S,D)i(1)Y ve(G,1,D) Y c(C)p(D,C)
L S

G H I D \C’ Py
71227)
= > > w(LLS)Y vi(l,G)Y vu(H G, J)Y ¢s(S,Dr(I) Y 4e(G, 1, D)mi(D)
L S G H I D
TQ(E,I) i
§m‘0)= T,(D) (" B,_4(G.J)

(¢ \~ (¢ D¢ Multiply terms in bucket (local & incoming),
L(‘ () (\}‘ )‘\/0( ) sum out those that are not in sepset,

send to nbr upstream 37



T DN = L e

- I3 =

Upwards pass (collect to root)

Procedure Clres 5um Froduct Up !

g Set of factors

1. Cligue tree over @

o Initial assignment of factors to cligues
Ce Some selected root cligue

]
Imitialize Cligques
while €, is not rewdy
Let €% be a ready cligue
S gty Seppiy) — 5P Message(i, pe(t))

.l'_'-?r = A+ H*@Eﬂh-:.‘r 5]1-_.:‘
return A,

A\
Procedure Initizlize Cliques | / \

| §/(JS ¥

for each cligue €4

1,-::,[1':',] T H-:.:-_,- y -::l:-;r-_,f|=-E¢

Bi(C:) = ¢i(Cy) H Ok—i(Sk,i)

Procedure 5P Message | ken;,k#j
b serding cligue .
1 receiving cligue 51%](‘51’6]) — E : ﬁZ(CZ)

3' Ci\Si;

ﬁ"l:c'.'l] '_ ||‘|l'i ' nkeiﬂbi_{jﬂ E.III.!—"I
™(Si1) — Lops,, HC)
return 7(5; 4]
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Message passing to a different root

 |f we send messages to a different root, many of
them will be the same

 Hence If we send messages to all the cliques, we
can reuse the messages- dynamic programming!

39




Downwards pass (distribute from root)

« At the end of the upwards pass, the root has seen
all the evidence.

e We send back down from root to leaves.
gr——)Z L'// e

CED
X lzb/ S

ken; AN

5i—i(Sy) = > 6;(C) ] 5k—>j(5k,j)/ \
C;\Si; ken; itk § ‘
5;(C)) s

RV 0i— i (Sij) Use division operator to avoid double counting
J\Pij

40



« Thm 10.2.7. After collect/distribute, each clique
potential represents a marginal probability
(conditioned on the evidence)

Bi(Ci) =) P(x)
X C;
 If we get new evidence on X;, we can multiply it in
to any clique containing I, and then distribute

messages outwards from that cligue to restore
consistency.

41



MAP configuration

 We can generalize the Viterbi algorithm to find a
MAP configuration as follows.

 On the upwards pass, replace sum with max.

e At the root, find the most probable joint setting and
send this as evidence to the root’s children.

e Each child finds its most probable setting and
sends this to its children.

 The jtree property ensures that when the state of a
variable Is fixed in one clique, that variable
assumes the same state in all other cligues.

42



 We can generalize forwards-filtering backwards-
sampling to draw exact samples from the joint as
follows.

* Do a collect pass to the root as usual.

« Sample xR from the root marginal, and then enter it
as evidence In all the children.

e Each child then samples itself from its updated
local distribution and sends this to its children.

43



Calibrated cligue tree

 Def 102.8. A cligue tree is calibrated Iif, for all pairs
of neighboring cliques, we have

> GiC)= Y Bi(Cy) = pi(Siy)

Ci\Si,j Cj\Si,;

 Eg. A-B-C clg tree AB — [B] — BC. We require
> Bav(a,b) = Bue(b, )

. Thm. After collect/distribute, all cliques are
calibrated.

« Thm 10.2.12. A calibrated tree defines a joint

distribution as follows  »(z) = I, iy (50)

= p(A, B)p(C|B) = p(A|B)p(B, C)

A,B)p(B, ()
p(C)

€g p<A7B70): p(
44



Clique tree invariant

e Suppose at every step, clique | sends a msg to

clique |, and stores it in [, ;:
Procedure Send-BU-Msg |
1, sending clique
] receiving clique
]
1 Tisj zc:—nﬁ'!..‘ i;.
2 marginalize the cligue over the sepset
3 3_'.‘ — _5'_1. : 11—::11
1 fli§ ~— Ti—j

o Initially ;=1 and {3 = 1. ass 10 § & HeENCe the
following holds. (o) = L BilC)
b B H<¢j> ,LLi,j(S’ij>

« Thm 10.3.4. This property holds after every belief
updating operation.

45



Out of clique queries

 We can compute the distribution on any set of
variables inside a clique. But suppose we want the
joint on variables in different cliqgues. We can run
VE on the calibrated subtree

*€0 A O—c-p AL-DB—=<D
YR 2; c(RCY)
.y PLMC) P,){w)
) /3 (9
=7 plhe)e )

C
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Out of clique inference

Procedure CTree-Query |

¢ Clique tree over &
{8ikiisiit, Calibrated clique and sepset beliefs for T

Y A query

Let 7' be a subtree of T such that ¥ C Scope[T]
Select a ['lillur' e 1”1‘" to be the root
'I-I} bR .'jl-i-'l
ST TRy
for rach 2 € Vi
[af
Hi prit)

P — P}
AR .‘JrriJF.[T] —-Y
Let < be some ordering over £
return Sum-Product-Variable- Elimination(d, £, <]

I'fi'i
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Creating a Jtree

D:;G

maoralize

- node—sizes

e

.-"--'---l---l
/ etree sim. annealing

= |
/ ? ] e
elim—order

S etree—from—esets ¥ +
/ W -
/ - triangulate
/ s S e S o
/ Ehlil,, sets ' cami W
|III .--"".-.J-l \ * \\K\
| - =T D =
I. _ﬁpruue RIP-prune max—cardinality—search \

'

pe t‘fect—ilim—m'der I

| 1

max—clqs

—max—clqs—from—NMCS

jeraph—from—max—clqs

|
» i \ Y
clg sizes jou -‘;}Jh R[P—Tax—ctqa

max—spanning—tree jiree—from—RIP—clqs

= e

T™jtree=

Murphy PhD thesis (2002) p140 49



Max cliques from a chordal graph

e Triangulate the graph according to some ordering.

e Start with all verfices unnumbered. set counter : := N

o Whule there are siill some unnumbered vertices:
— Letw; = w(i).
— Form the set (' consisting of v, and its (unnumbered’ wneliminated) neighbors.
— Fill in edges between all pairs of vertices 1n C';.

— Eliminate v; and decrement 2 by 1.

* At each step, keep track of the clique that Is
created; If it Is a subset of any previously created
clique, discard it (since non maximal).

50



Cliques to Jtree

 Build a weighted graph where
W;; = |C; intersect Cj|
 FIind max weight spanning tree. This is a jtree.

51
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 Forwards backwards on chains

e FB on trees

 FB on cligue chains

 FB on cligue trees

 Message passing on cligue trees (10.2-10.3)
e Creating clique trees (10.4)



Forwards algorithm

1. predict: compute the the one-step-ahead predictive density p(Si|x1.:—1) as
follows:

p(St — j‘xlzt—l) = Zp(st =7, St—1 = ’I:‘Xl;t_l) (1)

)

= ) p(Se=jlSi—1 = )p(Se—1 = ilx1-1) (2

In the second step we used the fact that S; 1 Xq.:1[S¢—1.

2. update: compute p(.S¢|xs,x1.¢+—1) using Bayesrule, where we use p(S;|x1.:—1)
asthe prior:

. 1 . .
p(S: = jlx1t) = C—p(Xt\St = J)p(St = j|x1:4—1) (3)

t

where we used the fact that X; | X;.. 1|S;. The normalizing constant c; is
given by

Ct = thxlt 1 ZP Xt’St—J St—J\Xlt 1) (4)

The base caseis

p(S1 = j|x1) o< p(S1 = j)p(x1]S1 = j) = mjp(x1[51 = J) (5) 3



Matrix vector form

ar(j) = (St =jlx1:) (1)
be(j) = p(x¢|Se = 7) (2)
A, §) = p(Se=j|St-1=1) (3)
Hence the recursion step is
OC bt ZAZJOQ 1 (4)

This can be rewritten in matrix-vector notation as

a; oc diag(b) ATy, (5)

It issomewhat clearer if we use Matlab-style notation, and use .* to denote elementwise
multiplication by a vector:
o o by x (AT ay_q) (6)

The log-likelihood of the data sequence can be computed from the normalizing con-
stants as follows:

T T
logp(x1.7) = ZlOgP(Xt|X1:t—1):ZIOgCt (7)
=1

t=1



Matlab

Listing 1: Listing of hmmFilter
function [alpha, loglik] = hmmpFilter(initDist, transmat, obslik)
%initDist(i) =Pr(Q1) =1i)

%transmat(i,j) = Pr(Qt) =j | Qt-1)=i)
% obslik(i,t) = Pr(Y(t)|] Qt)=i)

[K T] = size(obslik);

alpha = zeros(K,T);

[alpha(:,1), scale(1)] = normalize(initDist(:) . * obslik(:,1));
for t=2:.T

[alpha(:,t), scale(t)] = normalize((transmat' * alpha(:;,t-1)) .
end

loglik = sum(log(scale+eps));

Listing 2: Listing of makelLocalEvidence

functi on localEvidence = makelLocalEvidence(model,obs)

% | ocal Evidence(i,t) = p(Y(t) | Z(t)=i)

localEvidence = zeros(model.nstates,size(obs,2));

for i = 1:model.nstates

localEvidence(i,:) = exp(logprob(model.emissionDist{i },0bs");
end

* obslik(:,t));



Offline estimation: goals

e Singleslice marginals:

() < p(Sy = jlx1.r,0) (1)

foral 1 <t < T. This can be computed via the forwards backwar ds algo-
rithm, as we discuss in Section ?7.

e Two-dlice marginals

Eo1406,7) & p(Si_1 =4, S, = jlx1.1,0) ®)

These are needed for parameter estimation, as described in Section ??. These
guantities are easy to compute using forwards-backwards, aswe describe in Sec-
tion ?272.

e The posterior mode, or most probable path:
Si.7 = arg gll?}j{(p(slzﬂxlzcr, 0) (3
This can be computed by the Viter bi algorithm, as we describe in Section ??.
e Samples from the posterior

S1.T7 ~ p(slzT|X1:T70) (4)



Filtering vs smoothing vs Viterbi
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Fixed lag smoothing
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p(St|x1.7) Z Z P(S1:4—1,X1:4—1, St, Xt, St41:T, Xt +1.T ) (1)

Si1:¢4—1 St4+1:T

= 3> wlsue v xue )p(Silse1)p(xi|Sp(st 1 X171 8D

Si1:t—1 S¢+1:T

= 37 (501, Xue-1)P(Selse-1)p(xe| S )p (X4 1.7151) 3
o< > p(sealxi1)p(Silsi1)p(xel S)p(xi11.7|S) (@)



Matrix vector form

Let us dey ne the following notation

Oét(j) — p(St:j|X1:t) (1)
Bi() E p(xerrr|Se =) (2)
%) = p(S: = jlxir) (3)

Then we can rewrite the above equation as

Ye(j) o Zat—l(i)Aijbt(j)ﬁt(j) (4)

Furthermore, let us de; ne the one-step ahead predictive density

& (7) < (St = j|X1:4—1) = Zat—l(i)Az‘j (5)

Then we can rewrite the above equation as

Ye(J) o< a(g)be(4)Be(d) (6)
10



Backwards algorithm

Bi—1(1) = pXet1:7]St-1 = 1) (1)
= ZP(St = J,X¢, X4 1.7|St—1 = 1) (2)

J

= ZP(St = J|St—1 = 1)p(x¢|S¢ = 7, Se—1 = I)p(Xe11.7[St = J, Si—1 =(3)

J

— Z p(S; = §|8:—1 = I)p(x¢|S; = 7)p(Xes1.7]S: = J) (4)
= ZAijbt (4)B:(4) (5)

where Equation ?? isjustih ed since X; | X;1.7|S; and Equation ?? isjustiy ed since
X: L S;1|Sand Xy 9.0 LS 1|S:. We can write the resulting equation in matrix-
vector form as

Bi—1 = A(bs. x By) (6)

The base caseis

Br(i) = p(xXr1.7|ST = 1) = p(|ST = 1) = 1 (7)

11



Matlab

Listing 1. Listing of hmmBackwards

function [beta] = hmmBackwards(transmat, obslik)

% beta(i,t) propto p(y(t+1:T) | Qt=i))

[K T] = size(obslik);

beta = zeros(K,T);

beta(:,T) = ones(K,1);

for t=T-1:-1:1

beta(:,t) = normalize(transmat * (beta(;,t+1) . * obslik(:,t+1)));
end

\end{codeCap

\begin{codeCap}{Listing of \codename{hmmFwdBack}}

function [gamma, alpha, beta, loglik] = hmmFwdBack(initDist, trans
%gamma(i,t) = p(Qt)= | y(1:T))

[alpha, loglik] = hmmkFilter(initDist, transmat, obslik);

beta = hmmBackwards(transmat, obslik);

gamma = normalize(alpha . * peta, 1); % make each colum sumto 1

mat, obslik)

12



Avoiding underflow

Oét(j) = p(St :j|X1T = _bt ZAngét 1 (1)
Ct = th(j) ZA’Ljat—l (2)
j i
fal) = 7= 3 Aub()A0) ©
di1 = Y Aibe(§)Be(5) (4)
t
p(St — jaxlzt) — p(St - jlxlzt)p(xl:t) — at(])(H C’T) (5)
T=1
) T
p(xesrrlSi=35) = B()(]]d-) (6)

13



Avoiding underflow

% (j) = p(St=jlriT) (1)
_ p($t+1 T|St —( ])];()St J, T1. t) 2
(I B G (T e)n) 3

Zj/(HT B () ([Thzy er)es(57)
__Ba) ”
> Be(d") e (57)

14



Two-slice marginals

-1 -1
Nij =Y E[(S; =i,S41 = j)lx1er] = > p(Se =i, 841 = jlxrr) (1)
=1 t=1

Et—1.4(1,7) o p(Si—1 = 1,5 = jlx1.7)
x  p(Si—1 = i|x1.4—2)p(X¢—1|St—1 = 1)p(St = j|St—1 = ))p(x¢|St = J)p(Xeg1.7|St = 7)
at—1(2)bs—1(2) Asjb¢ (5) 8 (4)

Et—l,t o< A x (a1 * (by. * ﬂt)T) (2

15



Time and space complexity

 O(T K b) time, b = branching factor

 |n discretization of cts space,
O(T K log K) or O(T K) — Felzenswalb &
Huttenlocher

 O(T K) space, O(T K*2) time
e O(Klog T) space, O(T log T KA2) time (island
algorithm)

16



MAP path
S1.p = arg Iga;(p(sl;T|$1:T) (1)
Max marginals
sy = argmax p(S; = ifx1.r) = arg m?XZp(St = i,8_¢|X1.7) (2)
S_¢
. def .
575 (Z) = S1I-I-1-a:9X—1 p(Sl:t—la St =1, X12t|0)
Op+1(7) = maxdy(i)Aijbet1(7)
Yia1(j) = arg max 8¢ (%) Aiber1(4)
01(7) = m;bi(4)
Traceback
S = argmaxdr(i)
Sf = Yir1(siyg)

17



Viterbi example

01(1) = 05
02(1) = 01(1)A11b2(1) =0.5-0.3-0.3 = 0.045 |
52(2) = 01(1)A12b2(2) =0.5-0.7-0.2 = 0.07 Top N list

Discrim. reranking

18



Fwd filtering, back sampling

ST:T ~ p(sliT|X1:T? 0) (1)

sy~ p(St|5;ﬁk—|—1:T7X1:T) (2)

o p(Selsiy1,X1:¢) (3

p(St = i|Si41 =4, 71:e) = p(St =|Si41 = 7, T1:t, Teg1) (4)

 p(Se =1,8i41 = jlT1ie41)
= — (5
P(St+1 = .7|551:t+1)
_ p(x¢| St = §)p(St = j|Si—1 = ))p(Se—1 = 7:|X1:t—}2
— £6)
p(St+1 = J‘$1:t+1)
Ao (i)biyr(4)

at4+1(7)

(7)

Listing 1. Listing of hmmSamplePost

function [samples] = hmmSamplePost(initDist, transmat, obslik, ns amples)
% sanpl es(t,s) = value of S(t) in sanple s

[K T] = size(obslik);

alpha = hmmeFilter(initDist, transmat, obslik);

samples = zeros(T, nsamples);

dist = normalize(alpha(:,T));

samples(T,:) = sample(dist, nsamples);

for t=T-1:-1:1
tmp = obslik(:,t+1) ./ (alpha(:,t+1)+eps); % b_{t+1}(j) / alpha_{t+1}(j)
xi_filtered = transmat . * (alpha(:,t) * tmp’);

for n=1:nsamples
dist = xi_filtered(;,samples(t+1,n));
samples(t,n) = sample(dist);

end
end 19
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Message passing on a clique tree

 To compute p(X 1), find a cligue that contains X |,
make It the root, and send messages to it from all
other nodes.

e A cligue cannot send a node to its parent until it Is
ready, ie. Has received msgs from all its children.

e Hence we send from leaves to root.

| P 21



Message passing on a clique tree

P(J) = > > (LS Yu(L,G)Y ¢u(H,G, )Y vs(S,D)i(1)Y ve(G,1,D) Y c(C)p(D,C)
L S

G H I D \C’ Py
71227)
= > > w(LLS)Y vi(l,G)Y vu(H G, J)Y ¢s(S,Dr(I) Y 4e(G, 1, D)mi(D)
L S G H I D
TQ(E,I)
§m‘0)= T,(D) (" B,_4(G.J)

¢\~ (¢ D¢ Multiply terms in bucket (local & incoming),
L{‘( () (\}‘ )‘\/0( ) sum out those that are not in sepset,

send to nbr upstream 29



T DN = L e

- I3 =

Upwards pass (collect to root)

Procedure Clres 5um Froduct Up !

g Set of factors

1. Cligue tree over @

o Initial assignment of factors to cligues
Ce Some selected root cligue

]
Imitialize Cligques
while €, is not rewdy
Let €% be a ready cligue
S gty Seppiy) — 5P Message(i, pe(t))

.l'_'-?r = A+ H*@Eﬂh-:.‘r 5]1-_.:‘
return A,

A\
Procedure Initizlize Cliques | / \

| §/(JS ¥

for each cligue €4

1,-::,[1':',] T H-:.:-_,- y -::l:-;r-_,f|=-E¢

Bi(C:) = ¢i(Cy) H Ok—i(Sk,i)

Procedure 5P Message | ken;,k#j
b serding cligue .
1 receiving cligue 51%](‘51’6]) — E : ﬁZ(CZ)

3' Ci\Si;

ﬁ"l:c'.'l] '_ ||‘|l'i ' nkeiﬂbi_{jﬂ E.III.!—"I
™(Si1) — Lops,, HC)
return 7(5; 4]

23



Message passing to a different root

 |f we send messages to a different root, many of
them will be the same

 Hence If we send messages to all the cliques, we
can reuse the messages- dynamic programming!

24




Downwards pass (distribute from root)

« At the end of the upwards pass, the root has seen
all the evidence.

e We send back down from root to leaves.
gr——)Z L'// e

CED
X lzb/ S

ken; AN

5i—i(Sy) = > 6;(C) ] 5k—>j(5k,j)/ \
C;\Si; ken; itk § ‘
5;(C)) s

RV 0i— i (Sij) Use division operator to avoid double counting
J\Pij

25



« Thm 10.2.7. After collect/distribute, each clique
potential represents a marginal probability
(conditioned on the evidence)

Bi(Ci) =) P(x)
X C;
 If we get new evidence on X;, we can multiply it in
to any clique containing I, and then distribute

messages outwards from that cligue to restore
consistency.

26



MAP configuration

 We can generalize the Viterbi algorithm to find a
MAP configuration as follows.

 On the upwards pass, replace sum with max.

e At the root, find the most probable joint setting and
send this as evidence to the root’s children.

e Each child finds its most probable setting and
sends this to its children.

 The jtree property ensures that when the state of a
variable Is fixed in one clique, that variable
assumes the same state in all other cligues.

27



 We can generalize forwards-filtering backwards-
sampling to draw exact samples from the joint as
follows.

* Do a collect pass to the root as usual.

« Sample xR from the root marginal, and then enter it
as evidence In all the children.

e Each child then samples itself from its updated
local distribution and sends this to its children.

28



Calibrated cligue tree

 Def 102.8. A cligue tree is calibrated Iif, for all pairs
of neighboring cliques, we have

> GiC)= Y Bi(Cy) = pi(Siy)

Ci\Si,j Cj\Si,;

 Eg. A-B-C clg tree AB — [B] — BC. We require
> Bav(a,b) = Bue(b, )

. Thm. After collect/distribute, all cliques are
calibrated.

« Thm 10.2.12. A calibrated tree defines a joint

distribution as follows  »(z) = I, iy (50)

= p(A, B)p(C|B) = p(A|B)p(B, C)

A,B)p(B, ()
p(C)

€g p<A7B70): p(
29



Clique tree invariant

e Suppose at every step, clique | sends a msg to

clique |, and stores it in [, ;:
Procedure Send-BU-Msg |
1, sending clique
] receiving clique
]
1 Tisj zc:—nﬁ'!..‘ i;.
2 marginalize the cligue over the sepset
3 3_'.‘ — _5'_1. : 11—::11
1 fli§ ~— Ti—j

o Initially ;=1 and {3 = 1. ass 10 § & HeENCe the
following holds. (o) = L BilC)
b B H<¢j> ,LLi,j(S’ij>

« Thm 10.3.4. This property holds after every belief
updating operation.

30



Out of clique queries

 We can compute the distribution on any set of
variables inside a clique. But suppose we want the
joint on variables in different cliqgues. We can run
VE on the calibrated subtree

*€0 A O—c-p AL-DB—=<D
YR 2; c(RCY)
.y PLMC) P,){w)
) /3 (9
=7 plhe)e )

C

31



Out of clique inference

Procedure CTree-Query |

¢ Clique tree over &
{8ikiisiit, Calibrated clique and sepset beliefs for T

Y A query

Let 7' be a subtree of T such that ¥ C Scope[T]
Select a ['lillur' e 1”1‘" to be the root
'I-I} bR .'jl-i-'l
ST TRy
for rach 2 € Vi
[af
Hi prit)

P — P}
AR .‘JrriJF.[T] —-Y
Let < be some ordering over £
return Sum-Product-Variable- Elimination(d, £, <]

I'fi'i

32
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Creating a Jtree

D:;G

maoralize

- node—sizes

e

.-"--'---l---l
/ etree sim. annealing

= |
/ ? ] e
elim—order

S etree—from—esets ¥ +
/ W -
/ - triangulate
/ s S e S o
/ Ehlil,, sets ' cami W
|III .--"".-.J-l \ * \\K\
| - =T D =
I. _ﬁpruue RIP-prune max—cardinality—search \

'

pe t‘fect—ilim—m'der I

| 1

max—clqs

—max—clqs—from—NMCS

jeraph—from—max—clqs

|
» i \ Y
clg sizes jou -‘;}Jh R[P—Tax—ctqa

max—spanning—tree jiree—from—RIP—clqs

= e

T™jtree=

Murphy PhD thesis (2002) p140 34



Max cliques from a chordal graph

e Triangulate the graph according to some ordering.

e Start with all verfices unnumbered. set counter : := N

o Whule there are siill some unnumbered vertices:
— Letw; = w(i).
— Form the set (' consisting of v, and its (unnumbered’ wneliminated) neighbors.
— Fill in edges between all pairs of vertices 1n C';.

— Eliminate v; and decrement 2 by 1.

* At each step, keep track of the clique that Is
created; If it Is a subset of any previously created
clique, discard it (since non maximal).

35



Cliques to Jtree

 Build a weighted graph where
W;; = |C; intersect Cj|
 FIind max weight spanning tree. This is a jtree.

36
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« Exact inference in clique trees (10.2, 10.3)
e Approximate inference — overview
* Loopy belief propagation (11.3)



Message passing on a clique tree

* To compute p(X), find a clique that contains X,
make It the root, and send messages to it from all
other nodes.

e A cligue cannot send a node to its parent until it Is
ready, ie. Has received msgs from all its children.

e Hence we send from leaves to root.



T DN = L e

- I3 =

Upwards pass (collect to root)

Procedure Clres 5um Froduct Up !

g Set of factors

1. Cligue tree over @

o Initial assignment of factors to cligues
Ce Some selected root cligue

]
Imitialize Cligques
while €, is not rewdy
Let €% be a ready cligue
S gty Seppiy) — 5P Message(i, pe(t))

.l'_'-?r = A+ H*@Eﬂh-:.‘r 5]1-_.:‘
return A,

A\
Procedure Initizlize Cliques | / \

| §/(JS ¥

for each cligue €4

1,-::,[1':',] T H-:.:-_,- y -::l:-;r-_,f|=-E¢

Bi(C:) = ¢i(Cy) H Ok—i(Sk,i)

Procedure 5P Message | ken;,k#j
b serding cligue .
1 receiving cligue 51%](‘51’6]) — E : ﬁZ(CZ)

3' Ci\Si;

ﬁ"l:c'.'l] '_ ||‘|l'i ' nkeiﬂbi_{jﬂ E.III.!—"I
Tl:-lg-’_-l-:l-:l — Zci—Si,j |||'I'|:E,'l!.:|

return 7(5; 4]



Downwards pass (distribute from root)

« At the end of the upwards pass, the root has seen
all the evidence.

e We send back down from root to leaves.
gr——)Z L'// e

CED
X lzb/ S

ken;
J P A\
5i—i(Sy) = > 6;(C) ] J5k—>j(5k,j)/ \
C;\Si; ken; itk § ‘
5(C) U S

RV 0i— i (Sij) Use division operator to avoid double counting
J\Pij



« Thm 10.2.7. After collect/distribute, each clique
potential represents a marginal probability
(conditioned on the evidence)

Bi(Ci) = Y P(x)

e If we get new evidence on Xi, we can multiply it in
to any clique containing I, and then distribute
messages outwards from that cligue to restore

consistency.



MAP configuration

 We can generalize the Viterbi algorithm from HMMs
to find a MAP configuration of a general graph as
follows.

 On the upwards pass, replace sum with max.

e At the root, find the most probable joint setting and
send this as evidence to the root’s children.

e Each child finds its most probable setting and
sends this to its children.

* The jtree property ensures that when the state of a
variable iIs fixed in one clique, that variable
assumes the same state in all other cliques.



 We can generalize forwards-filtering backwards-
sampling to draw exact samples from any GM as
follows.

* Do a collect pass to the root as usual.

« Sample xR from the root marginal, and then enter it
as evidence In all the children.

e Each child then samples itself from its updated
local distribution and sends this to its children.



Calibrated cligue tree

 Def 102.8. A cligue tree is calibrated Iif, for all pairs
of neighboring cliques, we have

> GiC)= Y Bi(Cy) = pi(Siy)

Ci\Si,j Cj\Si,;

 Eg. A-B-C clg tree AB — [B] — BC. We require

S B = 3 Buelt,
. Def 10.2.11. The measure defined by a calibrated
tree Is defined as

1; 6:(C

i)
pr(z) = I1- ij> Mi i,5(Sij)




Calibrated cligue tree

« Thm 10.2.12. For a calibrated clique tree,
P(X) o< Br(x) Iff B;(C)) o< p(C))

* Pf (sketch). Assume A-B-C. Then

A,B)p(B, ()

~
pl4, B,0) = p(B)

= p(A, B)p(C|B) = p(A|B)p(B, C)

10



Clique tree invariant

e Suppose at every step, clique | sends a msg to

clique |, and stores it in [, ;:
Procedure Send-BU-Msg |
1, sending clique
] receiving clique
]
1 Tisj zc:—nﬁ'!..‘ i;.
2 marginalize the cligue over the sepset
3 3_'.‘ — _5'_1. : 11—::11
1 fli§ ~— Ti—j

o Initially ;=1 and {3 = 1. ass 10 § & HeENCe the
following holds. (o) = L BilC)
b B H<¢j> ,LLi,j(S’ij>

« Thm 10.3.4. This property holds after every belief
updating operation. (But only when fully calibrated

do clqg pots = marginals.) .



Summary of exact inference

 Build clique tree
— eliminate nodes in some order
— collect maximal cliques

— Build a weighted graph where
W; = |C; intersect C||
— Find max weight spanning tree

 |nitialize cligue potentials with model potentials and
evidence

Do message passing on the tree

12
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Approximate inference

(/\f/
/
Bdot(/‘f 82 [\7/(
410 / \.
e /)Cé

14



Inference as optimization (11.1)

e Goal: find minD(@[IP)

+ Thm 11.1.2
win DQIIP) = DQIIZP) = Y Q) log QX) — Q(x) n Plx) + InZ
= an—F(P,Q)m
F(P,Q) = Ho(x)+ ) Ea~qlno(z.)

where F Is the energy functional, and —F is the
Helmholtz free energy

e Since D(Q||P) >=0, In Z >= F(P,Q). We will
maximize a lower bound on the log likelihood wrt Q.

15



Factored energy functional

 Consider a Q based on a cluster graph
Qz{ﬁiZiGV}U{Mi,j : (Z,]) Eg}

 Def 11.2.1. The factored energy functional is given
by the following, where we approximate the entropy

on
ZECNQ ln¢ +ZH§ Z

<13>

e Thm 11.2.2. If Q Is a set of calibrated beliefs for a

tree, and Q has the form () = 115
H<zg>'LL J(S )
then

16



Exact inference as optimization

* Define the local consistency polytope as (p381)
the set of distributions
QZ{ﬂi:iGV}U{ILLi,j : (’L,]) Eg}
which satisfy
pii(Si) = Z Bi(Ci)

Ci\Si,;
Z Bi(ci) = 1

Bi(c;) = 0
« Thm 11.1.1 If Q Is a calibrated clique tree, which is
an |-map for P, then
maneLocaIF(RQ)

has a unique global optimum, in which Q=P

17



Constrained optimization

C Tree-Optimize

Find Q={B8;:ieVrilip;;: (i j)eér}
that maximize F[Fg, ]

piglsigl = ) Bileil

Ci—8.
subject to V(e j) € &r, V85 € Val( Sy )
Sl = 1 Viev
Bile;] = 0 i e Vr, ey € Val(C,)
J = F[P:.Q]
Sy (z Biled - 1)
=V Cy
=303 3 Aalsaal | Y Ailed - palsial | -
i jENby 54 ey w8y g

18



Msgs = Lagrange multipliers

J = F[Ps.Q)

-3 A (Z’: Biled] - 1)

=V

=303 Ailsadl ( > file] - #i.j[ﬁi.j]) -
i jeNby &4y ey re By g
a
——J = Imiyle;] —InFifes] — 1 — A — Ajsi |84,
— i - In il 3 A
0 7 I [2i] + 14+ Aijsig] + Ajilsig]
; o= A G5 i— 3 |94,3 j—i[5i.4]
EAE fi 354 3|84 j J

Bile] = exp{—1—N}uled] [ exp{—Aj—i[sis]}
FeNby

i ilsis] = exp{—1}lexp{—Ai_;[sii]}exp{—Aii[sis]}-

Bivjl5i5] = exp {—%—-j [si] — %} -
19



Msgs = Lagrange multipliers

« Thm 11.2.3. A set of beliefs Q Is a stationary point
of CTreeOptimize Iff there exist a set of messages
such that

Dy O Z i 1__[ O
-8y, 5

keNb, —{4)

and moreover. we hove thaot

B oo Yy H Ojvi
jelNby

i = Oji 0.

20
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Cluster graphs

 If the cluster graph is a cluster tree with RIP, then
the factored energy Is equal to the energy, and
enforcing local consistency Is equivalent to
enforcing global consistency.

 However, the cligues may be too big.

e Let us consider general CGs which only have to
satisfy the RIP constraint.

 Hence all edges associated with some node X form
a tree and all clusters agree on the marginal for
each X. However, they may not agree on higher
order marginals.

22



Examples

23



Belief prop on a cluster graph

 We can run the BP algorithm ona CG even ifitis
not a tree. This Is called loopy BP.

* This can fall to converge and give the wrong
answers due to double counting of evidence.

Ly
h, = :
Pra’)
T
)
g




 Channel coding is a way of encoding msgs that
makes them resistant to noise, and hence easier to
decode.

e Let us send a k-bit msg u(1:k) using n bits, x(1:n)
eg x = 3 copies of u. We receive y(1:n) and
estimate u. The rate of the code is k/n.

e Shannon’s thm characterizes the best rate one can
achieve for a given error rate and noise level.

e Turbodecoding is a method to approximately
estimate u from y which achieves near-optimal rate.
It Is equivalent to loopy BP In a particular DGM.

25



K=4,n=7 parity check K=4,n=8 turbocode

26



Convergence (11.3.4)

* For discrete networks, one can show that a
sufficient (but not necessary) condition for LBP to
converge Is If the connections are not “too
deterministic”.

e Eg for Ising model, sufficient condition is

INax ITax E t--ﬁ.]l].l |lf".:rlz | < ]. .
i g=Nb;

e Similar conditions exist for Gaussian networks.

e Special case analysis has been derived for
turbocodes.

27



Encouraging convergence

 One can use damped updates

Bij — Z || R (CZ HJH) +(1— Ayt
"4

Ci—8 5 k24 — 8y 5 kH#i
e Asychronous updates work better than sychronous.

* Tree reparameterization (TRP) selects a set of
trees, each of which spans a large number of
clusters, and whose union covers all the edges. It
then selects a tree at rnd and calibrates It, treating
all other messages as local evidence.

* Priority-queue based msg scheduling also works
very well.

28



Example: 11x11 Ising
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Accuracy

e In general, it Is hard to characterize the accuracy of
approximate solutions. Often the most probable
state Is locally correct but Iis over confident.

e For Gaussian networks, Weiss et al showed that, if
the method converges, the means are exact, but
the variances are too small.

30



Bethe cluster graphs

e Suppose we create one cluster for each original
factor, and one cluster for each node.

_\.’1'1,1HH\.A1,1 . AI,Z_:_‘_A 1,2._,—[.*"1,2 . A1,3._J'—__.A 13

i q N . ) = ) ) ) )
|:| ABE| lEB”:' | [;:n,n_r— .| 4:BE| |5DE Ay Ay A AzzJ Ay, Agy
| | | |
el (Ap HAy A AL, AL, A — A,
(6] [me] [we) (0] [1wE] [wF Tz'l Ses —lz’z . _|2j
:Az,1 ' Aa,lj Azz ' Aaz)l lﬂz,ar Aaa

_._A3,1_.H__!"'-3,1 cAszam AspTAse, AgaAsg

 Then for a pairwise MRF, propagating C; — C; — C;
IS equivalent to sending msgs from node i to nhode |
via edge 1Ij.

* In general, BP on the Bethe CG = BP on the factor
graph.

31



BP on factor graphs

Bishop p406

Hfi—ra; xﬂ Z f CZ H ka%fi(xk)

ci\e; kenb(fi)\a;

Mz, — f; (:Bz) — H K fr—rz; (xz)
kenb(x;)\ f; 32
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« Belief propagation: entropy approximations (11.3.7)
* EXpectation propagation (11.4)

« Mean field (11.5.1)

« Variational EM/ Bayes (Bishop 10.1-10.2)

e Structured variational (11.5.2)



Bethe cluster graphs

e Suppose we create one cluster for each original
factor, and one cluster for each node.

_\.’1'1,1HH\.A1,1 . AI,Z_:_‘_A 1,2._,—[.*"1,2 . A1,3._J'—__.A 13

i q N . ) = ) ) ) )
|:| ABE| lEB”:' | [;:n,n_r— .| 4:BE| |5DE Ay Ay A AzzJ Ay, Agy
| | | |
el (Ap HAy A AL, AL, A — A,
(6] [me] [we) (0] [1wE] [wF Tz'l Ses —lz’z . _|2j
:Az,1 ' Aa,lj Azz ' Aaz)l lﬂz,ar Aaa

_._A3,1_.H__!"'-3,1 cAszam AspTAse, AgaAsg

 Then for a pairwise MRF, propagating C; — C; — C;
IS equivalent to sending msgs from node i to nhode |
via edge 1Ij.

* In general, BP on the Bethe CG = BP on the factor
graph.



BP on factor graphs

Bishop p406

Hfi—ra; xﬂ Z f CZ H ka%fi(xk)

ci\e; kenb(fi)\a;

Hx;— f; (Zlﬁz) — H M fr—ra; (CIJZ)
kenb(x;)\f; 4



Bethe approximation to entropy

« Thm 11.3.10. If Q Is a calibrated set of beliefs for a
Bethe approximation CG then the factored energy
IS given by

F(P,Q) = N Es,lné+> Hp,(Cs)— Y Hy (Ss)
@ ¢ s

= ) Eg,lng+ Y Hg,(Cy)— > (di — 1)Hpg, (X;)
(0 ) i

where d_| = #factors that contain Xi.

 |If Xi appears in di factors, by RIP, it appears in (di-
1) sepsets. Hence we count the entropy of each Xi
once In total.



Weighted approximation to entropy

e Consider a cluster graph, each of whose clusters
(regions) has a counting number p,. Define the
weighted approximate entropy as

HS(X) =Y urHp, (C)
e For a Bethe-structured CG, we set

,LLZ':]_— Z:ur

renb;

 If we set ,=1, we recover the Bethe approximation.
e Let us consider more general weightings.



Convex approximation to entropy

* Def 11.3.13. We say that U, are convex counting
numbers if there exist non-negative numbers v, v,

Vl‘,i St [y = Ve Zi . X,eC, Vri for all r
B = Vi—)... X,eC, Vri far all i
e Then
Z;::.TH; +Z£!1H¥.¢,X ZMH;; )+ Z ves(Hg (Cr)—Hg, (X;) ZMH;_!_Y:
r ™, 11_1:6

« Thm 11.3.14. The above egn is concave for any set
of beliefs Q which satisfy marginal consistency
constraints.



Convex BP

Algorithm 11.2 Convergent message passing algorithm for Bethe-structured re-
gion graphs with convex counting numbers

Procedure Convex-BP-Msg |

-'._L'-',‘[f-‘,.] set of imtial potentials
Tisr{Cp) Current nodeto region messages
|
1 for i=1,....n
2 Compute incoming messages from neighboring regions to for v € WNhy
X; ,
. s 4 . L - 4 " iji.!"
3 br—i(Xi) — 2o._x, (*"f[{*v] | P Cr:'—”"[{""])
l Compute beliefs for X; renormalizing to avord numerical
underflows o
0 :-I'i [_,-jfi] —_— i HT‘E Nb, ["-l"r_;.-;i[_-if.;i ] :Il-"ilr.l'ril'l
¥ Compute outgoing messages from X, to neighboring re for r € Nhy
gians
_;J-_r ¥
Sl o - 3 - q 1M Jj:l}f'I F
| Tisr(Cr) — (t"‘"[':""“] [Lenb,—g3) Hj_fi{""") (ér_.r_.‘fsl) /
B return 'IL':'-i'-—;-r'f{'i'r' :'JI’i.rENb. r\ r
o
Vi = Vi + E Vr; Vi = Uy + Vir.

?’ENb:




TRW

e Tree reweighting algorithm (TRW) uses the
following convex counting numbers, given a
distribution over trees T st each edge In the
pairwise network is present in at least 1 tree

pi == rsx, PT)
Hij = Z’I SN X)) !':”[T]'



Convex or not?

 When standard BP converges, the Bethe
approximation to the entropy Is often more accurate
than the convex approximation.

e However, It IS desirable to have a convex inference
engine in the inner loop of learning.

 If you train with a convex approximation, there are
some arguments you should use the same convex
approx at test time for decoding.

10



Region graphs (11.3.7.3)

 One can use more general CGs than the Bethe
construction, which lets you model higher order
Interactions which are intermediate between the
original factors and singletons.

« Resulting algorithm is complex.

& A,B.C} [z: a*::_n| ['3:.q,c*n|

aBC | [ 5:ac | [ &CD |
Y

11
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Approximate messages

e Suppose we use a cluster tree (or graph), but
approximate the messages eg. to prevent them
becoming “too fat”

 |f the clusters have internal structure, we can
efficiently combine factored incoming messages
with factored clusters to get factored outgoing
messages

 We can also use this to combine non conjugate
distributions: eg we approximate a non-conjugate
likelihood by a simple form (eg MVN) and combine
with a simple cluster potential (eg MVN) to get a
simple posterior for the next step

13



Assumed density filtering (ADF)

e Consider sequential Bayesian updating in which we
assume the prior p(6,,|y;...1) lives in some tractable
family Q (eg MVN).

e At each step, we do 1 step of Bayesian updating to
get the posterior p(6,y,..) and then do an M-
projection to get the best approximation within Q
(=moment matching for linear exp fam)

. s |

o
Bt — D¢ G ER by v
[
v Eg y/\theta, = logistic(y, x," 6,), 6,=6, ,

Eg. y/theta, = Gauss, theta, | theta, ; = mix Gauss
14



ADF cont'd

 We combine msg from past (prior) with local
evidence (likelihood), project, then compute new
msg

bt—l,t X ¢t—1,t,ut—1
b1+ = Proj(be—1,:, Q)

Mt = Z Bt—l,t

15



Expectation propagation

e For batch problems, ADF is suboptimal, and
depends on order of data.

 EP Idea: add backwards pass

tt+1 s |
7 % - /7 %
bt,t—l—l = proj (bt,t—|—17 Q)

x 7 %
He = E:bt,t—l—l

t+1

e Since msgs no longer exact, need to iterate

16



Division = subtraction of natural params

 Assume all beliefs and msgs are linear exponential
families. Then
- ':::r:'_..ai i " r w &
Qg = ﬁ ?’JE:{P{‘._[Hﬁ_J _HJJ_,J-'_:'._?LH:'._;'J.:'}
« This can result in negative values for the natural
params (eg Gaussians with —ve variance).

e But undirected GMs with tabular potentials are In

the linear exp family and can always be used to
represent valid beliefs/msgs

17



« How compute natural parameters of a msg?

 Compute the expected statistics of the separator,
according to the current approximate beliefs

05, — M-project, ;(Eg, 5 [Tij(Si;)]) —6; _ -

4
t—

 Computing the expectation can be made tractable If
B, has factored structure.

* |In general, the M projection can be hard.

« But if we have discrete variables, and Q is fully
factorized, it amounts to computing a product of
marginals.

18



Variational analysis

 We optimize the same (approximate) objective as
before (factored free energy), but relax the local
consistency conditions so we only match statistics
(eg marginals) instead of full distributions

EP-Optimize

Find o
that maximize F[Fg. ()]

Es, ,op ;T3] = Es, j~a,[m] ¥ j) €€
z.-'jli[ﬂi] = 1 Wi € Vr
subject to o
Suislsis] = 1 Vi jeér
8.3
Bile;] = 0 Vi € Vr.e € Val(C;)

19



EP msg passing

« Thm 11.4.5. Let Q be a set of beliefs st ; Is In the
exp family Q;. Let M-project-distr;; marginalize onto
S;j and then project onto Q;. Then Q Is a stationary

point of EP-optimize iff there exist auxiliary beliefs 0
such that

M-project-distr; ;(3;)

1— =
053

Bi oo - H 'ﬁ.}'_’i

Fj=Nby
.“"é.J 4 {l.'i_li_z"l'iij_—j.

20
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(4, = | < |
|l| _-"A "'\.I :
) o |
Q‘]) (4, F=C A, )
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Structured messages

o
(A =4 )

IE

ey

o,
-9
.II"'
e
-

=

o

it

 The Q distribution (onto which we project) can be
any structure that makes computing marginals
efficient, eg a chain or cligue tree.

o
B
I
1]

i
na
B
L

22



23



Summary so far

e Let us summarize the BP and EP methods, and
then introduce a new class of variational methods

24



BP on Cluster graphs

 |In CGBP, we made 2 approximations
e 1. Optimize a bound on D(Q||P)

D(Q||P) = an—F(P, Q)
F(P,Q) = Hq(z)+ Y Eongmii(Ch)
e 2. Use pseudo margmals By, K and thus
approximated the entropy H(Q) and hence used the
approximate bound

PQ defZECNg ln’gbz—I—ZHB Z

<13>

Thm 11.1.2

 We then optimize the approximate bound subject to
local consistency constraints over some cluster
graph

25



CGBP objective

Find Q={B:ieVriUip,;:({ j)eér}
that maximize F[Fs.(]]

piglsis] = ), Bilel

-8y
subject to Wi j) € Er,¥s; 5 € Val(Si;)

1 i e -1-'?;"

Z 3:[e]

3 [es]

W
=
=
iTi
e
h-;|
i
T
(5

If the cluster graph is a cluster tree, this is exact

26



* In EP, we make the same 2 approximations as in
CGBP, but we also relax the local consistency
constraint so that now cliques only have to agree
on their expected sufficient statistics, not on their
distributions

Find Q
that maximize F[FPg, Q|

I"Sa:j-“'r-h,_r [Ti-j] = f'fS.h,-\-_S_,[Tf.i.:j] I"w'r'l'\! J:l e Er (11.41)
Z Biles] = 1 Vi e Vr (11.42)
subject to =
Y miglsig] = 1 W(ij)eér (11.43)
HIIJ
Bile;] = 0O WieVr,e; e Val(C;)  (11.44)

Even if the CG Is a tree, this is no longer exact (in general)

27



Variational methods

 The problems with BP and EP are

— They do not monotonically increase a lower bound on
In Z

— They may not converge (except convex BP)

e Let us now require Q to be a coherent probability
distribution (of tractable form). Hence we can now
compute the exact entropy and optimize the exact
objective

D(Q||P) = ImnZ-F(P,Q)
F(P,Q) £ Ho(z)+ Y Ecinqnyi(Cy)

* This always increases the lower bound and will
always converge

28



Mean field approximation

e Let us assume the approximate posterior is fully
factorized

= H Qz(%)

 Then the objectizve (negative free energy) Is

F(P,Q) « —I-ZEX ~@In¢e(Xe)
ZH (Qs) +ZZ [[@i(ze) nge(ze)
« Eg 4x4 grid O(n, K?) for energy, O(n, K) for H

FlPy.q] = I{A Az g nelAny As g+ Erag aa g -~gllnelde . Az )]+ Frag aa-g]

E t;'[]“fﬁ"lﬂi 1Al + Egllng{Adya, Ay aj] + Fglng(Ay 5. A 4)] +

P

Pt

”Q'.,-qi,i_] + Illqull'.qilg_:l + Illqull'.qilg_:l + Illqull'.qil.i_:l +

Hgldaa) + HoilAag) + HolAsa) + Hgl{ Aaa)



* Objective is concave in each arg (entropy Is concave in
each Q |, expected energy is linear in Q i)

ZH Qi) +ZZ []Qi(zc) Inge(z.)

Zc ’LEC

 The set of completely factorlzed distributions is not convex

a: _ )\HQl wi _|_ 1 _ HQZ2 wi Not factorized

7 1
 Hence we are optimizing the objective over a non-convex
space, and will be subject to local maxima

e Let us derive equations that characterize the fixed points.
These could correspond to saddle points or local minima,
but such points are unstable and unlikely to be the result of
our iterative update scheme.

30



e Define

<f(wh (kﬁ 2{: {[I}inxz}

Th 1€h

Fan)ie = S | T @] fzalz; = k)

wh\wg ’I,Eh 7’7&]

(f(zp)) = ZQJ z; = k)(f >>

Inp(z,) > Zﬂnqbc zc)) +ZH Q:)

Z Q;(k Z Ingc(xzc))jne + H(Qj5) + ZH(Qz)

17

We mostly follow Tommi Jaakkola’s notation rather than Daphne Koller’'s 31



Mean field equations

8Qj(k)L(Qj’)\) = Sjk—InQ;(k) —1+A=0
Qj(k) = exp(Sjr)exp(A—1)
- Zi exp(3(In 6o(20)) 1)

32



Example: grid

(HNr;) = = exp Z Fu,—(x,~qInd(Ug, ;)]
b W = M ea [-:;If:']

Zﬁ:, 1,4 {;,:J'Lﬂi_ 1.3 l'lnlx'ﬂ-"rﬂi- 1.5+ '5'!1_7;':""

' ' L Zﬂz 1Q|~ﬂij—111ntmrﬂaj 14 '5'5-:-_?;':'4-
Qai;) = EXP 4 4= -
. ":E.'!'.-l| ZE-=+1jan.ﬂ'!--l-l_';l_.l]-nrtl-"rﬂ-;}..ﬂ-l_l_lj;l;l—'—

ZE: A4l Qlta‘!-_',‘-l-l.-l]'llrh'lrﬂ-;jk -!__-;|+1_:|_:|

)

>
L

>>_(
M
™
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e Suppose we want to find a MAP estimate

maxlog p(6) + logp(s|0)

. If we have latent variables Z we can use EM
e E step: compute expected complete data log joint

N
£(0,001a) = logp(0)+ > > p(z|Tn, Oora) log p(z, zn|0)
* M step: set n=1 z

Orew = argmax f(6,0,4)

35



Variational EM

« Consider the negative free energy
F(z,Q,0) = ZQ ) logp(x, 2|0) + H(Q)
» Earlier we showed this is a lower bound on the log-

likelihood
F(z,Q,0) = InZ(z,0)— D(Q||p(z|z,0))
logp(z|d) = InZ= mng(x,Q,H) = F(z,Q",0) > F(z,Q,0)

« Where the bound is tight if Q*(z) = p(z|z, )
* E step: find Q,(z) that maximize
F(xannaeold)

M step: find \theta that maximize

36



Variational EM

 An exact E step Is equivalent to setting
Qn(z) = p(2|Tn, Oo1a)
e The corresponding M step maximizes

Y F(20,@Qn,0) = > D> p(zlen, 0o1a) log p(z, 2,|0)] + H(Qn)

n

= f(6,00a) + > _ H(Qn)
» Since H(Q,) is independent’of 0, this reduces to the
standard EM algorithm.

 Generalized EM merely increases (not maximizes)
0 in the M step.

» Similarly we can simply improve Q,, in the E step

Neal and Hinton, “A new view of the EM algorithm”, 1998 37



Variational Bayes

 We can replace the point estimate of 8 with a
distribution and try to minimize

D(Q(leNa e‘xlzN)Hp(Zl:Na e‘xlN))

e The distinction between E and M vanishes: we are
just doing sequential updates of Q(Z,) and Q(0)

* This gives us the benefits of being Bayesian for the
same computational speed as EM

38



VB for univariate Gaussian

exp (Ei;[Inp(X, Z)]) Ingq(Z;) = Eiz[lnp(X. Z)] + const.

q;1Z;) =
[ 0 Esplup(X.2)) 0z,

plulr) = N (pluo, (hor)™")

g N
N2
' V2 .
) exXp {_ E (Tn — ) } p(r) = Gam(r|ag,bo)
' n=1

p(Dlu7) = (

b2 | =4

o
:—]|'°'

qlpe. 7) = qulp)g- (7).

Gaussian
Ing,(p) = E,[lnp(D|p,7)+Inp(u|r)]+ const. Aopo + NT
iy = -
i v i Mo+ N
== —“[I] ;"ku[;.!—,mﬂz-l-Z[,t' —,u)z + const T
2 E 4 k- e Ay = I:,:"u:. + N ﬂE[T]
Ing:{v) = E;[lnp(Plu,7)+Inp(u|r)] + np(r)+ const. Gamma
N _
= (apg—1)In7T —bg7 + :llnr N+1
2 ay = ap+  ——
N 2
T i s o .
_EIE:,:_; [Z_;[.E‘ﬂ — w4 Aolp — pe) ] + const, by = bo +%IE.'._: Z(-E‘n B ,t-!:lz 4 hol(p — |l'.-!|:|:|2 .

T

Bishop p471 39



VB for univariate Gaussian

2
(a)
T
0 : 0 s
-1 0 H 1 -1 0 H 1
2 2
(c) (d) rrgence
T
1t il
( i (
0 0
~1 0 H | 0 H |

Green = exact posterior (NormalGamma), blue = factorized approximation
40



VB for mixtures of Gaussians

Inference
gl 7w, p. A) = q(Z)g(m, p, A).

Ing*(Z) =E, ,allnp(X, Z, 7, g, A)] + const.

N K
In g*(Z =ZZ Znk 1IN pni + const.

'|_=

-

o
i

i

I'“

P W R

Inpn = Elnwm]+ lr.L[Jiulr'LkH — 2 In{27)
l i
_EIE-“'::sﬁk- _l-rx‘“ — ) -"'Lkixﬂ - .I’-f;;;']
N K
qalzz;l o H ]:[pi:;;
n=1 k=1

Multinomial (soft responsibilities), as in EM,

N

X 2w . A) =p(X|Z, p. A)plZ|m)p(w)p(p. A)

K

p(X|Z, . A) = Hﬂvmm )

1 k=1

N K
p@m)= [T T~

n=1 k=1

K
p(m) = Dir(m|ag) = Clexg) [ [ 75

K

plp, A) = H,.x-’ (1| mo, (BoAx) ') W(ALWa,ro)

k=1

except we used expected parameters rather than plug-in

41



Automatic model selection

e Recall t~ Dir(a). If a << 1, we prefers skewed Tt
and hence sparse z.

« MAP estimate from regular EM is

R Zn’I‘nk—Fak—l N +a—1
T — —
g >tk +ar—1) N+Ka—-K

e Posterior mean estimate from VB IS

>onTnkTar  Npyt+a  «

— 3 >()
Zk(rnk+ak) N+Ka N+ Ka

T

42



Selecting K with one run of VB

43



Variational message passing

e Consider a DAG model

plx) = 1_[33{:-:1|pa.1_1
 The mean field equations are
In q_':l:::{J:l = By [Z '.n_ﬁ{}:||p5.|fl] 4+ const.

i

 The only terms that depend on X_jare in x_J's
Markov blanket

 |f all CPDs have conjugate-exponential form, the
VB updates can be converted into a msg passing
algorithm

 VIBES software (John Winn)

44
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Structured variational approx

Rather than assuming Q is fully factorized, we can
use any structure for which computing the
expectations of In ¢. and the entropy Is tractable

(A —A)
>|< A A — e — A Ay Ara A A
Az Az3 | | | |
;Ii >|< e As — R Aus Azq Az A A
Ay —(As 5 i | | |
>I< >|< Axy L Axa i\ Aaa i Aay Az Az Aszs A
Bazg)—(Les) | | | |
LA — '_""1_2___ "u'-i__; 1 -'“-.;_4_ Mgy -'"u_z_ A A

¢ = model, Y = approx

—_—

QX) = o;

1
EQ}

1
=

Corollary 11.5.13: If Q) = ﬁ 1_[_?. . then the potential @y is o stafionary point of the

energy functional if and only if:

rley) o exp {EQ [ln Py | {:j] — z Egny | e } . (11.59)

kg
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e Forward sampling (12.1)

* Importance sampling (12.2)
« MCMC (12.3)

e Collapsed particles (12.4)

e Deterministic search (12.5)



Monte Carlo integration

 The goal is to approximate E[f(X)] for some function
f eg f(X) = 1(X;=k), s0 E[f(X)] = p(X=k)

e Usually we take expectations wrt p(X|e), where e Is
the evidence

 |f we can draw samples X ~ p(X|e), we can
evaluate the expectation thus:

1 M
Ep(f] =~ i z flx[m]).

m=1



Error analysis

Let i = E[h{X)] be the exact expected value, and fs a Monte Carlo approximation based on 5 samples. One can
show a central-limit type theorem

- . |:|'2
(fs —p)=N(0, =) (16.6)
where @ = Var [l( X)]. The latter quantity can itself be estimated by MC:
1 5

2= =Y (f(0°) - fs)? 16.7
& 5 ;‘f (6°) - fs) (16.7)

Then we have . B
P {;L 196 _<f <u+ 1.136;} ~0.95 (16.8)

Ve VS

=0, . 0o . .
The term 4/ % 1s called the (numerical or empincal) standard error. Thus we see that the error in our MC estimate

goes down at a rate of 1/+/S.



Forward sampling

e To sample from the prior p(x) of a DGM Is easy:
just sample each node In topological order,
conditional on its parents

 To sample from the prior of a UGM is much harder
e Usually we want to sample from the posterior p(x|e)

 We can use forwards sampling and throw away all
samples that are inconsistent with e; this is called
rejection sampling (“logic sampling” in the context
of discrete DGMs) and iIs very inefficient






Unnormalized importance sampling

e Often sampling from P Is hard

e Suppose we sample from a proposal distribution Q
Instead. All we require Is that P(x)>0 => Q(x)>0

P(X] FPix)
E [ X = M) 1
c;‘-g:-i:;[f ’Iﬂjl'rX ] Z x)flx) O(x)
= Zfr;um
= Epx)lf(X)]
En(f) = Z fu[m];P"‘r[m]:' Unbiased estimator
P Qzlm])’



Variance

« Variance of estimator given by

¥ ]

a : PRy . , . : P , . , W
oh = Egux) [(F(X)w(X))*] = Egu [(f(X Jw(X))]
Eqixy [(fIX)w(X )] — (Epx [f(X)])7

e Let f(X)=1. Then variance is variance of P(X)/Q(X)

-

. POXONY (o [POOTY
koo | (gxs) ] - (#am|grx] )

-

. Variance will be large if Q(x) << P(x) f(x)



Normalized importance sampling

Often we only know P’(x) = a P(x) with unknown o
e Define

P(X)
QX))

wi X | =

Then

FL.I‘J ~
Eoixy|lw( X )| = r)— = Fle) =o.
Qx| | ZQL ) Q) >

&

Epxy[f(X)] = Z Plx)f(x)

FPlx)
= Z Q(a ‘fLJ‘J—J

J"I
O a)
- _y fleim|w(x|m|)
= l‘:r-?l;xJ[kaJwLXJ] Enif)= Zm. l.nf [ ] [ ]
E S _jwim[m])

Eg x) [fIX Jw( X )]
Egix)[w(X)]

= = ZQLrJffN




e Biased estimator
Sy fla[m]jw(x[m])

E;:Ll w(x[m|)

e Eg M=1. x[lj Q has wrong mean

Ep(f) =

_ﬂ,::‘[l] jur(a[1])

o([1]) = flax[1]).

e But bias -> 0 as 1/M since numerator and
denominator are both unbiased

10



Variance

e Variance ->0 as 1/M

l'nrp[t'-p[f[X”] A ﬁl';u‘p[ﬂ.}(}][l + Varg[w{ X ]},

« Variance of optimal estimator is  varls(xi/m

* Ratio s 1
1+ Warg|w(a)|

« Effective sample size

M
Meg = 1+ Var[D]
M M
Var[D] = ) w(zm])® — () w(x[m])>.
m=1 m=1

11



Likelihood weighting

e Let us apply importance sampling to a DGM where
the proposal is as follows: do forwards in the
mutilated DGM where observed nodes are clamped

to Z=z7
w(é) Ps(£)

« Prop 12.2.5. Weights are P

Algorithm 12.2 Likelihood Weighted Particle Generation

Procedure LV-sample |

B, Bayesian network over A
s =z Event in the network
1 Let Xy,...,Xq be a topological ordering of A
2 w — 1
} for :=1,..., 1
l u; — x{Pax,) Assignment to Pax, in @1, ... ,3i-1
b if X; & Z then
§ Sample x; from P(X; | u;)
7 else
B Ty — 2{X;) Assignment to X; in 2
d we— w- Pla; | uy) Multiply weight by probability of desired value
10 return (ry,...,: Ty ). W

12




Using LW weights

« Recall that E[w(X)] = a = p(Z=2)
« Ratio likelihood weighting: run LW twice for each y

ﬁ"ﬂ[yﬁ} - 1.-““12;.&:1 w(m]
Ppr(e)  1/MM iim]

Pp(y |e) =
 Normalized likelihood weighting: run LW once, and
use samples to evaluate any query

Loy il Hyfm] = v} = p(y,2)/ p2)
S g w[m]

Pp(y | e) =

13



Efficiency

« Although LW does not “throw away” samples that
are inconsistent with e, it down weights them

 |f the evidence Is at the leaves, the samples are
drawn from the prior and may be assigned low
weight

« Backward importance sampling (evidence
reversal): If X->Y=y, sample from Q(X) «x p(Y=y|X)

* |Importance sampling does not scale well to high
dimensions, because hard to make Q match P

14
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MCMC

 Markov Chain Monte Carlo constructs a Markov
chain whose stationary distribution is equal to the
posterior p(x|e).

» Metropolis Hastings: only need proposal Q(x’|x
and agility to evalgate X) = p(xl?e)poc p(x% 1¥)

e Gibbs: only need ability to sample full conditionals
p(xi|x(-1),e)

16



Metropolis Hastings algorithm

 We propose q(X’|x) and evaluate a=mi(Xx’)/Tq(x)
e |If a>=1, we accept, otherwise we accept wp r

o Always accept uphill move, occasionally accept
downhill move

 If proposal is asymmetric, need Hastings correction

n(2)q(zle’) _ m(a')/q(a’]e)
m(z)g(z'|z)  w(x)/q(z]z’)
= min(l,a)

¥ =
A

17



MH pseudocode

Initialize =°

fors=10,1,2,...do
Sample =’ ~ g(z'|x)
Compute acceptance probability

Compute » = min(1, «)
Set new sample to

with probability r
with probability 1 — »

18



Why MH works

« MH generates a MC with this transition matrix

(' |z \r(x’|x) it o’ = r .
:ﬂim’lr]={ a( |z)r(zr) nE T (16.21)

glr|r) + 2 e ql@|z)(l — rix’|z))  otherwise

Theorem 16.2.1. If the transition marrix defined by the MH algorithm (given by Equarion 16.21) is ergodic and
irreducible, then w is its unigue [imiting distribution,

Proof. Consider two states = and ='. Either

m(x)g(x'|z) < w(x")g(z|x") (16.22)

or
miz)g(x'|x) = (2 )g(x|x") (16.23)
We will ignore ties (which occur with probability zero for continuous distributions). Without loss of generality, assume

that w(x)g(z'|z) = m(z")g(x|="). Hence

ol |z) = f:lia"llqlixll"ll

—_ 16.24
@) 76.24;

19



Proof cont'd

Hence we have r(z'|z) = a{z’|z) and r(z|z') = 1.
Now to move from x to ' we must first propose @ and then accept it. Hence

w(z"yg(x|x") _ r(x')
mir)gla'|r) Tix)

pl'|z) = gle’ [o)r(e’|£) = gl |x) (a]r)

Hence
r(x)plz'|z) = w(z")q(z|x’)
The backwards probability 1s
plx|a’) = gla|2’)r{x|z') = g(x|r’)
since r{x|r') = 1. Inserting this into Equation 16.26 we get
r(x)p(z'|z) = m(z")p(z|x’)

s0 detatled balance holds. Hence. from Theorem 77, 7 1s the stationary distribution.

(16.25)

(16.26)

(16.27)

(16.28)

20



Proposal distributions
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Proposal distributions

[F]
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Methods for choosing proposals

 |nitialize chain at a local mode (found with an
optimizer)
e Gaussian random walk, with covariance = Hesslan

e Mixture of base kernels, corresponding to different
heuristic algorithms

g |=] = i wy el |T)
* Adaptive MCMC: modify Gaussian covariance
online

23



Gibbs sampling

Sample each node given all others, from its full

conditional
Loaf™ ~plag|eg, ..., 23)
2 1;“ plx |:r:E'1"'1 ..., r3)
3oaith e plag|eiil ot )
4 a§+1 i J"I‘_'.I Ed’lﬁa-l-l ..... 1§+]ij

e This is MH with the following proposal

g((x}, x—i)|(zi, x24)) = plzi|x_i)

e Acceptance rate is 100%

_ P(x,']';r x|x')  plagx_g)p(x_g)pla;|[x_;)

. . |
p(x)q(x'|x)  plafx_i)p(x_i)p(c]|x_;)

24



bbs for bivariate Gaussian

p(.l"‘ll.tgjl = ,"'L'F(;.I'1|#1|2~EI|2:]
p1 + 1255, (72 — pz)
T — B85 8

1 =
= =
o

gk exact mese=1.000, var=1.000 approx meaned 055, vared 013
T T T L5

(==
03

[

1]
Bt

[X]

o z 4 g 2E b 5 1

exact mesne=1.000 var=1.000 approx mearal. 517, var=0i 58D
(==

03

02

= R U
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Gibbs for Ising

grtim 3 1 irnhal guics

(&) ity (ch

i

ecpr [ Jaey |l 1, 20 )
excp| Juws [de (41, we) + exp|— Juws el —1, )
ay(+1],
—_

plry = +Hlpx_p.¥.8) =

= 2T la :
’ . a(—1)"
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BUGS

e Bayesian Updating using Gibbs Sampling

var
A, B, C, X, ¥, mu, tau, pl2.3], g;:

i r’_\-‘
«— >
o L

4

RN
LSS
—

P = ...
& r dbern(0.3)

B ~ dcat(plA.1:3])
Neth X ro dnorm{-1,0.28)
mu <- 3*X+B"2
tau <- 1/%M2
¥ ~ dnorm(mu,tau}

o

|~ l— o

b

P

legitig) <- 4%X + 2
C ~ dbern(g)

27



Single vs block updates

* Gibbs does single site updating which can move
slowly, or even get stuck (eg XOR)

* Blocked Gibbs sampling samples multiple variables
at once

[TE |

28



Accuracy

 Even though the samples are correlated, we have a
CLT-type result

(,LL o //)')_>N(O7 02)

]

o® = Var [f(X)] + QZ Cov[f(X, ). F(Xepe)]

f=0

e Autocorrelation function

Cov[f(X¢), f(Xeqe)]

a2

pll) =

29



e Mixing time Is tlme to reach stationary distribution

nitial Condil Irifal Glrd‘lml 7

e
'

E====i=:T= =T==E,====§, dzmi*’**i:::’ﬁ:===rt =T
]

T, & . ‘====i====ﬁ===7ﬁ * =I’
|Tmmi:-:'i'r:T=.‘.[,=T=‘rﬁ'='=§, pmmi====i===-ﬁhr‘T-T T:’
lllll T11els L1 T s T [1111 ”mmn te hTrT'rTTT T H”
"'“‘"""’mmmmmmm TUhtrrrperenrenananng

Samples drawn before convergence (during burnin
phase) should be discarded

30



* Mixing time depends on eigengap, y=A;-A,
e Hard to compute

 Can develop bounds based on the conductance
(which is low if there are narrow bottlenecks in the

state space)

31



Convergence

e 2issues
— Speeding up convergence
— Determining if convergence has happened

e Speedups: various tricks, see later
e Determining: various heuristics

32



Traceplots and ACF
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EPSR

e Start 3 chains from different states, run them for a
while, check If variance within a chain is
comparable to variance between chains

e Can be formalized using the Rhat statistic
(estimated potential scale reduction).

 If Rhat ~ 1.0 for a specific f(X), then it suggest that
the chain has converged.

« Can compute Rhat for multiple features f(X).

34



Simulated annealing

Global optimization method

 Ralse surface to a temperature to smooth it out/ kill
off the non-peaks .. ="

—

Bmp 2000




Simulated annealing

o TI(X) = exp(-E(X)), E(x)=energy (+ve or —ve)

(' )1/ T

rrl';.iz':Jl-“T’
exp(—E(z'))}/T=
exp(—E(x))l/ T
exp((E(z) — E(x"))/T.)

e Cooling schedule

v =

T. =107

36



Samples from SA

nee W0, b 1L BOE Hw 550, g 1 D64 e 1000, e 0.007

L TRTE Y TR T T, R AT (L RTETEY T TRErE 1T}

]

25 &5 B

i [ S dmh
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Parallel tempering

 Run multiple chains at different temperatures
 Let them swap samples

 Lowest chain at temp=1 Is used to return samples
to user; other chains encourage global moves

e Good for multi-model posteriors

38



Evolutionary Monte Carlo

« Combine ideas from genetic algorithms with MCMC

e Population Is the new state space; propose moves
that swap pieces of particles.

39



GMs and MCMC

e MCMC can benefit from GMs
— To define Markov blanket for Gibbs
— To efficiently evaluate 1i(x’)/Tq(x) for MH

e GMs need MCMC for

— State estimation (Inference)
— Parameter estimation (Learnign)
— Model selection (structure learning)

40
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Collapsed samplers

e A collapsed sampler means analytically integrating
out some variables and sampling the rest

 Aka Rao-Blackwellization

« Later we will see an interesting example when we
consider RB for particle filtering

e Today, a simpler example, which will form the basis
of a homework exercise

42



Hierarchical Bayesian modeling

e Model related cancer incidence rates

a b i rnl:-armpaupl e with cancer (runcated &t E||

10
pap of l]r[tru pated 3 I:EI:IIZII:l:l

p(X, n707a7 b) — Hp x’&|n’&7 |CL b) (CL, b)

1)

(2)

43



Inference

* Gibbs sampling p(a,b,6,|D) - homework
« MH p(a,b|D) — sample a,b, integrate out theta

C{ P plaD) p[ﬂc)Hfp(rﬂm.ﬁijp[t?ﬂa.bjd&
i

f ) o Bla+ x;.b4+n; — x;)
6, n = p(e)]] B(a,b)
1 5
L | E[6:|D] = E [E[f|ex, D] |D] ~ o 2 E[f;|a’]

 Empirical Bayes (a’,b")=arg max p(a,b|D), then
E[thetaja’,b]

44



MH for Missouri cancer problem

 We use mean m=a/(a+b) and K=a+b
e Beta prior on m, noninformative prior on K

mem—1{1 _ g jhm—1 l—[ BiKm+x, K(1—m)+mn; —u;)

m, WD) : — — — —
p(m, K|D) (14 K2 BiKm,K(1—m))

e Transform to unconstrained params

m

i = log . Ho=log K

1—m

 MH with diagonal Gaussian proposal

45
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Inference in discrete state spaces

For a cts state space, 11(X) is a pdf, so we represent
high probabillity values by repeating them many
times

For a discrete state space (eg model search, or
after integrating out cts), the posterior is a pmf, so
we can evaluate p(x|e) up to a normalization
constant. There is no need to repeat a discrete
state to represent its probability.

Hence It Is better to rapidly visit as many states as
nossible, and never revisit a state

Hence use stochastic/ deterministic, local/ global
search not MCMC

47



Deterministic search

e There are many (exact or approx) methods from
the Al/ OR communities to find the top K values of
a discrete distribution

 We approximate P(Z=z) by counting how many
Instantiations are compatible with Z=z, weighted by
their probabillity

Z I{z[m] = E}Pl:_fli':'zl_:l.

it

 More precisely, we have bounds on p(Z=z)

LE) A
Z ]{z:li-;-zl = E}PI:.Eli-:'zl.:l < _r"l'E =x) < (1 — Z ]{Eli'i"ul = E}Plfliﬁll) .
=1 T

48



Bounds on conditional probabilities

£ FPly.e) 7

£ FPle) =
i - P
s Ply|e) .

49
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« MAP estimation (13.1)

 Exact methods (13.2-13.3)

* Approx method based on clg graph (13.4)
e Linear programming relaxation (13.5)

e Graph cuts (13.6)

e Search (13.7)



Querying a distribution (“inference”)

Suppose we have a joint p(X4,...,Xy). Partition the
variables into E (evidence), Q (query), and H
(hidden/ nuisance). We might pose the following
gueries

Conditional probabillity (posterior):.

p(XQ|XE) X ZP(XQ7XE7XH)

MAP estimate (H=0) (posterior mode)
Xy = arg rr}lcaCJ?Xp(xQ\xE) = arg Iglc%?xp(xQ,xE)

Marginal MAP estimate (mode of marginal post):

xg = arg maxp(xqlxp) = argmax }_ p(xq, Xp, Xn)
Xy



MAP vs marginal MAP

e Max max # max sum
e Ex2.1.12. Jointis

=0
at = argmngp(a,b):l -
b N-@| 0ok
b* = argmax a,b) =1
arg g;p( ) To38]03 [oge
(a,b)" = argn;aéxp(a,b):(o,l) D/l/ J
oLl 06

e Seguence of most probable states <> most
probable sequence of states.



MMAP harder than MAP

e Thm 13.1.1. MAP for BNs is NP-hard.

e Thm 13.1.3. MMAP for BNs is complete for NPPP,

e Thm 13.1.4. MMAP for tree structured GMs is NP-
hard.

e Pf. Must sum out X before max out Y.

y! " = arg max, Z P(Yi, ... Yo, X1, X0).

"‘\ f" \ TN
”x '}"'1 ) YE L

1 1

TN
ixl'_:"tng X,






VarElim for MAP

e Since max distributes over products, we can trivially
modify the VE algorithm to compute the *scalar*
max_ X p(X).

* To find the assignment which achieves this MAP

probabllity, we must do a traceback, analogous to
the Viterbi traceback algorithm

e For the MMAP case, we can use the same
algorithm, but with a constrained elim order (sum
before max), which can make the problem harder



Clg Trees for MAP

 VE is inherently sequential: it is hard to imagine
how to make a parallel/ distributed version of the
traceback operator

 However, we can easily compute the max-

marginals in parallel, replacing sum-product
messages with max-product

MaxMarg(z;) = maxp(x—;, ;)

 But how do we decode the corresponding
assignment? Easy if each MM Is unambiguous.

Juniquezr; = arg max MaxMarg(z;)



Problems of ambiguity

« Ex13.3.7 )/lo ( Al
X, o ol 0.y 2k
| (O'Q 0 V- le
' Il -l

 If we pick x,=1 and x,=2, we don’t get (X{,X,)’

e Must break ties consistently — requires global
traceback.
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Max-product in loopy cluster graphs

 We can change the sum-product algorithm to max
product and run it on clique graphs that are not
trees. The result is a set of pseudo max marginals
which are max-calibrated

max (= max 3 = piil &),

11



Decoding pseudo max marginals

« Def 13.3.9. Let [3, be the max marginals in a clique
tree/graph. An assignment x** is locally optimal if

x"(c) € argmax f(x.)

 We can label each local assignment as equal to the

local optimum (1) or not (0). We then need to solve
a constraint satisfaction problem (CSP).

e Ex 13.4.2. Consider these “beliefs”:

AR
\ /
al | a9 bt | B°

il 1 E'-!U C
Brl1 2 et 1|2 o1 ]2
M2l M2 1 A2 |1

Max-calibrated but not locally optimal; no solution exists
12



Quality of approximate solution

e Suppose the solution is locally optimal, so CSP can
find a satisfying assignment. This is an exact MAP
Iff the clique graph Is a tree with RIP.

e Suppose it is a general loopy graph. We can show
(thm 13.4.6) that the solution is a “strong” locall
optimum, meaning that any change wrt to a large
set of legal moves will decrease the probability.

 The legal moves including flipping states of any
embedded subtree or single loops.

13



Max product TRW

e Suppose we replace “vanilla” max-product with a
countina number version

Eig
_ e 1
ch_,._xn%x{( [ ] II Dhesi f21) i%_dL“)E?jLﬁ-fﬂ]-

kelby

e Tree reweighting algorithm (TRW) uses the
following convex counting numbers, given a
distribution over trees T st each edge In the
pairwise network is present in at least 1 tree

ij =1 S (X4 X)) p(T)

« Thm 13.4.8. If this algorithm finds a locally optimal
solution, it is also globally optimal. (For sum-
product, TRW is just convergent.)

14



Image completion

| Priority-BP [Komodakis '06]

= In this case BP has an infolerable computational cost:

o Just the basic operation of updating messages from
node p to node q takes O(|C|*) time

o |£]# 55D caleulations between patches thus needed
(recall that |L| is huge in our case!)

= Two extensions over standard-BP to reduce
computation cost:

o “Dynamic label pruning” and
o "Priority-based message scheduling”

Labels L = all wxh patches from source region 5

MRF nodes = all lattice points whose neighborhood
intersects target region T

potential Vi (x;) = how well source pafch x; agrees with
source region around p

potential Vi (x,,x,) = how well source patches x

X
. . pr 4
agree on their overlapping region

F(i) Vol@p) + D Vigldp: )
it

pe [pag e &£
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MAP as integer program

« Let q(x/)=1if clique ris in state |j.

» Letn/ =log @()).
« MAP problem:

T
3 3 ::| 3
maximizeg E E nhglad ),

rel j=1

-

e Integer constraint:

g(x)) € {0,1} Forall re R j € {1,... n)
- Mutual exclusion constraint:

z Q(I‘f.:l =1 For all r € R.

» Consistency constraint:
Y, @)= D> alxn).

i: r:f----sr_ o i: EE_,--'\-'S-,-IF.'
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LP relaxation

e Let q(x/) > 0 instead of {0,1}.

Find {-!}III%._} S e T I Iy}
that maximize 11 g

» qlel)=1 reR (13.25)
: i=1
subject to s
(xl) = glzt,) s e [13:28)
Z gl . ) Z Ty ) B € 1*r"*“1“'1-”(j«'+.e5]'
i chea, Lre 8, o
q =1 (13.27]

Convex BP is solving the dual of this LP.
If the solution is integer, and there are are no ties,
then fixed points of this are exact MAP estimates.

MAP Estimation, Linear Programming and Belief Propagation with Convex Free Energies
Yair Weiss, Chen Yanover, Talya Meltzer, UAI 2007 18



BP beats CPLEX

e Convex max-product is 100-1000 times faster than
CPLEX at finding the exact solution to certain MAP
problems in computer vision and protein folding.
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Submodularity

« LetL ={0,1,...,K} be an ordered set.
 Let g: LxL -> R be a function.
 We say g is submodular iff

Ve,y € L gz Vy) +g(xNy) <g(z)+g9(y)

(zVy); = min(z;,v;), (xAy); =max(z;,y;)
e Submodularity ~ convexity for discrete opt.
« EgL ={0,1}, g Is submodular iff

9(0,0) +4(1,1) < g(0,1) + ¢(1,0)
(0,1) v (1,0)] = [min(0, 1), min(1, 0)] = [0, 0],
[(0,1) A (1,0)] = [max(0,1), max(1,0)] = [1,1]

21



Submodular potentials

 Defn 13.6.2. A pairwise energy term on binary
nodes is submodular if

€(1,1) +€(0,0) < €(1,0) + €(0,1)
« Example: Ising model with attractive potential

2 (

0(0 /\) >\>/7
(LN o

 For any binary MRF with submodular potentials, we
can find the exact MAP In polynomial time

22



Graph cuts for Ising model

 Create a source and sink node, s, t.

* Add edge Xi->t with weight g{[0].

* Add edge Xi->s with weight &[1]

* Add X_i— X_jwith A;.

 Find minimal cut. All nodes on t-side of cut are In

state 1.
all]=7 el]=2 alll=1 «l]=6 X, =X}
.-:!Il.112=E| }ng13=ﬁ A3I4=ﬂ .-:!Il.]_l_-i= 1. , /
v K
‘/-:
X () [/[ 0
X,AAVI‘"*S: [/ 0' 0\0 Swt Jlffa/\) (,J/\glffzt‘m('f

23



Segmentation using binary MRF

(1() = 14)°
205 )
1(i) - f1 ? . 1(i) - f,2 ’

P(I(i); p, =0) = J%J expE

Slide by Nilanjan Ray, from Google search 24



Metric MRFs

A metric MRF Is one with K states and pairwise
potentials of the form

ei,j(Uk,Ul) — :UJ(Uk?vl) >0
where \mu IS a metric:

o2 Vx Vi [0,00) is a metric if it satisfies:

e Reflexivity: plvi.vy) =0if and only it k= 1;
e Symmetry: plvg. vy) = plu, ve):

e Triangle Inequality: plve, o) + plvn vm) 2 Uk, tm).

Hence for any v we have submodularity:

ciglzis og] +eiglo o] 2 ez o] + gl 7). diey
\

25



Functions of label differences

* V(p,q) is 2"d order potential of the difference in the
labels of pixels p and g

— These functions penalize big difference in label values between neighboring data
* Image restoration: want to maintain similar intensities with neighbors

Robust or “discontinuity-
preserving” interactions
(minimize is NP-complete)

[boykov-pami-01]
(approximate)

Convex interactions
(minimize is P)

[veksler-phdthesis-99] £ V(dL) fV(dL) /
(exact) Potts
finear” mode/
mode/
dL=Lp-Lq
(“everywhere smooth”) dL=Lp-Lq (“piecqlise constant”) [veksler-cvpr-07]
v(dL) f V(dL) (approximate)

/

[ishikawa-pami-03]

(exact) » dL=Lp-Lq
(“convex”) dL=Lp-Lq i i
(“piecewise smooth”,
e[xs, 23] = min(e||z; — z;p, distmax ). “truncated convex”)

Source: Daniel Munoz 26



GC for non-binary submodular

For non-binary models, MAP estimation is NP-hard.

But If the potential is submodular for any pair of
states (eg metric MRF) then we can use a greedy
algorithm in which we make large moves

Alpha expansion: consider setting each node to its
current state or to state a (2-optimal).

Alpha-beta swap: consider swapping any two
states,; energy function only need be semi-metric

(triangle inequality not required).

Expansion Swan (Boykov'01)

27



Stereo reconstruction

III . | —— b ot BP
13 1 i —— - Emfi aitid 1 41F -
III i —— B Sap
idf m—— TR -
ar 4
| === inz-Praphs;| EP
E [ = a-Enpansin
E R —+—a-fl S 1
n . . ——TRw
aAar b
i aTr 7
1 J : L :ll; L
| 1 a ] | ] 1 4
id ] 1D 1] 1d 1] 1]
Fuanding Tiwsd (0 Ay Tinis: [5]

28



Total variation norm

TV (u) :/|Vu|du

gpq(up>uq) = Blup — ug|

Graph cuts on the level sets

{b)

Global Optimization for First Order Markov
Random Fields with Submodular Priors
Jerome Darbon,

Discrete Applied Mathematics, 2009

29



Additional info

Good tutorial at ECCV'08: “MAP Estimation in Computer Vision”
Kumar, Kolhi, Zisserman, Torr
http://www.robots.ox.ac.uk/~pawan/eccv08 tutorial/index.html

“A Linear Programming Approach to Max-sum Problem: A Review”,
Tomas Werner, PAMI 2007

30
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Search (A.4)

e Systematic tree search — partial assignments

— Branch and bound: prune off trajectory if lower bound of
extension higher than current best

— Particle filtering: stochastically grow partial solutions

* Local search — complete assignments

— Hill climbing, Tabu search, Beam search, simulated
annealing

— See Holger Hoos’s class in CS

e Search methods for Marginal MAP

— Search over max, compute sum using VE (cf Rao-
Blackwellize). Use unconstrained elim order to get upper
bound.

32



Greedy hill climbing

Algorithm A.5 Greedy local search algorithm with search operators.

Procedure Greedy-Local-Search |

7. initial candidate solution

score, Score function

Q, Set of search operators

|

1 Thest = 0
2 do
b T +— Thest
1 Progress —  false
5] for cach operator o € O
i 7o +— o) Result of applying o on o
T if o, is legal solution then
& if score{o,) > score|dhes) then
9 Thest +— Ta
10 Progress —  frue
11 while FProgress
12
13 reftliurn Fhest

Instead of looking amongst all neighbors O, we can pick the
first improving one (first-ascent or best first search).
Converges to local maximum or plateau.

33



* Once we get to a plateau, allow selection of ‘neutral’ move to a state that
hasn’t been visited before .

* Requires lots of memory. Instead, prevent picking a move that would
undo a recently applied operator.

I Thest = @0

2 T < Thest

} t— 1

l Lastimprovement «— 0

) while Lastimprovement < N

i olt) — ¢ Set current operator to be uninitialized
T for each operator o € O Search for best allowed operator
] if LegalOp (o, {o'*=5) .. ol*=Y}) then

9 To — 0T)

L0 if o, is legal solution then

11 if o) = ¢ o1 score(m,) > score(d,e) then
12 olt) — o

13 T — Tt

14 if score(o) = score( . ) then

15 Thest ~— Ta

Lid LostImprovement «— 0

17 else

1% Lastimprovement «— Lastimprovement+ 1
19 t— t+1

20

21 retirn Thest

34
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e Cts and discrete variables (14.1)

e Gaussian networks (14.2)

e Conditional Gaussian networks (14.3)
 Non-linear Gaussian networks (14.4)
« Sampling (14.5)



Hybrid networks

* A “hybrid” GM contains discrete and cts variables

 EXxcept in the case that everything is all discrete or
all Gaussian, exact inference Is rarely possible

 The reason is that the basic operations of
multiplication, marginalization and conditioning are
not closed except for tables and MVNSs



Gaussian networks

 We can always convert a Gaussian DGM or UGM
to an MVN and do exact inference in O(d?) space
and O(d?3) time

« However, d can be large (eg 1000x1000 image)

 We seek methods that exploit the graph structure,
that will take O(d w?) space and O(d w?) time,
where w Is the tree width

* |n cases where w Is too large, we can use loopy
belief propagation, which takes O(1) space and
O(d) time




Canonical potentials

 When performing VarElim or ClgTree propagation,
we have to represent factors \phi(x). These may not
be Gaussians, but can always be represented as
exponentials of quadratics

[ > X1

1. .
C(X:K.h,g)=exp (—EXTI{X +hTX + g) .

Lhus, N (p; ) =C (K, h, g) where:

K
h

G

1
_]_.“

1 h
—E#TE_IH — log (f, Yy 2 |E|1-f2) .

g



Operations on canonical potentials

e Multiplication

C(Ki,h1.91)-C(Ka,ha.g2) =C (K1 + Ka.h1 + ha, g1 +g2)
_ o . 3 -2 b
r_.ﬁltﬁf~1f’;w=r3(x~1f;[_11 ! ]( B )._3) * mguY-ZJ=C(Y.Z:[_Q ; ]( ° )1)

1 -1 0 1
crxY.zZ; ) -1 4 -2 1, 4 1.-2
o -2 4 —1

e Division

CiKqy,hy,91) ) )
e " =C (K1 — Ka.hi — ha,q1 — g2
C(Ks, ha, g2) W 2./ — A2, 41 — 42




Operations on canonical potentials

Marginalization (requires KYY be pd)

K’

Iix_x Ii_x}rfi}r}rfi}rx
fC[XJ;ILh.ng}. R’

h_x Iix}fﬁ}r}rh}r
g+3 (I‘F'I log(2m) —log | Kyy| + h’{rﬁ‘ﬂdw) :

Conditioning (Y=y)

K' = Ii-_x_x
K = hx —Kxvyy
- 1 .,
g = g+ h,]:.;—y — §yrfi YYU.



Kalman filter- smoother

 If you apply the FB algorithm with these new
operators, you get the same results as the RTS

smoother
)(\.)))(L‘ﬁ /(}
!
7 [V



Gaussian LBP

 |f the treewidth Is too large, we can pass messages
on the original (pairwise) graph

 We just apply the regular BP rules with the new
operators. Once can show this is equivalent to the

following:
piX N ) (—EXTJX + ILTX) e ) 1 2
X1y000yXn) 3 : 'Ei'-—i-j ;) = exp _E'fi—;-_',iﬂ:j + h-z'.—'-j'r_'li :
tﬁﬂni = Jiu+ Zkeﬂb.—{_f} S Ji_"j - _in' J;-T-.:} in
_ -1y
hi; = hi+ ZI.-Ewb.—{j} Pke—i- hig = —Jdju "'il;-‘-..:.i h“-i-‘d'
o= Ja+ Y T . =1}
i 111 —1i i — - .
T
'il;i. N Z Pgesi- 7= LJ“
keNb,



Gaussian LBP

« Thm 14.2.4. If LBP converges, then the means are
exact, but the variances are too small
(overconfident)

 Thm. A sufficient condition for convergence is that
the potentials are pairwise normalizable

e Any attractive model (all +ve correlations) is
pairwise normalizable

 The method for computing the means iIs similar to
solving a set of linear equations

10



Pairwise normalizable

 Def 7.3.3. A pairwise MRF with energies of the form

Ez(il?z) — 6 + d?’liEl + dzzx?
eij(Ts,x5) = ag) +aglz +atyz; + afwixy + agha + asyas
IS called pairwise normalizable If
i : ij ij
dy > 0,Vi  ang ( %02 a’l%j 2) is psd for all i,]
ar /2 as
« Thm 7.3.4. If the MRF Is pairwise normalizable,
then it defines a valid Gaussian.
e Sufficient but not necessary eqg.
1 0.6 0.6 May be able to reparameterize the node/

edge potentials to ensure pairwise normalized.

06 1 0.6
0.6 0.6 1 11
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Conditional linear Gaussian networks

e Suppose all discrete nodes only have discrete
parents, and all cts nodes either have discrete
parents, cts parents, or no parents.

e Further, assume all cts CPDs have the form
p(X =2|C =c,D = k) = N(z|wj ¢, 0%)

 This is called a CLG network. It Is equivalent to a
mixture of MVNSs, where the distribution over
discrete indicators has structure, as does each
covariance matrix.

e \We create a canonical factor for each discrete
setting of the variables in a clique.

13



Inference in CLG networks

e Thm 14.3.1. Inference in CLG networks is NP-hard,
even If they are polytrees.

« Pf (sketch). Consider the network below. When we

sum out
general,

D, p(X,) Is a mixture of 2 Gaussians. In
n(X) is a mixture of 2! Gaussians.

p(X2) = 3 P(D2) [ p(Xa| X000 p(Xy | D)
Dy X1 Iy

14



Weak marginalization

e To prevent the blowup in the number of mixture
components, we can project back to the class of
single mixtures at each step, as in EP

 Prop 14.3.6. argmin_q KL(p|g) where g is a
Gaussian has parameters (

fhi Ep [ X
E:‘__;i F-:-'Lp[.-ﬁf;'.'j{j]

 Prop 14.3.7. argmin_q KL(p,d) where p is a mixture
of Gaussians Is a single Gaussian with params

T

g = W gt

M

= |

1
ke

N o= w; 24 + Z wlpe; — pe)(pe; — )t
1 i=1

M projection 15
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Canonical vs moment form

 Weak marginalization is defined in terms of
moment form

e To convert a canonical factor to moment form, we
require that it represent a valid joint density

e This typically requires we pass messages from
parents to children.

 Once we have initialized all factors, they can be
converted to moment form.

 However, division in the backwards pass may
cause some variances to become negative! (see EXx
14.3.13)

 EP Is hairy!

17



Strong marginalization

e By using a constrained elimination order, in which
we Integrate out before summing out, we can
ensure that the upwards pass never needs to

perform weak marginalization.

 Furthermore, one can show that the downwards
nass results in exact results for the discrete
variables and exact 1st and 2" moments for the cts
variables (Lauritzen’s “strong jtree” algorithm)

 However, the constrained elim order usually results
In large discrete cligues, making this often
Impractical.

18



19



Non linear dependencies

 |n alinear Gaussian network, the mean iIs a linear
function of its parents.

 Now assume X = f(U,, Z;), where Z; ~ N(O,I)

—_

auxiliary variables into the variables of interest. For a vector of functions f = (f1,..., fa)
and a Gaussian distribution pg., we use the notation p(Xy, ... .- Xg) = (poP f) to refer to
the distribution that has p( f1(£), ..., fal Z)) = pol Z) and O elsewhere.

 Examples

Example 14.4.1: . For crample, consider o multi-cariote Gaussian p{X1q, ..., Xd) =
N(X:pu.X) We define a matriz A to be a d % d matriz such that AAT = X. A is of
ten ealled the square root of 2. and s guaranteed fo erist whenever X i positioe definide,

In this ease we can show (see Brereise 16) that we can redefine pous:
pIX ) = po(W) AW +p), (14.14)

where po(W) =N (W;0,1), for I the identity maotriz, |
Example 14.4.2: As another example, consider the non-linear CPDX ~ N (w,.-f Y+ Y5, r:TE).

We ean reformulate this CPL in terms of o deterministic, non-linear function, as follows:

We introduce o new erogencus variable W that coptures the stochasticity in the CPD. We

then define X = f(Y1,Ya, W) where f(Y1,Ya, W) = /YZ + Y2 + oW, m
20



Taylor series approx

 We can linearize f and then fit a Gaussian (basis of

the EKF algorithm)

As we know, if pg(£) is a Gaussian distribution and X = f(Z) is a linear function, then
plX ) =plfl£))is also a Gaussian distribution. Thus, one very simple and commonly used
approach is to approximate f as a linear function JE and then define p in terms of ft

The most standard linear approximation for f(£) is the Tavlor series expansion around

the mean of pg(£):

f(Z) = flu)+ V|, Z. Can be bad if f not linear near mu
! b

Although the Taylor series expansion provides us with the optimal linear approximation
to f, the Gaussian p(X) = po(Z) P f(Z) may not be the optimal Gaussian approximation
to p(X)=po(Z)D F(Z).

Example 14.4.4: Consider the function X = Z2, and assume that p(Z) = N (Z;0,1).
The mean of X is simply Ep[X] = E, [ZE] = 1. The variance of X is

Varg[X] = Ep[22] — E,[Z]2 = E,[2Y] - E,[22] =3 -12 =2,

On the other hand, the first order Taylor series approrimation of f af the mean value £ =10

[ 31N
f(Z)=0%+ (2Z)—0Z = 0.

Thus, p(X) will simply be o delte function where all the mass is located at X =0, o very
poor approvimation to p. [ |

[14.15)

21



M projection using quadrature

 Best Gaussian approx has these moments
E,[X] = f fi(z)po (2)dz

BIXX] = [ A fEms.
e (Gaussian quadrature computes this integral for any
W(z)>0 (here, Gaussian)

L ]
[ W =3 w )
a _'|'=1

22



Unscented transform

e Pass mean and +- std in each dim through
transform, and then fit Gaussian to transformed
points [

d d
' R Py d AR 1 7 + 1 7 —
Wiz)fiz)dz =~ (1 — ﬁ) FO)+ il ﬁfﬁhzi )+ ;=1 ﬁf‘ﬁzi ).

Actual (sampling) Linearized (Taylor) Monomials (unscented)

G

23



Nonlinear GMs

 We approximate nonlinear factors by approximating
them by Gaussians

 The above methods require a joint Gaussian factor,
not a canonical factor — we have to pass messages
In topological order, and introduce variables one at
a time to use the above tricks

e Linearization is done relative to current \mu. In EP,
we Iiterate, and re-approximate each factor in the
context of its Incoming messages, which provides a
better approx. to the posterior.

o Pretty hairy.

24



Discrete children, cts parents

« C ->D arcs are useful eg thermostat turns on/off
depending on temperature

 We can approximate Gaussian * logistic by a
Gaussian (variational approx)

e We can combine these Gaussian factors with the
other factors as usual.

25
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Sampling

« Sampling is the easiest way to handle cts and
mixed variables

o “Collapsed particles” (Rao-Blackwellisation):
sample the discretes, integrate out cts analytically.
Each particle has a value for D and a Gaussian
over C. Good for PF or MCMC.

D, =D, ;
v

[ L
é( <) éL =3 6
(
( v

—C (—

l Ly W(J

27



Non-parametric BP

 We can combine sampling and msg passing.
 We approximate factors/ msgs by samples.

e Factors are lower dimensional than full joints.
 Eg hand-pose tracking

I N
n — !
—
0 6
L

L “ $
\

28



Adaptive discretization

e We can discretize all the cts variables, then use a
method for discrete vars.

 To Increase accuracy, we expand the grid

resolution for variables whose posterior entropy Is
high.

e Can use such approximations as proposal
distributions for MH.

29
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* Inference goals (15.1)

e Exact inference in DBNs (15.2)
e Factored belief sates (15.3.2)
 Particle filtering (15.3.3)

e Switching LDS (15.4.2)



Inference goals

filtering _

prediction [N

h

r

fixed—lag .
smoothing ’LL'

( T
fixed interval [
smoothing :I
(offline)



Exact filtering in HMMs

 We can apply the predict-update equations to any
dynamical model

-?['=+1:'[I[=+1]J & P[I':z"'i] |-:-':1:::','I

— ZPEI':I!+1] | I':‘:',-:-[“]JP[I[’] |':|[1:|!]J
Ky

= 3 P(XUHU X x0Ty,
Ky

ﬂ_[_!:-l—l_]lzx[_t-l-l_]:l — P{X”-I_l'] | ﬂ[‘l:”.,ﬂ['t-l_l']:l

Plilil“-l-l’] | XU+1J | EU:”:I.FI:;X“-I_IJ | CIU:”:I
PIZE“‘I'IJ |ﬂ[1:tJ:|
PI::D[_!:-I-]._] | X[_t-l-l;l:-llﬂ_[_-!:-l—l_] l:x[t-l—l_]::l
P(olt+1) | pll:t))

S AS™ASY |57 [ 7SR |57 [T o (RS | 5)
N g /




Entanglement

—

.'_'!;-i';."'e;rlfhe ;i‘,

[ Velocity?) '.'fl."alﬂn:lrj.-{ )

e, 22 =

iﬂcﬂ’rlﬂﬁr{,. {Location!) Location?;

T ] = "-... __,'-- -."-\.‘_ o -"'\_
{, Fﬂlluraﬂ¥lh Fﬂllure¥k Fﬂl|L~r‘E:E\

( Obso O obst  obs2 )

L
. e i

Time slice 4 Time slice 1 Time slice 2

In the unrolled network, all the persistent nodes become correlated.
Hence the belief state does not admit any factorization.



Frontier algorithm

 We need cliques that can store the interface
variables

.:'.HaaTher; ’

i"HI.-";eIu |:|T§,-r.":':."
=

;j_ ocation®)

| ecation!
-__. N _i"

| —

Failure!

S

-

( obs®

i"HI.-";eIu |:|T§,-r.":':."
=

;j_ ocation®)




Factored frontier algorithm

 Represent incoming belief state as a product of

marginals
Xy = HHHJ [X ]y

« Perform calibration in the 2-slice jtree

« Compute posterior marginals (M projection onto
factored distribution)

e Can also use conditionally factored belief states
(,."_'ﬁéf:'[Z':f:'])_ml_ljﬁﬂ”[zu’-‘f};g”]f
* This is like EP without the backwards pass, aka

ADF
A \/\7{)
2107

e &C 5t’(a 7

>






Importance sampling

f
f
r
Should be o Propose
Weighted (blue)
'
' .
Weight
N
1 (i
poelyre) ~ 5 D@ (0 = xg) ®)
=1
(2)
~ (i) def Wy
Zj:]_ wlgj)
(¢)
i def DP\Xp.:1¥1.
wi(; ) < ( O.t‘(i)l t) (3)
7.‘-(XO:t)



Sequential Importance Sampling

Propose

) -

Should be
Weighted (blue)

Weight

Markov proposal

t
m(X0:|y1.4) = W(XO)HW(XHXO:I@—MYLJ
k=1

. iy pelxp( %))
wt X wt_l

W(ng ’X(()Z:l—la Vi)

Propose from dynamical prior @ ()
w§’) X wgz—)lp(Yt’Xy)) 10

) = p(xP =)



Problem with SIS

L] . ’l. . ® ® ll.
Should be > ®  ®0 ¢ ¢ o ©

Weighted (bluge)

Ot——__

YV

Unlikely evidence “kills off” most particles
(Particle impoverishment) resulting in high variance estimate




SIR/ PF/ SOF/ SMC

Shc.)uld. 1y
be in diff |

locns 5 \ \\ | x

..' S wt Z % o Propose

+ L ] J/N

. Weight

o o ¢
/ o 6 Resample

0

@

0 O
o
|

12



1. Sequential importance sampling step

e Fori=1,...,N, sample

(igl)) ~ Q(Xt‘xgz_)pYI:t)

and set . o
(}A(lzzt) = (itz 7X11:t—1)
e Fori:=1,..., N, evaluate the importance weights up to a normalis-
ing constant:
o () (R %2))
wy " =

q (S\Ct|§1(ﬁz—)17}’1:t)

e Fori=1,..., N, normalise the importance weights:
. . N . _1
il =l | Sl
j=1

2. Selection step

e Resample the discrete weighted measure {(252, w,ﬁ“) N | to get an un-
weighted measure {(x\", )Y, 13



Example from Nando de Freitas

| Xi_

X = =X_1 +25——— +8cos(1.20) + v,
2 I +x7

) — xrz—|—w

Vi = 20 t

where xo ~ N (0, (_712) v and w; are mutually independent
white Gaussian noises, v, ~ N (0, 0;7) and w, ~ N (0, 03)

14



» Fori=1,...,N, sample x("') N(O,Uf)

» Fori=1,.., N, sample

(7)
1 X
XD = > x 425 1 8cos (1.20) + N (0, 02)

: +xz()
» Fori=1,...,N, evaluate the importance weights
20) 2
va) _ I 8_;1%(}’_ 70 )

»> Normalise the importance weights.

» Resample fittest samples (black-box).

15



Time (t)

80

100

16



PF

LW-2TBN

10
11

PF for DBNs

form=1,...,] M
Sample ;?“':D:'[]'i'.‘,] from By

wDm] — 1/M

form=1,.... M
Sample %=1 from the distribution Prie—1y.
Select sample for propagation
(@28 [m], wit)[m]) «— LW-2TBN(B_,, &0t-1) olt))

Generate time ¢ sample and weight from selected sample
~(t—1)
H K

DU¥ {(@%)[m],w)m]) :m=1,..., M}
alt) () — Frie

Let X{,...,- X,] be a topological ordering of A in B_|

we— 1
for i =1,....n
I ; R §
u; — (£, 2" ){Pax;)
Assignment to ]:-'a,x!r M E1y ey Ly Ty e Th_q
if X! ¢ O then

Sample z} from P(X] | u;)

else
T — o't (X[ Assignment to X/ in o)
w— w- Pz | u;) Multiply weight by probability of desired walue
return (ri, ...,z ), w

17



Condensation algorithm

Isard & Blake (ICCV98)

18



Monte Carlo Localization

Fox, Burgard, Dellaert, Thrun, AAAI'99

e peln

19



Optimal proposal distribution

 Optimal proposal is the posterior

T(X¢|X0:t—1,¥1:4) = P(Xe|yy Xe—1)
* Incremental weights are one-step-ahead predictive
density

) iy Py X)) x(Y,)
oo % T Dy 0
p(Xt b’taxt—l)
= wgz—)lp()’t‘xz@l)

plyxV) = / p(y,|x)p(xex ) )dx

e Can approximate this using EKF, UKF, etc.

20



Boosted particle filter

* Run a classifier, trained using boosting, to detect people,
and use this as a proposal

« Okuma, Taleghani, de Freitas, Little, Lowe, ECCV04

21



RBPF

« Rao-Blackwellisation: integrate out X, sample R

{ﬁ\tﬂ.ﬁ -3 !:E'f_‘
l' |
Xi- A
| |
(g b=
T,r; ~ Lr'!f

 Distributional particles

i - o def i i (i)
O _qpe—1lXe—1) = PXe—1|¥V1a-1, T

-

22



RBPF high level

CGeneric RBPF

. Sequertial importanca sampling stap

¢« Fori=1,..., N, sample
(F) ~ alra i )
ar-ld mt L P! P
(7)) & (9t
« Fori=1,.. . N, evaluate the importance waights up to a normalising constant:
b [1M|Ir'j::-th}P(FEUHEEI:_LJ’L::_:J

q (Fi; ?Ii_.l{g_j : '!-"I.:eJ

¢ Fori=1,.. . N, normalise the importance weights:

M -1
{l\-ll::l..l — 'tl.'l::.'l I:E ﬂ;:J.I:I
=1

w, =

2. Seglaction stap

s Resample the discreke weighted measure {7 @21 to get an unweighted measure { ()4 e

3. BExactstp

o Update p(X|y . riil) oven p(Xealyy, . i), ri and w.

23



RBPF updates

Then, for each possible value of vy, we perform a predict-update cycle:

i . . def i (1 ;
ST LT T hE I Te|¥1e—1s "E_—Lp’"t} =t [I"{Iﬂ"b1¢-1)P("a|rli-_’l_1:'P'lxt—1|}’1:¢_1rf'tdet—ﬁgl-E‘

\ ()
i def i) POV |2, e )P(Xe [¥F e 12 T1ip 10 Te)
QelXeTe) = PR TV 11 Yo T Te) = (4] - S
PIYel¥ i1 T1—1-Tt)
where
; i i -
P[}'¢|}'1;¢_1-f"i;g_p"t:' = [ﬁf}’t|K¢~'J"¢JIJ'(K¢|}’1:¢_1.-F'Ii;ﬂ_pf'ﬂdxt (21.31

Finally. once we have chosen r-iiJ . we pick the corresponding updated distnibution:

abp(xe) = afjlxe,ri)) (21.3.




RBPF for Switching LDS

Algorithm 7: One step of the Mixture Kalman filter algorithm
fori=1:N do

2 Teq o p(r|Te—1)
3| (pty 5o B owe ;) = KFupdate(pe, . 3 15, ¥, 704

gfori=1:Ndo

-1
5 'll'.-'tl.i = u’t,i [Z_‘.‘ '1I'.-'¢Ij:|

=

7 = resample(w; 1.)
return (7 -, (4, -, 2t 1)

-
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RBPF for SLAM

e Simultaneous Localization and Mapping
e Occupancy grid version (Murphy, NIPS’00)

My M
e [f-\ If’"'\\l . Ir/' -, . ““\.;
N/ NS NS N N R
N Y I/ ""\.I 1:1 conn. & '"\.I ( B
| o ] | \ |
/U ./ \

\ / | /

1 ] \ i
~N SUEE &
h{ \ N LS N2 XNl SR

- ) ] £ A | ."l /{(r’

\ Yoo llll'

\ / Aok / f;’f

7N '

'-‘Lt—}/; }l._ L( y
e \/\
Sy Gb
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FastSLAM

e Kalman filter version: replace covmat of size
(2K+2)2 with P*K*22 covmats, P=#particles,
K=#num landmarks

i

Montemerlo, Thrun, Koller, Wegbreit, AAAI'02 27
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GBP1

GBP2

IMM

b I R
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1 ey

Mle gz
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EP approximations
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e Overview of learning (ch 16)

« MLE for DGMs (17.2)

« Bayesian parameter estimation for DGMs (17.4)
e Parameter tying (17.5)

* Hierarchical Bayes (17.5.4)

« PAC analysis (17.6)




Overview of learning

e Learn parameters or structure

 Observe all variables, or have missing values, or
nave known hidden variables, or have unknown
nidden variables

 Hidden variables can simplify the model (fewer
params)

& & &
CH | >
TS & &

17 parameters 59 parameters




Overview of learning

Learning Bayvesian networks

Learning Markov networks

Complete data Missing data 1.:::[:?:5
L Hidden
Complete data Missing data variables
» Convex apfimization |,
prablem solved Man-camvex prodlem | o metrical
optimaly via numerical | ET3ted oplimizaion | o, onne
. . K structure #o hacal maximum
Iterated optimization | - Symmetrical moWwin optimization « Infinite & of
to kocal maximum salutions = Inference an network
" » Inference am netwark sOlutions
Known structure | Closed form salution | an - Infle # of muttiple times muBiple imes
multipie times salutions R —————
Combin I numerical farmulations
= Combinatonsl = |nference ower Unknown . soleed
Unknown optimization aver multiple different Ehu;hm! mc:r::hemlmt::
structure, sruchures MEIWDM Siructures known variables | - inference ower
known variables | - score has closed | - no chosed form far muttiple diferent
Tarm EGOME netwark struchures
. » InAinite number
Unknown vars | NiA NIA infinite number of Unknown vars | MiA HiA af possile

possibie soluskane

s0luflons




Rest of ch 16

« Overfitting

 Cross validation

« Empirical risk minimization

« PAC bounds (see later)
 Generative vs discriminative
e Bilas/variance tradeoff

* Prediction vs density estimation vs knowledge
discovery






MLE for DGMs

 Assume DAG is known and variables are fully
observeo

* The likelihood factorizes into a product of local
likelihoods, so we can optimize each CPD
Independently

p(D|0) =

— =
=

e

3

2

S
I
[t

I
=
o

p(iﬁz‘n\xm,n, Hz')

S
I
—
~
I
[t

I
o
— -

p(iﬁm\xm,n, 92)]

)
I
—
S
I
[t
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=
S
S

)
I
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Tabular CPDs

N N ri g
P(Tin|Xn;n,0i) = H H ijglfi’”:k’xﬁi’”zj)
n=1 n=1j=1k=1
N
- H Heijkjk
J k
def N
Nijk = Zl(x"n:kvxw n:])
n=1
X N -
ez]k = Zri ’L]]li[
j'=1*vj'k
B M [, ]




MLE for linear Gaussian CPDs

« Use usual linear regression equations

p(xi|xr;,0;) = N(z;|w] xr,,07)



Bayesian parameter estimation

Global parameter independence

D
= ][ »6:)
1=1
Implies factorized posterior
p(0|D) Hp p(D;|6;)

For multinomials, let us assume local param indep

= 1] H p(0s5)

Geiger & Hec_ke_rman showed
this implies theta_{ij} must
have a Dirichlet prior

goe

Cata m

10



Tabular CPDs

 We have
p(08|D) HHDlr 0o +N;;)
1=175=1
P(8c) pldg | € =0} pléig | C=1)
1 1 1 1 1 1
ilc s R W
18 o o o 2 1 9 y ] ]
210 0 1
3 1 1 1 i 3 1 2 2 1 1
E 2 2 2 L 2

11



e |CU alarm network, 37 nodes, 504 params

 Compute theta-hat using MLE or posterior mean.
Then compute KL(p(X|theta*), p(X]|theta-hat)) as a
function of sample size.

e

=
ka

-
T

o
[

KL Divergence

2
a

o
ia

Bayes; M'=5
500 1000 150D 2000 2500 3000 3500 4000 4500 5000
# Instances

=

=

12



Posterior predictive density

 We can predict future variables by integrating out
the params

i i O
HED) = [EiowEmIas N
X)X

* |n the case of Dirichlet-multinomial model, this Is
equivalent to plugging in the posterior mean

p(X = kD) = / 0,:p(6]D)d0

= /9kp(9k|p)d9

o 5 . Oék"'Nk
g Zk,ak/ + N/ 13




MAP estimation

e Since in general computing the posterior is difficult,
a compromise Is to compute a MAP estimate

 However, the result Is not invariant to
parameterization — change of variables formula
changes the prior density (Box 17.D)

 Reparameterizing the likelihood does not change
the MLE, since the lik is not a density function

 Reparameterizing the posterior does not change
anything, since we integrate over params

14



Parameter tying

* We just pool the sufficient statistics from the nodes
that share the same params

G

/
X XL

p(0|D) = Dir(ay, + > (X1 =7)+ Y I(Xon = j)

15



Prediction with tied params

* A subtlety arises when computing the posterior
predictive density with tied params

 When we observe Xtildel, we learn something
about theta that helps us predict Xtilde2. So we
cannot just multiply the postpred for each node
separately, but need to use the formula for a batch
of data

&

ef B4

16



Hierarchical priors

 Encourage params to be similar across
conditioning contexts (rows) within 1 CPD

(a0

L

Data m

 Encourage params to be similar across response
for each conditionign context @ @

AR

Data m 1 7




Text classification

 Let T(d) =t be topic of document d, ~Mun(0)
* Product of Bernoullis, A(w,d) in {0,1} ~ Ber((3,, 1),
w =1:K
* Product of multinoullis, W(p,d) in {1,...,K} ~ Mun([3,),
n=1:len(d)
o Latent Dirichlet Allocation: 6(d) = distribution over
topics, ~Dir(a), T(p,d) =t, W(p,d) ~ Mun(f3,)

18
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PAC analysis

 Probably approximately correct

e Let P*M be distribution over datasets of size M
drawn from P*

* Py o) be distribution over X given by model M
learned using algo L on data D

 We want to prove that

Let € = 0 be our approximation parameter and § > 0 our confidence parameter. Then,
for M "J‘;u';_;c' c'Huri!;_;h“. we have that

Pi({D: D(P*|Prymy) <€} 21-48

e Frequentist analysis of estimator; bounds on
deviation from ‘truth’

20



Excess risk

e Minimizing KL(P*,P) may be hard if P* is not in the
model class of P
* Define best achievable param in class as

@°F — arg min D{P*|Fs).
EIE-E'E'IEI S

e Deflne excess risk as

D(P*|Pa) — D(P*| Paens) -

21



DGM param learning: PAC bounds

Theorem 17.6.8: Lef G be o network structure, and P* o distribution consistent with some
network G% such that P*(z; | pa,f‘j = A for all i, x;, and paf‘. If P is the distribution
learned by marimum Lkelihood estimate for G, then

Adid+1y .2 1

-F'LL]':P*"-F:I — -[J[.F*”.Fgapt:l = TE,E:I = ?lfi-d-l_lt':_zhf (1467

where K is the morimal variable cardinality and d is the marimum number of parents in G.

Corollary 17.6.9: Under the condifions of Theorem 17.6.5. if

- \2 Jod+1
pst 1 U4, sk

1
o E ..:!||_E|:.d:+]'.:| EE B i
thin

P(D(P*|P) — D(P*|Pgert) < 1€} > 1 — 4.

22
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e Overview of structure learning
e Constraint based approach (18.2)
e Scoring functions (18.3)



Overview of structure learning

Goals: density estimation and knowledge discovery
Can only learn graph up to Markov equivalence
2 main approaches:

Find PDAG which is an I-map of the empirical
distribution, using conditional independence test
(eg \chi*2) at the 5% level in lieu of oracle

Find MAP DAG by defining a scoring and search
through DAG space

Can also do Bayes model averaging over DAGSs to
get posterior of features of interest eg predictive
density, edge/path marginals, etc



Assumptions behind constraint based

Each node has a fan-in of at most d
We have a Cl oracle X L Y | Z that gives correct

results for conditioning sets up to size 2d+2
P* is faithful to G*

Def 3.3.4. A distribution P is faithful to G If,
whenever X 1 Y | Z in I(P), we have dsep_ G(X;Y|2)

l.e., there are no “non-graphical” independencies
buried In the parameters



Deriving graphs from distributions

Sec 3.4, from Lecture 2

So far, we have discussed how to derive
distributions from graphs.

But how do we get the DAG?

Assume we have access to the true distribution P,
and can answer guestions of the form

P=X 1Y|Z
For finite data samples, we can approximate this

oracle with a Cl test — the frequentist approach to
graph structure learning (see ch 18)

What DAG can be used to represent P?




Minimal I-map

 The complete DAG is an |-map for any distribution
(since it encodes no ClI relations)

e Def 3.4.1. A graph K is a minimal I-map for a set of
Independencies | if it iIs an |-map for |, and if the
removal of even a single edge from K renders it not
an I-map.

e To derive a minimal I-map, we pick an arbitrary
node ordering, and then find some minimal subset
U to be X/s parents, where

Xi L{Xy,..., Xs 1} \UU

e (K2 algorithm replace this CI test with a Bayesian
scoring metric: sec 18.4.2).



Constructing I-map given ordering

Algorithm 3.2 Procedure to build a minimal I-map given an ordering

Procedure Build-Minimal-1-Map (

Xi.....X,, // an ordering of random variables in X’
I // Setof independencies
)

1 Set G to an empty graph over A
2 fori=1.....n
3 U— {X1,...,Xiz1} // U is the current candidate for parents of X
4 for [si” '; {Xl,...,z 3'_1}
5 ifU " cU and (X; L{X,,....X,_1} -U"|U") €T then

§ [.#r"— E.-'Tf
// At this stage U is a minimal set satisfying (X, L
(Xq,.... X —U | U)

s /) MNow set U to be the parents of X
4 for X j € )
10 Add Xy — Xy t0 @

11 return &




Effect of node ordering

« “Bad” node orderings can result in dense,
unintuitive graphs.

e EgL,S5,G,I,D. Add L. Add S: must add L as parent,
since P /&=L 1 SAdd G: must add L,S as parents.

b T 1 ok

SR Nl \\7@\
T

M o= 0



Dealing with node ordering

e Search over orders
e Work with PDAGS



Perfect maps

 Minimal I-maps can have superfluous edges.

o Def 3.4.2. Graph K is a perfect map for a set of
Independencies | if I(K)=I. K is a perfect map for P if
1(K)=I(P).

* Not all distributions can be perfectly represented by
a DAG.

 Eglet Z=xor(X,Y) and use some independent prior

on X, Y. Minimal |- maP Is X -> Z <-Y. However, X
1 ZinI(P), but not in I(G)

- EgALC|{B,D}and B L D |{A,C}, Adep | B,C,
etc o

B B o g LD

"-.E- %
Reofs e el
e @t .



Finding perfect maps

e |If P has a perfect map, we can find it in polynomial
time, using an oracle for the Cl tests.

 We can only identify the graph up to I-equivalence,
so we return the PDAG that represents the
corresponding equivalence class.

 The method has 3 steps (see sec 3.4.3)
— ldentify undirected skeleton
— ldentify immoralities
— Compute eclass (compelled edges)

e This algorithm has been used to claim one can infer
causal models from observational data, but this
claim Is controversial

Algorithm due to Verma & Pearl 1991, Spirtes, Glymour, Scheines 1993, Meek 1995 11



Identifying the undirected skeleton

 |nitially connect all node pairs
e Remove anedgeifwefindaUst Xi L Xj|U

Lemma 3.4.8: Lel G* be an I-map of a distribution P, and let X and Y be two variables
that are not adjacent in G*. Then either Pl=(X LY |Pa% ) or Pl=(X LY | Paf ).

e Hence we can restrlct OUI’ search for witnesses U to

the sets  ca—_(x. x,) -,
and UCX—{X,X;} - N

12



Identifying the undirected skeleton

Algorithm 3.3 Algorithm for recovering undirected
a distribution F for which % is a ’-map
Procedure Build-PMap-5Skeleton |

|
A = A:_jf1 ...... kY ﬂ_}. Set of random wvariables
P, Distribution over A
Bound on witness set
|
1 Let 'H be the complete undirected graph over A

2 fl:lr ..Y.i.,:ifj T 1'1?

3 {.s'-_};!:_};l? — 1

1 for UV & Witnesses(X;, X, H.d)

0 Consider U7 as a witness set for X, X
[ iIFFP=(X; LX,;|U)then

T L-'-_'!{Il_'!{", «— [J

= Bemove X; X from 'H

4 break

10 return (M {Ux, x, 14,5 €{1,...,n})

13



Complexity

This algorithm will recover the correct skeleton given that G* is a P-map of P and
has bounded indegree d. If P does not have a P-map, then the algorithm can fail; see
Exercise 3.22. This algorithm has complexity of O(n®?) since we rconsider O(n?) pairs,
and for each perform O((n — 2)%) independence tests. We greatly reduce the number of
independence tests by ordering potential witnesses accordingly, and by aborting the inner
loop once we find a witness for a pair (after line 9). However, for pairs of variables that are
directly connected in the skeleton, we still need to evaluate all potential witnesses.

14



Identifying immoralities

Proposition 3.4.9: Let G* be o P-map of o distribution P, and let XY and £ be voriables
that form an immorality X — Z <Y, Then, PE (X LY |U) for any set U that contains
Z.

Proposition 3.4.10: Lei GF be o P-mop of o distribution P, oand let the triplet XY, Z e
o potentiol immorality in the skeleton of G¥. such that X — Z — Y is not in G¥. {f U is
such that P=(X LY |U), then Z €U,

Combining these two results, we see that a potential immorality X £ Y is an immoral-

triplet is an immorality or not: we simply check whether Z2 e Uxy. f Z € Ux y, then we
declare the triplet an immorality. Otherwise, we declare that it is not an immorality. The

|
1 K— 5
2 for X;, X;, Xp such that X; X; XpeSandX; Xp €58
3 X;—X;— Xk is a potential immorality
1 if X; 20 x x, then
D Add the orientations X; — X, and X; «— Xy to K
i return A

15



Compute PDAG

Skeleton plus immoralities defines equiv class

e But we might want to orient as many edges as
possible, not just those In Immoralities

Definition 3.4.11: Lei G be o DAG A chain graph K is o class PDAG of the equivalenee
class of G if shares the same skeleton as G, and contains o directed edge X — Y if and only
if wll G that are I-equivelent to G contain the edge X — Y0 H

Q(
_n>

&
" dfp oy

16



Overall PC algorithm

Algorithm 3.5 Procedure for finding the class PDAG that characterizes the -
map of a distribution P,

Procedure Build-PDAG |

A {IL. e -_Yﬂ} A specification of the random variables
P Distribution of interest
|

1 5, 1Ux, x;} +— Build-PMap-Skeleton(X, P)
2 K — Find—lmmnralitieﬂf-’e'.5}{[.J'xi_xd,}]l
4 while not converged
1 Find a subgraph in K matching the left-hand side of a rule K1 H3
) Beplace the subgraph with the right-hand side of the rule
¥ return h

Theorem 3.4.14: Let P be o distribution that has o P-map GF. and let K be the PDAG
returned by Builld-PDAGIA, P). Then, K is a vloss PDAG of G*

n=#nodes, d=fanin, complexity = O(n{d+2})
One error in a Cl test can propagate through whole structure — not robust
Can choose thresholds to control the FDR

17



Recent developments

Kalisch, M. and Buhimann, P. (2007). Estimating high-dimensional directed acyclic
graphs with the PC-algorithm. Journal of Machine Learning Research 8, 613-636.
[Proves uniform consistency in the Gaussian case]

Kalisch, M. and Buhimann, P. (2008). Robustification of the PC-algorithm for
directed acyclic graphs. Journal of Computational and Graphical Statistics 17, 773-
7809.

[Uses robust estimate of covariance matrix]

Maathuis, M.H., Kalisch, M. and Buhimann, P. (2008). Estimating high-dimensional
intervention effects from observational data. To appear in the Annals of Statistics.
[Causal DAGS]

BUhlmann, P., Kalisch, M. and Maathuis, M.H. (2009). Variable selection for high-

dimensional models: partially faithful distributions and the PC-simple algorithm.
[Lasso-type methods]

18
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Score functions

 We can treat model selection as an optimization
problem: arg max score(G,D)

« ML score:  score (G : D) =¢((G,0g) : D)
e Obviously this will prefer the fully connected graph

« But Iif we limit the fan-in (eg restrict attention to
simple trees), this can be useful

20



ML score and Mutual information

e Consider GO: X, Y and G1: X->Y

scorer,(Gg @ D) = Z log éx[m] + log éy[?ﬂ]

e

scorer,(Gy @ D) = Z log ém[qn] + log éy[1n]|.1‘[??1]

e

scorer (G; : D) —scorep (Gy @ D) = Z log éy[ﬂl]lﬂ?[m] —log n’;jy[m]

m

scorer (Gy @ D) —scorer (Gg @ D) = Z Mz, y]log éy|I - Z My]log éy
T,y y

scorer(Gy : D) —scorer(Go : D) =M Y P(z,y)log i E’{'J‘” = M -I5(X;Y)
Y

T,y
Proposition 18.3.1: The bkelihood score decomposes as follows:
score(G © D) =M Ip(X;;Pa%,) — M) Hp(X;)
=1

i=1

21



Bayesian score

Defined as log marginal likelihood plus log prior
Log p(G) is constant whereas log p(D|G) grows linearly with nsamples
Log p(D|G) offers automatic complexity control — Bayesian Occam’s razor

scorep(G : D) =log P(D | G) +log P(G)

P(D|G) = / P(D|6g.G)P(8g | G)dbg
E"g

P(D|G) = HP Em] | €[], . ... Em—1].G)

m=1

ﬁ log P(D | G) = Ep+[log P(X | G.D)]

22



Expected log pred lik vs avg log marg lik
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Computation of marginal likelihood

 For a Dirichlet-multinomial we have

ke

_ ~ Tia) Il + M=)
Piz[l]....,z|M]) = Tla 01 H T .

e For a DAG X->Y we have

PiD|Gx—v) = (Jf P(ox | Gx—y) [] Plelm] Iﬁ'x-E?x—:-'thﬂx)
=B m

(L Ploye |Gx—y) J[ Plulwl| 5'}'|T¢-§I—1'J-‘fﬁ'}'|ﬂ.~'=')

m: 2[m )=

(L Py | Gx—=v) H Ply[m] | 5'1-'|1-=-§x—-r,hfﬁ'r|ml]

T 2 [ | 2

e For CPTs with dirichlet priors:BDe score

(0,0 {rmzﬂu. - Mlxw]

rota=11 1l g iy 1

i weval(Pa% ) xleval(X,)

T(a¥ )

i
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Asymptotic approximations to Bayesian score

We have

Theorem 18.3.4: ff we use a Dirichlet parameter priov for all purameters in owr nefwork,

then, ns M — oc, we have that:

log A
2

where Dim[G) is the number of independent parometers in G,

log P(D | G) = £(0g : D) — Dim[G] + O(1)

log A
2

scoregra(G @ D) =£{0g : D) — Dim|G|

scoregro (G 0 D) =

MY Ip(XiPax,)— MY Hp(X,) - o M 6]
i=1 i=1
MDL = BIC

Thm 18.3.6. BIC, MDL and Bayesian score are consistent (so score(G)=score(G*)
iff G is l-equivlent to G*)

25



Structure priors

* P(G) only matters in small sample setting

e Penalized number of edges P(g) x 9
e Penalize deviation from fixed prior structure

26



Decomposable score

« When we make local changes to a graph, we want
to evaluate the score change in constant time

Definition 18.3.8: A structure score function score is decomposable if the seore of o strue-
Lure Q ean be writfen ns

score(G @ D)= Z FamScore(.X; | }._";-1?' - D)

e BIC score:is decomposable

Definition 18.3.9: Lef {P[ﬂg | G):G €@} be aset of parameter priovs that satisfy global
paurameter independence. The prior satisfies Parameter modularity i for each G,G" such
that PH?-’: = Paz, =U, then PI:'H';{”U | G) = P[ﬂ'_\i_'||U | &% [

« Thm 18.3.10. parameter modularity => BDe score
IS decomposable
o Defn: Structural modularity if p(G) decomposes

 Thm 18.3.10. param & struct modularity =>
Bayesian score decomposable
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Score equivalence

 Def 18.3.11. Score() Is score equiv If
score(G)=score(G’) if G, G’ are l-equiv

« Thm 18.3.12. Likelihood and BIC scores are score
equiv.

 BDe score is only score equivalent if we set the
Dirichlet hyper-parameters as follows

¥y X
Ox,|pa, = 0 - P (T3, pa; ).

 Egif P’ Is a uniform prior network, then

def

Oije = p(Xi=k|Xz =) a,,=1 (K2 prior) is not score equiv
Hijk: ~ Dlr(aq;jk;) thetaY ~ Dir(l,l) 68J 2
1 .
Qir = a— thetaY|X=1 ~ D!r(1,1) £ d 4/
9T thetaY|X=0 ~ Dir(1,1)
28



Decomposable score

« When we make local changes to a graph, we want
to evaluate the score change in constant time

Definition 18.3.8: A structure score function score is decomposable if the seore of o strue-

5 L
fure G can be written ns

score(l Djzz FamScore( X | P:-Lf - D
e BIC score is decomposable
 We say a prior satisfies structural modularity if

P(G) o || P(Pax, = Pa% )
i

Definition 18.3.9: Let {P(0g | G): G € G} be a set of paremeter priovs that satisfy global
parameter independence.  The prior satisfics Parameter modulaxity i for each G,G" such
that Pa%, = Pa%, = U, then P(0x, 1 | G) = P(0x, 1 | G'). "

 Thm 18.3.10. Structural & parameter modularity =>
Bayesian score Iis decomposable

29
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 Algorithms for finding MAP structure (18.4)
« MCMC over DAG structure (18.5)
 Dynamic programming + MH

e Stochastic search



Computationally intractable

d
2

e There are O(d!2( ))DAGS on d nodes

d 2 |3 4 5 6 7 8 9

#G(d) 3 |25 [543 |29,281 3,781,503 1.1e9 7.8ell 1.2e15




Trees

Can learn optimal tree using MST algo in O(n? log n
+ n? M) time, n=#num nodes, M=#cases

Definition 18.4.1; 1 .r.'ri"u ork structure G is ealled tree-structured if ench variable X hos
af most one parent in G, | ].:'EL;,; | = 1. u

A(G) = score(G @ D) —score(Gy @ D)

AG) = z (FamScore(X; | Pa¥ : D) — FamScore(X; : D))
i.Pa¥=£0

wyx,—.x, = Fambcore(X; | X; : T) — FamScore(X; : D)

A(G) = Z WX, X,

X, o Undirected max weight spanning tree

Score equivalence => WX, Xy = WXy—X;-

svalu e svsen eulu s TP T

. Ply | =
scorep (G @ T') —scorepiGp @« D= LIZPII_I W) log | =)
s Ply)

— M T4(X;Y)



TAN classifiers

 Tree-augmented naive Bayes

e Can learn tree structure for each class conditional
density

‘l/’// 7= 0
ZAVANN
X = X & A, X, X, X



Mixtures of trees

e We can fit mixtures of trees using EM: just run MST
algorithm in M step

« Analogous to mixture of diagonal Gaussians



DAG with known order

Can find optimal set of parents for each node
Independently

Proposition 18.4.2: Lef = be an ondering over X, and lef score(G @ D) be o decomposable
seore. Af we choose G to be the network where

Paf = arg ey 31'1_11&% . }FamSc:}re[Xi | U = DY

for ench i, then G moximizes the score among the structures consistent with <.

If at most d parents Iast node Xn must select from
Xnis 1+ J +... + } = }

If CPDS are GL|\/|S can use Iasso to find parents
If order unknown, can search over orders.



Dependency networks

A depnet is a set of full conditionals p(Xi|X(-1))
learned independently.

There may not be any joint which Is consistent with
these conditionals.

However, one can define a (non-unique) joint by
using an ordered Gibbs sampler.

If the conditionals are learned from (lots of) data,
they are likely to be consistent.

By performing variable selection at each node
Independently, we get a sparse graph.

Provides a fast way to visualize dependencies.



Collaborative filtering

* One succesful application of depnets is CF.
« Xi=1 if item I has been bought, Xi=0 otherwise

 Assume S=set of bought items, Sbar = not bought
items, | = target item. Compute p(Xi|S=1,Sbar=0).

* |In a depnet, this is a simple lookup — all other
nodes are observed.

* |n a DGM, this Is also fairly simple — product of
CPDs in the Markov blanket.

* Both technigues have similar predictive accuracy,
but depnet is much faster to learn.

e Ships in Microsoft’'s ecommerce package.



DAG with unknown order

Thm 18.4.3 It is NP-hard to find the optimal DAG
with d >= 2 parents.

Standard approach: heuristic local search (eg hill
climbing), using add/ delete/ reverse edge (n?
neighbors to each DAG).

Diameter of space is O(n?): to get from G1 to G2,
delete all edges of G1 then add all edges of G2.

If too many neighbors, use first best instead of
evaluating all of them.

Often there will be large plateaus of I-equivalent
DAGs. Can use tabu search to escape these.

Multiple restarts or data perturbation.
10



Data perturbation

e Can be used to escape local minima for many ML
algorithms, where score = sum_i score(D 1)

e |dea: use weights w_1I, and perturb them at random
(or more cleverly — rather like boosting)

el s A

[

i
d
i)
11

G — Search(Gy, D, score, O)
gl:u:qst e E.-F.
I +— 1
for i =1.,... until convergence
D' — Perturb(D,t)
G +— Search(G, T, score, Q)
if score(G @ D) > score(Uhest @ ') then
'::-;hEE-t — g

L «— "Ir'i'f

return Ghese

11



Efficient scoring of proposed new graph

MG o)=score(o(G) @ D) —scorelG @ 1)

to be the chiange of score associated with applying 0 on G. Using score decomposition, we

can compute this quantity rebatively efbiciently.
Proposition 18.4.4: Let G be o wetwork steoacture, and gcore be o decornposalile score,

o ffow " A X —=Y" wnd X =Y &G, When

MG r:aszamScurE[]ZPa%“: U{X} : 'DJ—F&mSccrre[}’,PaE, : D)
o fois “Didete X Y " und X =Y € G, then

MG : o) = FamSecore(Y, Pa%’i —{X} : D) — FamScore(Y, PE-.%”, : D)
o [fow “Neverse X =Y " und X =Y € G, thew

G : o) = EamSmreL‘LPaf{- LIEYE o ﬂ,‘l+Fam5c::ure{]"Pa$—-{_‘{} s )
—FamSmre(X,Paﬁ- » D) — FamBeore( Y, F‘a%}, i B

12



Efficient update of cached scores

« After accepting change, only have to update
scores of affected families - O(n) operators

Proposition 18.4.5: Let G and G be bwo network stewctures, and score be o decomposihl
SOOTE

o If o iy pither “Add X — Y " wr "Delete X — Y7 und PE%}- = P&{f. then 6(G @ o) =
G : o)

o [fow “Rrverse X =Y P G — Pa¥  und Pa¥ = Pa% . thew G : o)=4(G" 1 a)
Ha iy X X

13



Sufficient statistics

 Need to walk over M rows for all the columns in a
given family

 |f we need to update n operators, this is O(nM) time

e Can use AD-trees for discrete data, or KD-trees for

cts data, to do this more efficiently (possibly subject
to approximation error)

14



 Need to search over O(n”2) operators to find best
at each step

e Can use a heap to find the best in O(1) time If we
do O(n log n) time to update it when scores change

15



Learning params vs structure

e |CU Alarm network

2
158
-
ﬁ """"" Parameter learning
= i
% Structure learning
= 1t
@
=
O
<
05 "-
u 1 1 1 1 1 1 1 L
L] 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

#samples

16



Dynamic programming (DP)

« Can analytically marginalize over d! orderings and all
possible subsets in O(d 29) time/ space
using DP and fast Mobius transform

» Since order of parents does not matter, eg p(X,|X,,X3) ==
P(X;]|X3,X,), we can share work

« Can find exact global MAP DAG

O(d! d 24) O(d-2)
() {}
/ ¢ \ / i \
(1) (2) (3) {1} 2} {3}
N N O\ ' ?{;
12 13 21 23 (31 (32 {1,2 1,3 2,3}
} } } } } } ~ v,
(1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,1,2) (3,2,1) {1,2,3}
Ordered permutation tree Unordered permutation lattice

Koivisto & Sood, JMLR, 2004 17



Equivalence classes

e Can search through PDAG space - smaller than
DAG space, and fewer (if any) plateau

e To evaluate score of a PDAG, convert to a DAG
then use score for DAG

* To find neighbors: convert PDAG to DAG, add or
delete edge; this changes skeleton hence moves to
a nhew PDAG

 Greedy Equivalence Search: start with empty
PDAG, add best edge until local max, then delete
nest edge till local max. If M->infty, this will
orovably find optimal PDAG given any consistent
scoring fn.

 Performing local updates to score of a PDAG Is
harder.

18



19



Bayes model averaging

 When the sample size is small, the posterior p(G|D)
gives support to multiple (non equivalent) models

 We should perform BMA when performing
prediction

PE[M +1]| D) =3 PEM +1] | D.G)P(@G | D)
 And when computing E[f(G)|D], where f(G) is some
feature, eg f(G)=there Is an edge X->Y in G,
average path length in G

Fpigm[fIG)] = Z flG) PG | D).
i

20



MC3

 Markov Chain Monte Carlo Model Composition

e Use MH In space of DAGSs, with proposal = uniform
over neighbors (add/delete/reverse edge)

* Does not mix well in more than ~10 dimensions.
Also, posterior gets more peaky as sample size
Increases (can use parallel tempering).

21



MH on Alarm

Soom

Init empty

TR R TEEEY HaE sHAFH e RLLIEL]

lllll

Init local search

limmika

o NP e
P

-1 o4 og s

Edgelmarginals
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MH in order space

« Given a known order, we can integrate over all
possible graphs by summing over all parents sets

 Hence use MH to sample over orders, using
traveling-salesman like moves

I:_.u:l'.;.'-h_ ...a:l':!J ...a]'::d. ..a]'.;.'-|n_:||—"|:_.|]':=|_ ""'1';"-!.1 X:.i' "]";'F!n_-l

P DYTH( <" = <)
P« INTRG — <)

min

Target distribution

P(D|=<) = z Hffxp-{_FamSmrna-gil'.z-|Pa_5-f;1 . D))
Helig o @

= H Z exp{FamScoreg(X; | U; : D)}
i Uyl o

U ={U U <X, |U| < k}.

23



Posterior features

e Given samples from p(<|D) we compute
g
P(fID)~ 5 P(f|D.=).
t=1

e Parent featiires

Proposition 18.5.1:

exp{ FamScoreg(X; | U : D)}

P(Pa§, =U | D, <) = :
\Eax, | D, =) ZU'EM,_{ exp) FamScoreg(X; | U’ : D)}

 Edge features
Proposition 18.5.2;

Z{Ueu,,_{ : X,eU) exp{FamScoreg(X; |U : D)}
> veu, , exp{FamScorep(X; | U : D)}

P(X; € Pa§ |« D)=

 General teatures: sample G given <, then use

P(f,D |<) P(f,D|<)= ), FfGPG|<)P(P|G)

Plif|=.D= .
U =P=3575 Gega

24



RB MH on Alarm

------

ﬂﬂﬂﬂﬂﬂ

IIIIIIIIIIIII

ﬂﬂﬂﬂﬂﬂ

tttttttttttttttttt
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Dynamic programming

e Kolvisto & Sood showed how to compute all edge
marginals p(Gij=1|D) exactly in O(n 2*n) time

 Requires special (“modular”) prior p(G) which can
be unnatural (see later)

27



Comparison of approaches

Y |P(Gi; = 1|D) — P(G;; = 1|D)| (—//\CFﬁ)F

1 PAG+MH

4&
i
o

) .

J

}4’“7 tire

/

V
5 sec (d=10) to 5 mins (d=20)
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Error floor due to wrong p(G)

Error due to wrong p(G)

29



p(G) needed by DP and MH+order

« Joint (“modular”) prioron G and <

unordered set of parents ordering of predecessors

* Induced prior on p(G)

p(G) — Zp(Ga <)

30



Graphs consistent with more orderings are

more probable

: JX\\ >€(>(‘V> =ya >

o Effect will not get erased even with infinite dasance
both models are likelihood equivalent

31



Problems with induced p(G)

e Prior is highly non-uniform
 Effect will not get erased even with infinite data
«Cannot encode arbitrary prior knowledge in p(G)

Z sz I(G, < is valid)

unordered set of parents  ordering of predecessors,« 1

-3
x10 * Modular-Flat; KL from uniform = 0.56 x10 Koivisto: KL from uniform = 2.82

1 DAG Index 29,281



Solutions to p(G) problem

e Importance sampling -- Ellis & Wong '06
— Use MH+order as proposal
— #P-hard to compute exact IS weights

*k

w@ - PG _ 711 pi(GY)
p(G) >2 % H?:l pi(Gi)q; (<) I(G, < 1is valid)
1

>~ I(consistent(<,G))

33



Solutions to p(G) problem

e Importance sampling -- Ellis & Wong '06
 Metropolis Hastings -- this paper
— Use DP marginals as proposal for MH

/\C(’fOF

 PAGrn

34



MH with DP+local proposal

« Compute p;=p(G;=1|D) offline using DP
 Wp [3, we use a standard local move

* wp 1-f3, sample a new graph ~ p;

 |f =0 (global) independence sampler
 |f 3=1 (local) standard proposal

35



Why MH?

« DP alone has 3 problems
1. Modular prior p(G)

2. Cannot compute prob. of “long range” features (e.g.,
path from i to |), only edge features.

3. Very slow to compute predictive density
pP(x|D) = 2.5 p(X|G) p(GID)

36



MH allows any p(G)

» Propose using ¢(G’|G)
e Acceptwpa

a = min (1 p(D|G")p(G’) q(G|G/))

p(DIG)p(G) ¢(C']G)

37



Modular vs uniform p(G)

5 node “cancer” network

Markov equivalence class

2
4
2 4

A

mecme (10000 samples)

mecme (50000 samples)

mecme (100000 samples)

A ‘A A A
d N PN S N h"
B"n 7 B h" .el‘[': B‘m j':'i. | ¢ N
"4 A"
D ~~A'E D E D E D E
(a) (b) (c) (d)
theary (inf sample size) unifarm prior mod-flat

Modular prior

biases posterior
even as |D}» oo

MH fixes bias
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T-cell signaling network

edges, uncertain interventions, AUC=0.714

_e—‘D/G’Ir’\a/)

0 0.2 04 06 0.8 1
false positive rate

Ground truth@®

Exact P(G=1|D)

EDED @ g

“Causal Protein-Signaling Networks derived from Kpdrameter Single-Cell Data”,

Sachs, Perez, Pe’er, Lauffenberger, Nolan, Sci2@0é
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Informative p(G)

osphorylation (d=11, N=5400) Ground truth DAG

AKT Inh

G06976

Data Point

uo126

PMA

raf mekl2 plcy pip2  pip3 erk akt pka pkc p38 ink

Observed Biomolecule

ROC P(G;=1|D)
Tcell backbone edges, uncertain interventions, AUC=0.714
' «D

06

true positive rate

04

0.2

0 . .
0 0.2 0.4 0.6 0.8 1

false positive rate

“Reconstructing Gene Regulatory Networks with Baredietworks by Combining Expression Data
with Multiple Sources of Prior Knowledge”, Werhli Busmeier, 2007
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Sampling G allows any features

 DP can only compute posterior of features that are
functions of a local family topology

Possible
Specific parents [JEdge A->C

. ® @ ® ®
© @ @
A in Markov blanket of C
®» ® ®» ©
X X Yy
© ©

Not possible
[1Causal path A->B, mediated by C

@
©
‘4—
[IDirected path A->B v
® © ©i@®
AN A
© © ®"

By sampling DAGs, we can compute E[f(G)] for arbitrary

features f

41



Posterior features

 We sampled N=10k data from d=20 node graph
with random CPTs

 Compute p(edge i->}|D) and p(path i->j|D)

“child” network

42



AUC for p(feature=1|D)

Area under the ROC curve after 200 seconds ofslatk time*

Edge Features Path Features
1} ; ' - ‘ 1
| |
g _ L +
| L 09 F - | = =
. é l , | S— e —
4 > i 1
2 085 | ! 1 = .
| 0.8 r |
| 1
-+ |
07 | |
1
0.7 - ' . w b . . . -
Local Order Global Hybrid Local Order Global Hybrid
B=1 =0 =0.1 B=1 =0 =0.1

All algorithms were implemented in Matlab/C and ama standard desktop

43



Sampling G allows fast prediction

 DP can compute the marginal likelihood of data)p(D
 Hence can compute the predictive likelihood ad¢st point X:

_ p(z,D)
p(z|D) = (D)

e Since DP integrates out G, we have to keep D,
and re-run algorithm for each x, which is very slow

e Qur approach: keep a sample 6f~op(G|D) and compute
posterior mean parametefs  for eaéh G

M

palD) = 3 [ p(alG.OW(OIG. DINGID) = 373 plalG*, T
G

s=1

44



US census data (d=15,N=49k)

Adult (US Census)

0
-0.02 f _ - - - -
S
ﬂon 1 I—Hgl_l__uil u_l?.LL.LLJMI EJJ&MLW_‘W
T 004 T
g5
é —-0.06 e
2 Local
oca
-
-0.08 — — — Global
Hybrid
O T T Order
() Optimal Dag
{ RawDP
-0.12 . : :
0 50 100 150 200

Time {seconds)

1. Exact BMA (but takes 350h!)

2. MH-DP hybridp=0.1

3. Plug-in MAP-optimal DAG, MH-DP glob4d=0, MH-order
4. MH-localf3=1

5. Gibbs
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Why MH-+DP?

— MH + DP mixes faster than MH + other

46



Edge marginal error vs time

2 ij [IP(Gij = 1|D) — pe(Gij = 1|D)

1

Local
— — — Global

08 Hybrid
a e Order
< O { FRawDP
T os
>
[
=
a 04
o
=3
Ll

0.2

0 L ! T - % X~ 1 = = -
0 20 40 60 80 100 120 140

Time (seconds)

d=5 cancer network
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Traceplots of log p(G,D)

-3.7

-3.8

-3.9

x10° Order

0 50 100 150 200

K105 Global

0 50 100 150 200

x10°  Order &Global

-3.72

=3.725 §

P uun"‘m“mulmm
““‘w”‘-

150 200

US census (d=1

-3.73
0

5 10 15 20 25

4, N=49K)
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Repeatability

MH+DP (hybrid)

Hybrid

CD@)’

O

o]
8%8 5

B

0.2

04 0.6 08

We plot edge marginals after two runs from differ@mdom starting points

MH-order

Crder
o (] @
O
09 - 1
08 -
e}
2.7 D (o}
96
05+ e
O
a4 -
ERS o
© o]
HWRS © q
Q
a1 - o 1
Ga‘q . . oy I
Q 02 0.4 c.8 0.8 1
Run2

US census (d=15, N=49K)

1 JC'

MH-local

Local

Lo SO o '(© Qoo O

o
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Stochastic search

« MCMC approximates p(M=m|D) by counting how
many samples are equal to m.

e Since we can compute p(m,D) exactly, we don’t
need to visit m more than once. We can

approximate

p(m|D) ~ D)

Zm’inS p(m,’D)
 |tis better to rapidly move through model space,
covering as much posterior mass as possible.

e Shotgun stochastic search (SSS), mode oriented
stochastic search (MOSS)

51



Occam’s window

e Goal: compute level set of the posterior
Cla) = {m: p(m|D) > ap(m™|D)}

e M”™* Is unknown, so approximate this by

C(a) = {m : p(m|D) = ap(m*|D)}

m* = arg ma%cp(m\D)
. . c .
e Can find this by beam search, throwing out models
that are worse than a time the current best

(Raftery, Dobra)

52
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e Basic issues (19.1)

e Gradient ascent for DGMs (19.2.1)

« EM for DGMs (19.2.2)

« Variational EM (19.2.4)

« MCMC for param inf in DGMs (19.3.2)
e Variational Bayes (19.3.3)



MCAR

e Let Xi be the true value of variable I, and Oi in {0,1}
ne whether it Is observed or not. Yi(Oi1) = Xi or ?.

e Defn 19.1.6. Missing completely at random (MCAR)

means X \perp O.

 Given MCAR, we can safely ignore the missing
variables (for which Ox=1), since they tell us

nothing about theta
q/

/

O@ Z@@

p(0,v]Y1,Ys) = p(0|X1)p(¥|O1, O2)




Missing at random

 Defn 19.1.8. Let H be hidden vars, V be visible
vars, and O be observation status. Missing at
random means O \perp H | V.

xfe

ngf)

 Intuitively, although O may depend on some of the
variables Xv, since we observe Xv, we do not learn
anything new about Xh.



Benefits of MAR

« Thm 19.1.9. Given MAR, and a factored prior,
p(B,w[D) = p(B]Xv) p(Y[Xv,0)
o Pf.

_ y u Y
P.l'.-?.'..ﬂ-:mrrll(y] — Z [P :'*w ‘E”h] n PF LESLIEG {}X |"Ea dden® m|h }I]

_ E: v U '9
—= [P L obsr Thiddes :JR”H"”” 0Xx | Lo

Z.
by ud demn

— Pr:-?..'.q.fg.':lr.u(ﬂx |'T:;E.Ilh-,,:] Z P{‘E?h 1:E::i:!! ::I

® dder

SR

— P.'i'i'.'.‘s-w?i',l f-"X |T[ - :]P Ct'?;'?m:].

|
%

G,/>ﬁ



Counter examples to MAR

« Collaborative filtering: people are more likely to rate
movies they strongly like or dislike.

 Medicine: If a patient does not have a check mark
In the “had X-ray” field, they probably don’t have
any bone problems. However, if we explicitly write
the “primary complaint” as the cause of which tests
are performed, MAR is restored (since we observe
why O(Xray)=0).

e Henceforth we will assume MAR.




Multimodality

* For fully observed DGMSs, likelihood is convex
(assuming each CPD is convex), and hence has a
single global maximum.

 When we have missing data, the likelihood is a
mixture of up to K*n modes, corresponding to every
possible completion pattern

:._ H]’f J ".‘Hxh.-._:

l e &
. y-x:]

L(e[D)

b

E}Ir

Proposition 19.1.10: Assuming ia.d. dala, the hkelihood can be wirillien as

L(6:D)=]]Plo[m] |6)=]] D> _ Plo[m].him]|6).

m h[m] I



Identifiability

e Sometimes we cannot uniquely identify the
parameters, even given infinite data

 Eg The experimenter either tosses coin 1 or coin 2,
but we don’t know which. The model Is

?” L{0: D) = P(X = Heads)MHerds)(1 _ P(X = Heads))M[1mils]
e e

4

I

PI:}{ = Hn.r:u'-fi.':",'l = Hy E:Jx”;._l o “ = HJ-:’]HIHE-

- Xl 1

* We have eg. p(D|6,=0.5, 6,=0.5, 6,=0.5) =
p(D|6,=0.5, 6,=0.8, 8,=0.2). The problem is
underconstrained.



Identifiability

 Defn 19.1.13. A parameter 0 Is identifiable if there
IS no 0 # 0 st p(X|0)=p(X|0’). A model is identifiable
If all © are identifiable.

* A mixture model cannot be identifiable since we
can always arbitrarily permute the hidden labels,
and the corresponding parameters.

« Hence we should not ask things like “what is the
orob. Xi belongs to cluster k™ but rather “what is the
orob Xi and Xi belong to the same cluster”.
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Gradient descent for DGMs

 We can find a local maximum using gradient based

methods.
 Consider tabular CPDs.
e Thm 19.2.1.
4 pxz’:k,XM:j,e
00ijk 0k

o Pf.

agzjk i ot vy LR R [ y g
p(e)

0:ik

11



Gradient descent for DGMs

 Pfcontd
0 o _
dP(x | _“.}Plff_:!} - ﬂ:t{ZE;:E OP(x | u) P
1
= Z Pz | u) P(g)
¢:¢(B)=e £ (X Pax)=(.u)
1
— Plr| “..JP(;I.',_ u, e),
e Thm 19.2.2.
oU0:D) 1~ p 0
dP(z |u) P(z|u) 2 (@, u]ofm],0).
 Chain rule for non-tabular CPDs.
000 : D) Ol(Pg : D) OP(z | u)

90~ £~ OP(x|u) 08

12



Gradient algorithms

e Gradient requires inference to compute family
marginals.

 Need to enforce positivity and sum-to-one
constraints (for discrete) eg reparameterize to
unconstrained form

g_:"ll"mh.l.

> e vty €1
* Need to enforce positive definite — optimize wrt the
cholesky factors.

 Have to specify step-size and search direction (use
black-box algorithm).

e EM Is much easier...

Plz|u)=

13



EM for DGMs

o Key intuition: if we knew the values of H, we could
compute the MLES/MAP estimates for 0 easily. So
we infer H|O@ and then estimate 6|H. For the latter,
we Just need the expected sufficient statistics. For
tabular CPDs, this Is just a table of expcted counts

e E step
Mg: [z, u] = Z P(z,u | o[m].8").

¢ M step

° it Mot [z, u]

14



Pseudocode

i
1 for each t =0,1..., until convergence

2 /| E-step
} [ M[z;, u;]} — Compute Expected-Sufficient-Statistics(G, 8, D)
1 - M-step
a for eachi=1,....n ;
fi for each x;,u; € l'rﬂ-il[_}f-j_.Pﬂ-%{-i;l
r o Mi[ze,uy
| O &
N return @'
1 // Initialize data structures

2 for ecachi1=1.,....n

3 for each ;,u; € Val( X;, Pﬁ%‘h}'

4 M[z; u;) — 0

5 // Collect probabilities from all instances
§ for cach m=1... M

7 Run inference on (G, 0) using evidence ofm]
N for ecachz=1,....n

(] for each r;,u; 1-’-:1.3(}{3-,13:1%{—1]

10 M|z w;] — Mz, u;] + P(z;, u; | olm])

11 return {Mr;, u;]:Vi=1,...,nVr;, u; € 1-"&E(XiTPaE{ri)} 15



ECDLL

* Define expected complete data log likelihood, wrt Q

distribution over H|D
Eq[t(8: (D,H))] =) Q(H){O : (D, H))
H

« For tabular CPDs, we have

(O :(D.H)) = Z Z M p (i, willog 8, |,
=1 (zy,uy) € Val( Xy Pax, )

i

EQ[E(E} : {D H})] — Z Z .EL;I [ﬂf{-p.-H} [.'T:E-? H..g;]] lﬂg 9[,,”“1.

i=1 (xyug)eVali Xy Pax, )

T

Eqll(0: (D.H))]=)_ - Mg[zi, wi]log by, |,

i=1 (xy,uq )€ Val{ Xy Pax, )

16



ECDLL for exp fam

 The key to making EM simple for expfam models is
that the log-likelihood is linear in the sufficient
statistics

e

P18) = ﬁ_q(g) exp { (t(0).7(£))} T((D,H)) =) _7(o[m], h[m]).

U6 : (D, H)) = (t(6),7((D,H))) + Y _ A(o[m]. h[m]) —log Z(0).

i

Eq[¢(6 : (D, H))] = (¢(8), Eqlr((D,H))]) + D _ Eq[4k6[m], hjm))] — M log Z(6).

[‘)/\6(/

17



Choosing Q (for E step)

e Define

Op[0, Q] = Egll(0 : (D,H))] + Ho(H).

e Thm 19.2.5.

Corollary 19.2.5: For any @,

00:D) = ®p[0,Q]+ DQ(H)|P(H | D.6))
Eq[/(0 : (D.H))] + Ho(H) + D(Q(H)|P(H | D, ).

« From (2), ECDLL is lower bound on LL.
« From (1), iIf Q=p(H|D,\theta), then bound is tight.

 EM alternates between optimizing Q and optimizing
\theta. Can do partial updates.

18



Convergence

« Thm 19.2.6. If we do exact EM (so Q=p(H|D,theta)),
then the LL never decreases

Theorem 19.2.6: During ierations of the EM procedure of Algorithm 19.2, we have that
E(HHI :D)— 0" :D) > EpiH D, 0 [E(QHI : D,Hﬂ — EpH|D,6%) [E(E’t : P,H)].

As a consequence, we obtain that:
(e D)< ot D).

Proor We begin with the first statement. Using Corollary 19.2.5, with the distribution
Q'(H) = P(H | D,8") we have that
00T D) = Eq [0 : (D,H))] + Ho:(H) + D(Q'(H)|P(H | D,6))
00" :D) = Eqg 00" : (D, H))| + Hoe(H) + D(Q'(H)|P(H | D.0"))
= Eq:[£(6": (D,H))| + Ho(
The last step is justified by our choice of Q'(H) = P(H | D, 0"). Subtracting these two

terms, we have that

(O D) — £(6" : D) = Eqe [((0F : D, H)] — Eqe [£(6" : D, H)] + D(Q(H)|P(H | D,6+))

H)
H)

As the last term 18 non-negative, we et the desired ineguality.



Convergence cont’d

Theorem 19.2.6: During ierations of the EM procedure of Algorithim 19.2, we have that

f(ng . D} — f(ﬂ't . T)} = Ep[’]-irp_gt] [EEQHI . T}Hﬂ — EPE'HI*RE“II [E(Ht . T}Hjl]
As a consequence, we obtaimn that:
(o' D) <ot D).

To prove the second statement of the theorem, we note that @7 is the value ol @ that

. . . . . ! .
at least at large as the value obtained for any other set of parameters, including 8°. We
conclude that the right-hand side of the nequality 15 non-negative, which implies the st
statement m

& 7 t - t+1 .5 . 7 t -
Theorem 19.2.7: Suppose that 0 is such that 0'7" = 0 during EM, and 8" is also an
interior point of the allowed parvameter space. Then 07 is a stabionary point of the log-
hkelihood function,

20



Rate of convergence

 |nitially fast, then very slow; can switch over to
conjugate gradient near optimum

-+ T T
~iof
BT

Trarning LL{ irsaroe

h 6 & 4 % 4

I Hl i:l -!:l -ll- gL

« EM has ||near LUIIVBIQBIILE rate

-'* i
Ef:}f —Ef

Although we do not go through the proof, one can show that EM has linear convergence
rafte. This means that for each domain there exists a tg and a < 1 such that for all £ = 1,

Ei+1 = (¥€t.

21



Local maxima

 Maxima can differ a lot in quality.

e Can do multiple restart, killing off some runs early if
they look bad (as in beam search).

T T
an |- -y
- 3
- 2
=
§ 8
F €
k i =
s il 5
o n
= e
= 20 v Ty
== 52 Wy
O Heklenva asw
T 1
= o a2 =] e o e oo it 5 o] ] L] Bl ] ] i}
E.anmple gize F‘I‘EI:-E'HHQE of nuns

(a1 ) (h)

22



Assessing convergence

e Can check whether parameters stop changing or
LL stops changing. Can be quite different.

* Recall 9000 : D . M
OP(x | u.)} - P(r|u) mz=:1 P(z,u | om],0).

 If p(Xx,ulo[m]) small, gradient is small, else O(M)

 Hence effects of param on LL can be small or
arge.

(&) 23



Accelerating convergence

Hard assignment EM (eg Kmeans). E step is
searching over discrete assignments; this tends to
converge faster (but to a worse solution).

Hybrid EM/CG
Over relaxation: step size > 1.

Stochastic EM: since Q(H) = prod_m Q(hm|om), we
can do inference on only a subset of the datacases
(mini-batch) and then do an M step

(Monte Carlo EM: sampling in the E step)

24



Example: fitting planes to 3d point clouds

PLX |f_ —L {?Mr ?-a-t{dr p,:”llzlcrjl /\

§ ol o 25



Variational EM

e Restrict Q distribution in E step to a tractable
family, rather than p(H|D,theta)

max max Dn| 6, O
e p|?, ]

 Eg do mean-field in the E step, then regular M step
 Maximizes a lower bound on the LL

Fl : D) = max Ppll. Q] = maxPn|@. O].
_ .' i | '{"]_Qeg p|f, Q]

26
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MCMC

e Can compute p(0,H|D) using standard algorithms

« Parameter collapsed particles: sample 8, compute

0(H|D) analytically

e Data completion collapsed particles: sample H,
compute p(0|H,D) analytically

28



Marginalizing out H

e Bayesian Mixture model

P
@

Datam Clusters k

M K
P(D|61,....0,2) =[] (ZP(C[m] = & | \)P(x[m] | C[m] :ek,ak})

P(0, | X, 0_1..,D)x P(D | 6y.....0K.\). Have to use MH

29



Marginalizing out \theta
@

,-/® Collapsed Gibbs sampling
Cf DP mixtures

Datam Clusters k

P(X| e) = Dirichlet(ao/K + |I1(c)],. .., a0/ K + | Ik (c)]).

P(0y | ¢,D,¢) = Q01 | Dry(e)p d) x P01 | @) [ Pla[m]|64),

melpie)

P(Cm'|=k|e_p.D,d) x P(C[m'| =k | A, e_p)Pla[m'] | Clm'] =k, @[Ii(e_p)]. ).

P(CIm) =k | e, D, $) o (Ii(C—mi)| + a0/ K)Q(X | Doy, &)

30



Variational Bayes

 Min KL(Q|P) where we assume
Q0. H) =Q(O)Q(H).

« Thm 19.3.6. If we have global param independence
and Q(8,H)=0Q(0) Q(H) then

Q0. H) =[] Q0x. ) [T Qe lm)).

 Hence we can optimize each Q(h[m]) separately —
just like inference per case In the E step — and then
optimize each Q(\theta_I) separately — just like
optimizing each family in the M step

* E step: we do inference with expected params
« M step: we fit a distribution

31



VB for MixBernoulli

Q=0Q0n) {HQ(QX”H ] {HQ [m J . thetaH (P
|

Beta Beta Bernou

hetaX
/Leta|

Q(0y) o exp {hlP[E}H] + Z Eqgm) [In P(H[m] | QHJ]}

Datam Clusters k

Q(Ox,m) o exp {]11 POx,u)+ Z Equim)) [In P(zi[m] | H[m]. E?;.;”H}]}

m

Q(H[m]) o exp{Eqg@y)[nP(H[m]|6x)

+Z£Qiﬂx lH:,[hlP [m] | H[m].6x, HJ]}

POy = (B4, 0p1)) =Ine+ (apo — 1) InBho + (o1 — 1) Inbpa.
Equpmpn P(H[m] | 0g = (00,6,1))] = Q(H[m] = h?)Inbo 4+ Q(H[m] = h') In .

QO = (B0, 0,1)) o exp { (&hn + Z QH[m]=h 1) Iné0+
Qo = Qo —I—Z Q(H[m] = h°)

(th + ZQ(H[m] = hlj — 1) ln ghl} ﬂ;ﬂ — ap _|_§: Q{H[m] _ hl}.

_ Igil-:rh|;|+">_' Q(H[m]= hc'j lgah1+">_' Q(H[m]=h')—

KD hd ) 32



VB update for H[m]

Regular E step
P(H[m] | xy[m],...zn[m]) oc P(H[m] | 0p) HP[;I.‘E'[T?]-] | H[m], Ox, 11 ).
VB version

1
EQ[Ex“Hj[IHP(;ﬁ | H[m]ﬂqu}] = /Q{Qmﬂ[m]}lﬂ gde[m]dg.rdH[m]'
0

Eqoy, ) [nP(z; | Him],0x,1)] = ¢l ) — {P‘(Z Wt |1y)

-
ﬂ.i

where o are the hyperparameters of the posterior approvimation in Q(0x J|H) and @(z) =

¥
(InT'(2)) = ?;:ﬁ is the digamma function, which is equal to In(2) plus a polynomial function
of % And so, for z >3 1, p(z) =In(z). Using this approxzimation, we see that

Ok
Egoy, 0 Pl | Hm],0x, )] = In |

33
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Variational methods

e From Lecture 10:

e Minimize
D(Q||P) = WmZ-F(P,Q)
F(P,Q) = Hq(z)+ )Y Ecinqnyy(C))

* This always Increases the lower bound and will
always converge

35



Mean field approximation

e Let us assume the approximate posterior is fully
factorized

= H Qz(%)

 Then the objectizve (negative free energy) Is

F(P,Q) « —I-ZEX ~@In¢e(Xe)
ZH (Qs) +ZZ [[@i(ze) nge(ze)
« Eg 4x4 grid O(n, K?) for energy, O(n, K) for H

FlPy.q] = I{A Az g nelAny As g+ Erag aa g -~gllnelde . Az )]+ Frag aa-g]

E t;'[]“fﬁ"lﬂi 1Al + Egllng{Adya, Ay aj] + Fglng(Ay 5. A 4)] +

P

Pt

”Q'.,-qi,i_] + Illqull'.qilg_:l + Illqull'.qilg_:l + Illqull'.qil.i_:l +

Hgldaa) + HoilAag) + HolAsa) + Hgl{ Aaa)



* Objective is concave in each arg (entropy Is concave in
each Q |, expected energy is linear in Q i)

ZH Qi) +ZZ []Qi(zc) Inge(z.)

Zc ’LEC

 The set of completely factorlzed distributions is not convex

a: _ )\HQl wi _|_ 1 _ HQZ2 wi Not factorized

7 1
 Hence we are optimizing the objective over a non-convex
space, and will be subject to local maxima

e Let us derive equations that characterize the fixed points.
These could correspond to saddle points or local minima,
but such points are unstable and unlikely to be the result of
our iterative update scheme.

37



e Define

<f(wh (kﬁ 2{: {[I}inxz}

Th 1€h

Fan)ie = S | T @] fzalz; = k)

wh\wg ’I,Eh 7’7&]

(f(zp)) = ZQJ z; = k)(f >>

Inp(z,) > Zﬂnqbc zc)) +ZH Q:)

Z Q;(k Z Ingc(xzc))jne + H(Qj5) + ZH(Qz)

17

We mostly follow Tommi Jaakkola’s notation rather than Daphne Koller’'s 38



Mean field equations

8Qj(k)L(Qj’)\) = Sjk—InQ;(k) —1+A=0
Qj(k) = exp(Sjr)exp(A—1)
- Zi exp(3(In 6o(20)) 1)

39



Example: grid

(HNr;) = = exp Z Fu,—(x,~qInd(Ug, ;)]
b W = M ea [-:;If:']

Zﬁ:, 1,4 {;,:J'Lﬂi_ 1.3 l'lnlx'ﬂ-"rﬂi- 1.5+ '5'!1_7;':""

' ' L Zﬂz 1Q|~ﬂij—111ntmrﬂaj 14 '5'5-:-_?;':'4-
Qai;) = EXP 4 4= -
. ":E.'!'.-l| ZE-=+1jan.ﬂ'!--l-l_';l_.l]-nrtl-"rﬂ-;}..ﬂ-l_l_lj;l;l—'—

ZE: A4l Qlta‘!-_',‘-l-l.-l]'llrh'lrﬂ-;jk -!__-;|+1_:|_:|

)

>
L

>>_(
M
™
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e Suppose we want to find a MAP estimate

maxlog p(6) + logp(s|0)

. If we have latent variables Z we can use EM
e E step: compute expected complete data log joint

N
£(0,001a) = logp(0)+ > > p(z|Tn, Oora) log p(z, zn|0)
* M step: set n=1 z

Orew = argmax f(6,0,4)

42



Variational EM

« Consider the negative free energy
F(z,Q,0) = ZQ ) logp(x, 2|0) + H(Q)
» Earlier we showed this is a lower bound on the log-

likelihood
F(z,Q,0) = InZ(z,0)— D(Q||p(z|z,0))
logp(z|d) = InZ= mng(x,Q,H) = F(z,Q",0) > F(z,Q,0)

« Where the bound is tight if Q*(z) = p(z|z, )
* E step: find Q,(z) that maximize
F(xannaeold)

M step: find \theta that maximize

43



Variational EM

 An exact E step Is equivalent to setting
Qn(z) = p(2|Tn, Oo1a)
e The corresponding M step maximizes

Y F(20,@Qn,0) = > D> p(zlen, 0o1a) log p(z, 2,|0)] + H(Qn)

n

= f(6,00a) + > _ H(Qn)
» Since H(Q,) is independent’of 0, this reduces to the
standard EM algorithm.

 Generalized EM merely increases (not maximizes)
0 in the M step.

» Similarly we can simply improve Q,, in the E step

Neal and Hinton, “A new view of the EM algorithm”, 1998 44



Variational Bayes

 We can replace the point estimate of 8 with a
distribution and try to minimize

D(Q(leNa e‘xlzN)Hp(Zl:Na e‘xlN))

e The distinction between E and M vanishes: we are
just doing sequential updates of Q(Z,) and Q(0)

* This gives us the benefits of being Bayesian for the
same computational speed as EM

45



VB for univariate Gaussian

exp (Ei;[Inp(X, Z)]) Ingq(Z;) = Eiz[lnp(X. Z)] + const.

q;1Z;) =
[ 0 Esplup(X.2)) 0z,

plulr) = N (pluo, (hor)™")

g N
N2
' V2 .
) exXp {_ E (Tn — ) } p(r) = Gam(r|ag,bo)
' n=1

p(Dlu7) = (

b2 | =4

o
:—]|'°'

qlpe. 7) = qulp)g- (7).

Gaussian
Ing,(p) = E,[lnp(D|p,7)+Inp(u|r)]+ const. Aopo + NT
iy = -
i v i Mo+ N
== —“[I] ;"ku[;.!—,mﬂz-l-Z[,t' —,u)z + const T
2 E 4 k- e Ay = I:,:"u:. + N ﬂE[T]
Ing:{v) = E;[lnp(Plu,7)+Inp(u|r)] + np(r)+ const. Gamma
N _
= (apg—1)In7T —bg7 + :llnr N+1
2 ay = ap+  ——
N 2
T i s o .
_EIE:,:_; [Z_;[.E‘ﬂ — w4 Aolp — pe) ] + const, by = bo +%IE.'._: Z(-E‘n B ,t-!:lz 4 hol(p — |l'.-!|:|:|2 .

T

Bishop p471 46



VB for univariate Gaussian

2
(a)
T
0 : 0 s
-1 0 H 1 -1 0 H 1
2 2
(c) (d) rrgence
T
1t il
( i (
0 0
~1 0 H | 0 H |

Green = exact posterior (NormalGamma), blue = factorized approximation
47



VB for mixtures of Gaussians

Inference
gl 7w, p. A) = q(Z)g(m, p, A).

Ing*(Z) =E, ,allnp(X, Z, 7, g, A)] + const.

N K
In g*(Z =ZZ Znk 1IN pni + const.

'|_=

-

o
i

i

I'“

P W R

Inpn = Elnwm]+ lr.L[Jiulr'LkH — 2 In{27)
l i
_EIE-“'::sﬁk- _l-rx‘“ — ) -"'Lkixﬂ - .I’-f;;;']
N K
qalzz;l o H ]:[pi:;;
n=1 k=1

Multinomial (soft responsibilities), as in EM,

N

X 2w . A) =p(X|Z, p. A)plZ|m)p(w)p(p. A)

K

p(X|Z, . A) = Hﬂvmm )

1 k=1

N K
p@m)= [T T~

n=1 k=1

K
p(m) = Dir(m|ag) = Clexg) [ [ 75

K

plp, A) = H,.x-’ (1| mo, (BoAx) ') W(ALWa,ro)

k=1

except we used expected parameters rather than plug-in

48



Automatic model selection

e Recall t~ Dir(a). If a << 1, we prefers skewed Tt
and hence sparse z.

« MAP estimate from regular EM is

R Zn’I‘nk—Fak—l N +a—1
T — —
g >tk +ar—1) N+Ka—-K

e Posterior mean estimate from VB IS

>onTnkTar  Npyt+a  «

— 3 >()
Zk(rnk+ak) N+Ka N+ Ka

T

49



Selecting K with one run of VB

50



Variational message passing

e Consider a DAG model

plx) = 1_[33{:-:1|pa.1_1
 The mean field equations are
In q_':l:::{J:l = By [Z '.n_ﬁ{}:||p5.|fl] 4+ const.

i

 The only terms that depend on X_jare in x_J's
Markov blanket

 |f all CPDs have conjugate-exponential form, the
VB updates can be converted into a msg passing
algorithm

 VIBES software (John Winn)

51
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Structured variational approx

Rather than assuming Q is fully factorized, we can
use any structure for which computing the
expectations of In ¢. and the entropy Is tractable

(A —A)
>|< A A — e — A Ay Ara A A
Az Az3 | | | |
;Ii >|< e As — R Aus Azq Az A A
Ay —(As 5 i | | |
>I< >|< Axy L Axa i\ Aaa i Aay Az Az Aszs A
Bazg)—(Les) | | | |
LA — '_""1_2___ "u'-i__; 1 -'“-.;_4_ Mgy -'"u_z_ A A

¢ = model, Y = approx

—_—

QX) = o;

1
EQ}

1
=

Corollary 11.5.13: If Q) = ﬁ 1_[_?. . then the potential @y is o stafionary point of the

energy functional if and only if:

rley) o exp {EQ [ln Py | {:j] — z Egny | e } . (11.59)

kg
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« Scoring functions for DAGs with hidden vars
(19.4.1)

e Structure search (19.4.2)
e Structural EM (19.4.3)
* |Inventing hidden variables in DGMs (19.5)



Bayesian score

 Need a way to measure model quality; orthogonal
to issue of how we search through space of models

e Bayesian score hard to compute since posterior is
an exponential number of modes

scoreg(l@ @ D) =log P(D | G) + log PiG)
pole) = [ [Tototmle. GIp(61c)do
plo[m]|6,G) = Zp |, 16, G)

e Approximations: asymptotic, variational, MCMC



Chib’s candidate method

* Approximate p(D|G) using output of a standard
MCMC run. For any 6 (eg MAP) compute

P(D|6,G)P(6 | G)
P(O|D.G)

P(D|G) =

 Requires that p(6|D,G) cover chosen 6.

e This requires that MCMC mix over all posterior
modes, even If symmetrical. If not, it will
underestimate p(D|G). See rejected letter to editor
by Radford Neal.*

* hitp://www.cs.utoronto.ca/~radford/ftp/chib-letter.pdf 4



RIMCMC

e Instead of doing discrete search, and integrating
out params at each point, let us jointly sample In
graph and param space

e Since the size of the cts space Is changing, we
need to use a change of measure when we move
between dimensionalities

e This results in reversible jump MCMC
e Getting it working Is delicate...



Laplace approximation

Box 19.F Concept: Laplace Approximation. [ he Laplare approximation can he
applied to any fmnction of the form flw) = G0 for some vector w.  Our task is to
comptte the intesral

= [f[-mjdw

Using Tavlor's expansion, we can expand an approximation of g around a point wg

gl ) g ddglw )
T] lw=wo (w0 — wo) + g \w — wo ) [m lw=wp (W0 — wo).

5
&

where [%—g%)—] |w=ml:J denotes the vector of first derivatives and [%El} |am.=.‘.,:.|:| denotes the

Hissian the matrix of second derivatives.

glw) == glwo) + [

If wep is the maximum of g(w), then the second term disappears, We now set

- _ |2ew)
T digaij |-1.r_|=w.:|

tor he the negative of the matrix of second derivatives of glw) at wp, Sinee wyp is A maximnom,
this matrix is positive semi-definitive, Thus, we get the approximation

glaw) &~ glwg) — Slw— tm;.‘,lTEf{-m — ).
Phugging this approximation into the definition of fix), we can write
: { \ —Eiw—wp ) VO w—apg)
fladw =2 flawg) | 7T ‘.

The integral is identical to the integral of an unnormalized Ganssian distribution with
covariance matrix & = C~1. We can therefore solve this integral analvtically and ebtain:

f_fl“w']fﬂ-u_: ] _F[-wg]|{,'|—%fgh_:|é dim(C)

where dim{C') is the dimension of the matrix C'.



Laplace approximation cont’d

e Let g(w) =log p(D,w|G).

e Laplace approximation to p(D,G) Is

dm(C) | or élug |,

SCOLELaplace (O @ D) = log P{G) + log P(D | {}9 G+

C is negative Hessian: requires inference on xi, Xj, Ui, uj

#log P(D | 0.G)

Y *log Plo[m] | 0,G)
30z, |10, Mz, |, B

Dz, s,

ég ki) J |u*’ éﬂ

= 1 Eal



BIC score

« BIC is the limit of Laplace as M->inf.

- C = M= 3 C
f=zf“m o EZ; "
m=1 "=
| | M |
det (C) = MmO oy (Emz_:l {;'m) sy M et (Ep+ [Co)) .

log det (C) =2 dim(C) log M + log det (Ep.[C,]).

Theorem 19.4.1: As M — oo, we have that;
SCOTELaplace (& @ D) =scoregro(G @ D)+ 0(1)
where scoregr oG 0 D) is the BIC score

log A

2

—

scoregre(G : D) =log P(D | 0g.G) — Dim[G] + log P(G) + log P(0g | G).




 CS approx to log p(D|G) is more accurate than BIC,
yet faster than Laplace

Cheeseman-Stutz approximation

 Matt Beal’s thesis proves CS is a lower bound

« Example: we plot log p(D|K) vs K for a mixture of

Bernoullis for different methods: ‘candidate’ is a

‘gold standard’ MCMC method
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CS approx

e |ldea 1: If D* is complete, p(D*|G) just relies on
sufficient statistics, so use ESS instead

P(Dp,16)= [ p(Dy4, 10.0)P0G)d0

« Unfortunately this does not work well, since it sums
over 1 (imputed) dataset whereas p(D|G) sums
over an exponential number

P(D|G)= pri'D.H |0,G)P(0 | G)do = pri'n.’hf | 0.G)P(0 | G),do.
H H
e |dea 2: add an approximate correction term

log P(D|G) = logP(D} ;. | G)+log P(D | G) —log P(D}; 5| G)

\_/\/\_—/

Approximate with BIC
10



CS approx

. 1 .
log P(D | G) —log P(Dg 5 | G) = llc:-gP{'D|{?g~§j—§Dim[ﬂg]1ngﬂf}

Y RPN W
_ llclg P(D; 5, 106.G) - EDlm[{}'g] log _-‘LI]

= log P(D | 0g,G) —log P(D} 5_ | 0.G).

logP(D | G) = logP(Dga |G)+1ogP(D|G) —log P(Dg 5. | G)
~ log P(Dy 5. | G)+1log P(D | 0g,G) —log P(Df 5_ | 0g,G).

scorecs (G 0 D) =log P(G) + log P{'D;:ég | G+ log PiD | 8g,G) — log F{'D;:éc | 85,0

11



Variational lower bound

EM for MAP estimation Variational Bayesian EM

Goal: maximise p(# |y, m) wao.t. 8 Goal: lower bound p{y  m)

E Step: compute VBE Step: compute

V) = p(x |y, 09) I x) = plx |y, 3"

M Step: _ VBM Step: _

0UtY) = argmax, [dx gV (x)Inpx,y,8) | gi T (O) ccexp [ dx g TV (x) Inplx,y, 6)

VB provably tighter lower
Bound than CS

Binary hidden nodes, 5-ary obs nodes
136 distinct DAGs

Beal, M.J. and Ghahramani, Z.
Variational Bayesian Learning of Directed Graphical Models with Hidden Variables
Bayesian Analysis 1(4), 2006. 12




BICp

5

N(D|G) vs dof(G
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Structure search

 P(D|G) does not factorize across families, unlike
the fully observed case

o Cannot find (easily) optimal tree or optimal DAG
given ordering.

e For local search, evaluating score of neighbors is
expensive — score does not decompose, so need to
find MAP estimate for each graph just to compute
its BIC score

15



Illustration of hon-decomposability

O,
5 & & & {1,2} and 3: weak corr
e B = 3 and 4: strong corr
(e (€
%) (%) (%) (% @) ) G O
Gro ol Goy i e
, ) G ) G
11 s i =1 —
L)

Network | ALL | ACS

G [add © — Xq) +3 —0.4

Gop [add & — Xy +10.6 | 47.2

G (add €@ — Xq, O — Xy | 4241 | 4174

16



Structural EM

e Given current graph Gt and MAP params theta(t),
compute ESS for all possible families (potentially in
a lazy fashion — may need out-of-clg queries)

« Evaluate BIC score for G(t+1) using ESS|G(1)

 Thm: increasing expected BIC score increases true
BIC score

Theorem 19.4.3: Let Go be a graph structure and ég he the MAP parameters for Go given
a datasel D. Then for any graph structure G

scorepro (G D;ljﬁnjl—SCDI‘EE_rr_‘;I:gﬂ ; D;ILQDJ < scorepre(G @ D) —scorepra(Go @ D).

17



Sparse mixture model

Gon

e Run parameter estimation (such as EM or gradient ascent) to learn parameters &, for
T
Gy

e Construct a new structure Gyyq so that G,y contains the edge C — X if

FamScore(X;, {C} : D 5 ) > FamScore(X; 0 : Dy 5 ).

Mp- . [zi.e] = Y P(Clm]=ec, Xsm]=2: | o[m],Gt.0:)

Gr.8
m

= Z P(C[m] = ¢ | o[m], G, 6:).

m, Xq[m]=x4

Initialization: if start from no children, will never add any! So start from all
Children or random subset.

18



19



Inventing hidden variables

e Can add hidden variables in ‘canonical’ places

20



Structural signatures

e Can learn structure with no hidden vars, then look
for ‘semi-cliques’.

« Unfortunately original model discourages nodes
with high fan-in.

XQ &) X Xy &) (X
ORI —
Yy @ ¢
N
17 parameters 59 parameters

Can also look for signatures in the data - eg FCI* algorithm 21



Cardinality of hidden nodes

e Need to choose number of states.

e Can use an “Infinite” number using Dirichlet
processes.

e Let us first consider DP mixture models.

22



Marginalizing out 6
P

,-/@ Collapsed Gibbs sampling
Cf DP mixtures

Datam Clusters k

P(X| e) = Dirichlet(ao/K + |I1(c)],. .., a0/ K + | Ik (c)]).

P(0y | ¢,D,¢) = Q01 | Dry(e)p d) x P01 | @) [ Pla[m]|64),

melpie)

P(Cm'|=k|e_p.D,d) x P(C[m'| =k | A, e_p)Pla[m'] | Clm'] =k, @[Ii(e_p)]. ).

P(CIm) =k | e, D, $) o (Ii(C—mi)| + a0/ K)Q(X | Doy, &)

O(M K) per iter 23



DP mixture model (p865)

 |dentity of clusters does not matter. Let o={I1,...,IL}
be a partition, Ilc=cases In cluster c. For case m’,
either join existing cluster or create new one O(ML)

per iter

PI—Tu{m'}|om, D,¢) o (|I| + %) Q(z[m] | D1, $)

Plo—oJ{{m'}}|o—m.D,0p) x (K — L]%Q(;r[ﬂf] | &),

e Now let K->Inf.

PI—TU{m'}|o—m.D,¢) o |I| Qz|m]|D1,¢)
Plo—oU{{m'}} | oom.. D) = ag-Qlx[m’]| ).
 More likely to join a cluster If it Is already crowded.

 Chinese Restaurant process. o
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« MAP param estimation for UGMs (20.1-20.4)
e Learning using approximate inference (20.5)
« Alternative objectives (20.6)



Likelihood fn for UGMs

e Log-linear model

InZ{8) = lnz exXp {Z Eifi[;-‘]} .
P(X,....X,,: 0) = 2_01 {E:a_guj } ¢ i

Concave

O A o e ow e w  d

Figure 20.1 Log-likelihood surface for the Markov network A—FB-—C', as a function
of In g [al,bl] (r-axis) and In {352[51,&1] (y-axis): all other parameters in both potentials are set
to 1. The data set D has M = 100 instances, for which M[a',b'] = 90 and M[b',¢'] = 15. (The

other sullicient statistics are irrelevant, as all of the other log-parameters are (0.



LogZ: first deriv

Proposition 200.2.3: Let @ be o sef of features, Then,

a ' k1 ]
20, InZ(8) = Fa|fi
a In 2 6 O
I':_-'-IE.;EE_-'. I l-. .-I — .i.-"-E[f'i'l f_‘:']‘

where Eg(fi] is a shorthand for I:'p{;{':g:l[fi].

)

. 1 I
aﬂilﬂf[m = Wzﬁ—&ﬂp %:Ejfj[ﬁ]

= ﬁz fi[‘i] exp {Z b f; [i]}

= kolfil-



logZ: second deriv

"jl'-"

) 1 .; ﬂ
d6;06; InZ{f) = 79, [ijZﬂ:fi[g]exp{zk:ﬁkfﬁc[w]}]
- _ 1 ( d Er‘,{}q)z_f.[erle,{} ZE fulé]
Z(0)* \og; "’ : ils] e . ke fic|€
_E’r.{} Zfa[ﬁ]fj[‘-ﬁ]exp{z.ﬁh[é;]}

1

B _E{H'EE"HJ‘EEH{*]Zfi[éZ]P[g: 1

Er{h Z FEFIELP(E - 0)
— ‘EE[fi] Z fi[“;]'FL'i . {}IJ
+ 3 KSR - 0)

= Feo[fif;] — Ealfi]Esf;]
— Fmg[ﬁ.; fj]



Finding the MLE

At optimum, model moments = empirical moments

ad 1
__|': '.-. === _' ‘,- i ] _I ila :.3 2 !
FTRT, (@:D) = Ep[fi[X]] — Es[fi] [20.4]

I'his analysis provides us with a precise characterization of the maximum likelihood param-

eters @

Theorem 20.3.1: Let @ be o set of features. Then, & s o marimal likelihood porameter
assignment if and only if Ep|fi[X]] = I:'g,[fi] for all 1.

Must perform inference once per gradient

Just do gradient based optimization, eg stochastic gradient descent.
Expensive to comnute Hessian exnlicitlv. so use Quasi-Newton.
i
88,00,

(@ : D)= —-MCovg[fi; fil]-



e Conditional density models

M
fyix (@ :-D)=InPiyll..... ] M|l .., M|, 8) = In P{ylm]| | x(m|, &).
|

m=1

M
ly i x(0:D) = [fily[m], &[m]] — Ea[fi | =[m]]].
1

=

c
aleh

Must perform inference M times per gradient



MRFs with hidden variables

 Must perform inference M times per gradient
‘L—lfln FD|O) = — ln (Z Z P(o[m]. h[m] | {3'))

m=1 h[m]

= i111 (Z Z P(o[m], h[m] |{}‘J) —InZ.

m=1h[m]

i - : .
59, 111-;;] Plolm],h|m] | 8) = Enm)~P(H[m]|ojm].8) [fi],

Proposition 20.3.3: For o defe sef D

g 1 1 Mo |
96; M Z Enjm)-.P(H[m]|olm] 0) [fi] | — Ealfi].
m=1
clamped unclamped



CRFs with hidden variables

e Training Is similar to MRFs with hidden variables,
except expectations condition on X_n, so need to
be redone for each case



Summary

3
G
4%

w‘H

=D

S

— ZEHf(waz) — MEg x[f(H,X)]

= ZEHf(IEz,yz,H)—ZEH,Y[f(xzayaH)] 10



ML and MaxEnt

 MLE in the expfam is equivalent to MaxEnt subject
to moment constraints

Maximum-Entropy

Find A
that maximize Hg(A')
subject to

Eqlfil=Ep[fi] i=1.....k

Theorem 20.3.4: The distribution QF is the meximum entropy distribution satisfying Eq. (20,10
if and only if ¥ = Py, where

1 ] :
7(0) exp {Z 0; £ [1]}

and @ is the marimum kelihood porameterization velative to D,

Py(X) =

11



Proof

Proor For notational simplicity, let P = Fz.  From Theorem 20.3.1, it follows that
J‘:.'p[_ﬂ] = f:'p[f;;[.:l"]] forz=1,..., k. and hence that P satisfies the constraints of Eq. (20.10).
Fhevefore, to prove that P = Q% we need only show that Hp(AX) = Hg(A&') for all other
distributions € that satisfv these constraints: Consider anv such distribution .

From Theorem 8.4.1, it follows that:

Hp(X)=-) filp[fi] +InZ(0). (20.11)
1 s, |
Hp(X)—HglX) = - Z aft;p[,f.i[fr]]_ +InZp — Eg[—InQ(X)]
(1) = —FZ:&EQH$HJ44HEP+EQWHH$H

Eg[—In P(X)] 4+ Eg[lnQ(X)]
= DiQ|FP) =0,

where (1] follows from the fact that both Py and @ satisfy the constraints, so that .I'_-ng [Hl=

I'_'.-_*;:-[ff] for all 4.
We conclude that Hpgf;.:t"] = Hp(Ax') with equality if and only if Py = ¢. Thus, the
maximum entropy distribution ¢F is necessarily equal to Py, proving the resalt. E

12



MAP estimation

e Convex prior + convex likelihood makes objective
strictly convex (unique soln)

» Also helps prevent overfitting

e L2 and L1
& 2
. . 1 f: o 1 |,5||}
FPlia 2'| = — 3 ——+ L F:I.‘_” o cian i .'jjl —_ L
0] =) E N EX { 507 } pi (& 55 exp { 3
0.s
] ||1|
I:I.-*l: Iiﬁ
i |'.
L3 y W . P(E) k k
| 1} J l-.‘\:-.-l r
] T In . ; fil€] — ;i fil¢
0 .'I:'I II'.:'. P(EIJ ; .ir [‘-:-] ; f [‘-; ]
|:|1j / \\\ . ke
N g = AOETE] — £ [
0 ___J,a/y . M ; Hﬁ'lf‘a[‘a] fa[g ]J
10 3 0 5 10

13
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Learning with approximate inference

« Recall that the gradient requires model expectation
over the features

ﬂ%%w D) = Ep[fi[A]] — Eslfi]. (20.4)
 We can use approximate inference to approximate
the expectation, but approximate gradients can

cause learning to diverge

15



Pseudo moment matching

e At the optimum, the pseudo marginals must satisfy

Egclfc,] = Ep[filCi])-

e Suppose we use tabular features. Then
Bile]] = P(c]).

« Hence we don’t need to run inference. There are
multiple potentials that can generate these beliefs.
We can uniquely recover one set using (for any
ordering I<|)

r_-"}{.: e
Hi,

16



Unified inference and learning

 Pseudo moment matching only works for
unconditional, tabular potentials with no tying and
no regularizer

 To combine BP with param optimization, we can
optimize

Approx-Maximum-Entropy
Find 2
that maximize ) & o/ Ha(Ci)—2 e, o, euHu,(5is)

subject to Esz il = Eplfi]l i=1:.k
€} € Locallid]

The model parameters theta are the Lagrange multiplers for E[f]
And the messages are the Lagrange multipliers for the local consistency

17



C, A D¢ Tie/ /‘cﬂl"l/“)
o U o F‘)o[&ﬁj‘):l l/\F .x.-y;-‘o

CL O ) ) -
- Ia=/
] O v P/I [‘)LDDM/ l/\l’ D
“
ED Faa = T(A:B) + A, ¢ *Z(lz:“l)
+ .- =
Find €2 5
that maximize Hg (A.B)+Hg(B.C)+Hg(A C)—H,, (B) —H,,,(C) — Hyp (A
> Eg,[fool == (> (20.17)
Y Eg[fi] = 0 (20.18)
> [Bafa, bl =Y [Bafb, e]] = 0 (2080)
subjec - -
sk > (Galbs o] - Y [fsla ] " 0 (2020)
b a
z [3a]a, €]] — Z[;Fl [a, B]] == 0 (2621)
c b
Y Blel=1 =123 (20).22)

&, 20 g=1,2:3 (20).23) 18



Double loop algorithm

* Inner loop optimizes ¢; by iterating the fixed point
eqns

« Outer loop optimizes 0 eg using gradient descent

19
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Approximating Z

e Loglik .
(0:&) = InPE|#)—InZ(0)

In P(¢|0)—1In (Z P(¢ | m) .

 We can approximate the sum in different ways

21



Pseudolikeliood

;o i , r'l":,ﬁH f B . . PR 4t 3
Pig) = HP':T:; | oqy0ns Ti_1) P{£) . Plr; [ x Tj—1:T541 Ty, )

) o 1 . :
t'li's-a“u-:ln:-':":’. D) = EZ Z In F'l'r_'-‘ [?-"1] | ‘r'-—.’-i[j'n]'-ﬂJ
w3

Pl:-..-l'."j..,i"_}.:l _ PI:_I_]H-“_}_:'
Plz_;) P(z_j)
Plz;,x_;)
' | . N "
> Plajx_j)

Plzj | x_;) =

22



Gradient of PL

a.

InPix; |x_y) = Convex

( Z E',j_fi-_[.?:j‘uj]) —In (Z e:-:p{ Z Eif,_i_[.?:_’?-*uj]}) :
i1 Heape[fi]3X; T:F i Hreope[fi]3X;

d r ﬁ . ;
InPlrj | ) = filrj. 2] = Eor o pyix,je_p [ filzg 2 5]

ab;

LI T - ] nooa ] m T 1 wm I F 1

Proposition 20.6.1:

a axs we 1 . . '
7 psendo (01 D) = Z (f Z filelm]] — Ex pa X1z [m]) Lf: [-E'jd*‘-—f[?”]]]) :

J: X jescopefi] e
(200.31)

23



Consistency of PL

« Thm 20.6.2 (Besag). If data is generated from our

model with params 6*, then as M->Inf, argmax
PL(0) -> 6*.

» Pf. The empirical approaches P(6*). Hence
7 3 Alnl) — Eeery. ol
* And

1 1 ! . . g . .
17 2 Ermpesylagimp [filzhsa—s[mll] = ) Po(a—;)y  Per (2] | 2—j) filz}, 2]

— Y Por(x_;))_ Por(a} | a_j)fulaf, a_j]
Ej 1'3
= Eeop. [fil€]]:

 Hence gradient of PL is zero at 6*.

24



Problem with PL

 Ex 20.6.3 (cf Hinton’s greek vase)

X\"/z_
N

/

)

Assume X1, X2 are strongly correlated (eg mirror images),

And X1,Y and X2,Y are less strongly correlated.

PL will learn that X1 can be predicted from X2, and will ignore Y.
At test time, if we observe Y and want to predict X1, we are hosed.

25



Sample based learning

« Recall loglik is %” o) Z‘*‘-‘ ol fildi]] — In Z(8),

Z(0) = Zexp{z ﬁifi[i]}
£ ]

Sample K x’s given 0

1 {Z Compute In Z(0)
= Eg exp 0; fi[A] }] : Update 6
Q) i Repeat
o | Z(8°) exp {2, 6:filX])
Z(H] = -EPEU exp {Z; gzﬂf&[x]} }
= Z(6")Ep,, |exp {Z{Hi — 95},&@1’3}].

1 - 0 . 0
InZ (6 (—{RZ exp {Z ngfz({ﬁ"]}) +InZ(67).

(3

26



Contrastive divergence

e Might need to sample many x’s to accurately
approximate Z, but this is slow

e So define a set D- of randomly perturbed neighbors
of D, and use

fen(0: DID™) = [E, _p, In Po(¢)] — B, .p__[nPa(6)]],

)
a;

tcp(0: D|D™) = Ep [filX]] - Ep__[fi].

» Often x- Is generated by applying 1 step of Gibbs
sampling to x;

27



CD for RBMs

« RBMs have 1 layer of hidden variables, so we need
an additional expectation

LL, Ny Vi = Ex.pEy, fi(x,h) — Ex..p- Ey, fi(x,h)
;V/k ~ i ZEh fz Xn, h ) Ehnfz(X;;hn)

T
~ _Zfz (%, h) — fi(x>,h)

!

5 L.J' Stop learning when your dreams match reality
/ |
e h! ~ p(h|x,,0) Interpretation of data
+
h
< \\, _ x, ~ p(x|h),0) Reconstruction/
antasy data
@ X Fantasy dat
LW ab |
N S h. ~p(hx;,6) Interpretation of your
oC eV fantasies

28



MAP approximation (perceptron training)

e Let us approximate Z (sum over all X) by the MAP
estimate. Objective becomes

1 R |
Eﬁ;f}' D) — hlPLEMAP[H] | 8, Emz::l InPi&[m| | 8)—In PLEMAP[{}'J | ).

 For a single data term

In P(£[m] | @)— In P(eMAF(a) | @)
= [InP(¢[m] | ) —InZ(0)] — [In P(MAF(0) | @) — In Z(0)]
= InP(¢m] ] ) — In P(EMAF(0) | 0)

> 8l filg[m]] — F[EMAT(0)]].

« Hence grédient IS

Ep[fi[X]] — fi[¢MAF (o).

29



Problem with MAP approximation

* The objective is always negative or 0 since

1 .
700 : D) - In P(eMAF () | 0),

 We can always achieve the maximum of 0 by
setting \theta=0

In P(¢[m] | 0)—In P(eMAF(0) | @)
= [InP(¢[m] | 0) —InZ(0)] — In P(eMAF(9) | 0) — In Z(0)]
= InP(¢[m] | 0) — In P(MAF () | 0)
= Z B filé[m]] — f:[EMAF(0)]).

e “collapsing” problem

30



Max-margin training

e For conditional density models, we can change the
objective to the following, which prevents collapsing

In Pg(y[m] | ®[m]) — [ max In Fgl(y | ,t?[*m,]'}] :
yFy[m]

Find . 0

that maximize

ubject t
subject to In Pa(y[m] | #[m]) —InPaly | #[m]) = =~ for all m, y £y
0% (f(y[m]. x[m]) — F(y, x[m])) = ~.
To prevent margin blowing up we bound \theta
Simple-Max-Margin

Find 0
that minimize ||L’?||%

QP: quad obj+linear constraints

ubject t .
SHbeet 2O {?Tr;f(y[mL x[m|) — fly, z[m])) =1 for all m, y # y[m| 31



Slack variables

 We want to minimize ||w|[*2 st
"?'i"?’y;#ﬂ log p(Yi|w, X;) — log p(Y|w, X;) = 1.

 But we may not be able to achieve this gap, so we
Introduce slack variables (results in a Hidden
Markov Support Vector Machine)

minz:;-_ + A |w]|3,
w, & "

st Wi¥yrzy, log p(Yi|w, X;) — logp(Y|w, X;) =1 -&, ¥;& =10

Thanks to Mark Schmidt 20



Margin rescaling

 Intuitively If Y1’ Is similar to Yi, we don’t mind if their
probabilities are similar, but if they are very
different, we want the gap to grow

e This gives max-margin markov network (M3N) aka
structural SVM

min E i+ A|w]|3,
W, = )
T

- WiVyrzy, logp(Yilw, Xi) — log p(Y]|w, X;) = A(Y:, Y]) — &, V& =0,

Thanks to Mark Schmidt 23



Unconstrained form

 We can eliminate the slack vars to get

1.1-.|—J.=

mmz?lrna.; (A(Y;. Y]) — log p(Yi|w, X;) + log p(Y] |w, X)) + A|Jw]|3.
=¥y

. Requwes 2"9 pest decoding. But since A(Y;,Y;)=0
we can write

minzma,:-:f.i(}’;.}?:l+1+:+gj;u“f:“;’|w.f'f,_.; — log p(Y; |, X;) + A3
w - Tt__..; \ \

e This can use generic MAP decoders that just
change the local evidence potentials on Y.

e For associative markov nets, globally optimal.

Thanks to Mark Schmidt 24



Cutting plane optimization

 Many possible optimization methods
e Simple approach for QP is cutting planes:

 Maximize quad objective with empty set of
constraints — this is an upper bound.

* Add a violated constraint (*)

 Repeat until no violations.

« Thm: only need to add a poly num constraints.
* To find If constraints are violated: define

y" " = arg max P(y,=z[m]).
yFy[m]

o If P(y[m],x[m]) < p(ymap,x[m]) +1, add this violation.
Else all constraints for m’th case are ok

P(y[m],z[m]) > P(y™*",a[m]) + 1 = P(y, x[m]) + 1,
35
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Structure learning in UGMs

e Dependency networks
e Gaussian UGMs
e Discrete UGMs



Dependency networks

A simple way to learn a graph Is to regress each
node on all others, p(x_1 | x_{-1})

If the full conditionals are sparse, this gives rise to a
sparse graph

Heckerman et al used classification trees to do
variable selection

Meinshausen & Buhlman proved that if you use
lasso, the method Is a consistent estimator of graph
structure

Walinwright et al extended the proof to L1 penalized
logistic regression



Problem with depnets

e Although one can recover the structure, the params

of the full conditionals need not correspond to any
consistent joint

e To estimate params given the graph can be
computationally hard (esp for discrete variables)

* Only give a point estimate of the structure*

* Parent fusion project 4






Bayesian inference for GGMs

 |f we use decomposable graphical models, we can
use the hyper inverse wishart as a conjugate prior,
and hence compute p(D|G) analytically

e Problem reduces to discrete search
e Can use MCMC, MOSS, etc

 For non-decomposable models, have to
approximate p(D|G) eg by BIC. Have to compute
MLE for every neighboring graph! *

o See work by Adrian Dobra.

* Derive analog of structural EM to speed this up — nips project, anyone? 6



Graphical lasso

 We can estimate parameters and structure for
GGMs simultaneously by optimizing

f(€2) =logdet © — tr(SQ2) — A||2],
2|19 = 22k Wikl
e Convex

e Can solve in O(#iter d4) time by solving a sequence
of lasso subproblems






MLE params for GGM

e Consider first the problem of estimating Q given
known zeros (absent edges)

(e () = log det @ — tr(SQ2) — Z Yk Lk
(dk)EE(G)

e Setting gradient to zero gives

Ql'_S_Tr=0 Wiz —Si2 — V=10

Let j be a specific node in group 1. Then if G5 # 0, then ;0 = 0, s0 w;2 = §;2. In other words, edges that are not
constrained to be zero must have an MLE covariance equal to the empirical covariance.

e Consider this partition

Wi wi) (2 w2 _ (1 0
w{z Wao w{z Wao 0" 1

wia = —Wiwio/wa =Wy 3

def
a Ira p ‘12.-"{' 0. o
““11;‘3 —S12 — Y12 =10



e We have  Wus-suz-r.=0

 Dropping the zeros  wis -, =0

« Can recover Q from weights using «i = 8w
 To find w_22, use block inversion lemma

woy = [EV_I;“'Tll]I_l = (waa — W{Q“frl_llwlgj_l

Now "Wl‘llwlg = (Wi, tsi, = (3.0), since wio = sqo in all locations that are not constrained to be zero.
Similarly, wea = s922. Hence

1
— = 599 — WE-‘G (3.82)
wao

10



W =S; % W = inv(precMat)
precMat = zeros(p,p);
beta = zeros(p-1,1);
iter = 1;
converged = false;
normwW = norm(W);
while ~converged
fori=1:p
% partition W & S for i
noti = [1:i-1 i+1:p];
W11 = W(noti,noti);
w12 = W(noti,i);
s22 = S(i,i);
s12 = S(noti,i);

% find G's non-zero index in W11

idx = find(G(noti,i)); % non-zeros in G11
beta(:) = 0;

beta(idx) = W11(idx,idx) \ s12(idx);

% update W

w12 = W11 * beta;
W(noti,i) = w12 ;
W (i,noti) = wl2';

% update precMat (technically only needed on last iteration)
p22 = max([0 1/(s22 - wl2*beta)]); % must be non-neg
pl2 = -beta * p22;
precMat(noti,i) = p12 ;
precMat(i,noti) = p12';
precMat(i,i) = p22;

end

converged = convergenceTest(norm(W), normW) || (iter > maxliter);

normW = norm(W);

iter = iter + 1;

end

ggmFitHtf in pmtk (by Baback Moghaddam)

11



Example

Let us now give a worked example of this algorithm. Let the input be the following adjacency matrix, representing
the cyclic structure, X'y — Xy — X3 — Xy — X4, and empirical covariance matrix:

01 0 1 0 1 5 4
ot ot 0)] L f1 10 2 6 |
G=10101]"5=|5 2 10 3 (3.83)
1010 4 6 3 10
After 3 iterations we converge to the following MLE:
1000 1.00 1.31 4.00 0.12 —001 0  —0.05
.00 10.00 2.00 0.87 —0.01 011 -002 0 |
X=1131 200 1000 300 | ¥=| 0o _002 o011 —003 (3.84)
400 0.87 3.00 10.00 005 0  —0.03 0.13

12



Graphical lasso

mar __ |\
£(82) = log det €2 — tr(SE2) — A[|€2]; Ajj = 0, N4 = X

The basic idea is very similar to the method in Section 3.3.7, except we replace the least squares subproblem with
a lasso subproblem. The analog of the gradient equation (3.75) is the following:

Q' — 8 — \Sign(2) =0 (3.86)

As discussed in Section 7?7, we must replace the gradient with the subgradient, due to the non differentiable penalty
term. So we define Sign{w,z ) = sign{w;g ) if w;p 7 0, and Sign(w;) € [—1.1] otherwise. The analogous result to
Equation 3.79 is

Wii13 —si12 + ASign(3) =0 (3.87)

since /3 and w12 have opposite signs.

13



Subgradients

We can generalize the notion of derivative to handle this case as follows. We define a subderivative of a function
F:I—=Ratapoint roto be a scalar o such that

Azl — flzg) 2 elz —xpj¥r T (29.84)

where T is some inkerval containing =, See Figur 29,16, We define the ser of subderivatives as the interval [a, b
where a and & ar the ong-sided limits

Ry — Flzg)
a= lim 12700
gzl T —T0 g—zl I — 0

(20.85)

The sat [a, b of all subderivatives is called the subdifferential of the function f at = and is denoted 2f(x}|5,. For
example, the subdifferential of the absolute value function fix) = || is

(1} ifz<0
af(zi =4 [11] ifz=0 (29.86)
+1} ifx=0

If the function is everywhere differentiable, then &fi(x) = {35.%}. By analogy to the standard calculus rasult, one
can show that the point = is a local minimum of §f iff0 = @f(x).

14



Graphical lasso

F(£2) = log det £2 — tr(S€2) — A4

The basic idea is very similar to the method in Section 3.3.7, except we replace the least squares subproblem with
a lasso subproblem. The analog of the gradient equation (3.75) is the following:

Q' — 8 — \Sign(2) =0 (3.86)

As discussed in Section 7?7, we must replace the gradient with the subgradient, due to the non differentiable penalty
term. So we define Sign{w,z ) = sign{w;g ) if w;p 7 0, and Sign(w;) € [—1.1] otherwise. The analogous result to
Equation 3.79 is

Wii13 —si12 + ASign(3) =0 (3.87)

since /3 and w12 have opposite signs.
This is equivalent to a lasso problem. To see this, consider the objective

J(B) =Yy -ZB3) (y — Z8) + N8| (3.88)

Setting the gradient to zero we get
Z'Z3 — Z"y + ASign(B8) = 0 (3.89)

We see that Z” y is similar to s15 (namely an estimate of the covariance between target and inputs), and that Z* Z gets
replaced by W4, which represents correlation amongst the current inputs.

15



Shooting (coord desc for lasso)

We now present a coordinate descent algorithm called shooting [Fu98] for solving the unconstrained lasso problem:
d
J(w, ) = RSS(w)+A) _ Juwy] (17.36)
i=1

Besides being simple and fast, this method yields additional insight into why an L1 regularizer results in a sparse
solution.

We can compute the partial derivative of the lasso objective function wrt a particular parameter, say wy, as follows.
One can show (Exercise 17) that

o

—— RSS(w) = apwp —ep (17.37)
dwy,
n
ap = 2) ad (17.38)
i=1
n
e = 2) wu(u = WEpXi—i) (17.39)
i=1
n
= 2 Z [y — 2w X + wipas, ] (17.40)

ﬁ
I
[N

where w_; = w without component /%, and similarly for x; _;. We see that ¢;, is (proportional to) the correlation
between the k’th feature x. 5 and the residual due to the other features, r— = y — X. _pw_; if this correlation is
zero, then feature & would be orthogonal to the residual, and we couldn’t reduce the RSS by updating «,. Hence the
magnitude of ¢, is an indication of how relevant feature k is for predicting y (relative to the other features and the
current paramefers).

16



Shooting cont'd

The L1 penalty function is not differentiable, so we need to compute the subdifferential (see Section 29.6. 1) rather
than the standard differential. This is given by

Owy, J(W, X)) = (apwi — cr) + Auy || W] |1 (17.41)
{apwg — ep — A} ifwe <0
= [k — A, —er+ 2] ifwr =0 (17.42)

{apwr —ex + A} ifwg >0

This subdifferential is a piecewise linear function of wy. Since a; > 0, it is sloping up and to the right, except it
has a vertical “kink™ in it at w;, = 0, spanning the range [—cj, — A, —c, + A]: see Figure 17.6. Depending on the value
of ¢y, the solution to d,,, J(w. A) = 0 can occur at 3 different values of wy,, as follows:

Doy T (W, A) B, J (W, A) O, J (W, A)
-C, A0 / By >
u-‘-)k < [}/ —CI( -a=0 P . e
; W =0 [c +i=0 w
// " : f‘:-ck “x<0 Cy+ A <0 @ ‘
/ < -A<0
(a) (b) / ()

17



Soft thresholding

1. e < —A, so the feature is strongly negatively correlated with the residual. In this case, the subgradient is zero
at iy, = 2 <0,

[

e € [—A, Al, so the feature is only weakly correlated with the residual. In this case, the subgradient is zero at
wy, = 0. Thus if the correlation is not less than A, we set the corresponding coefficient to 0.

3. ¢ > A, sothe feature is strongly positively correlated with the residual. In this case, the subgradient is zero at
tE-‘k = k=2 = (.
ap

In summary, we have
(cp + A)fag  ifep < —A

W (k) = 0 if e € [—A, A (17.43)
(cke — A)/ak ifep = A

~ {ak; ”
Y /
GK
+h
/ soft{a; 6) = sign{a)max{0,|a| — 4} = sign(a) (|a| — ),

18



Lasso vs ridge vs subset selection

For orthonormal features, we have explicit solns

the lasso solution as follows (using the fact that ap, = 2 and wg™® = c;/2)

whasse = sjon(w{ET) (|1§.1§L5 | — %) (17.46)
<)+
By contrast, the ridge estimate would be
~ ridge EE’ELS
wy, T (17.47)

which does not force sparsity. If we pick the best K features using subset selection, the parameter estimate is as
follows

4S8 { w5 i rank(|wy|) < K

0 otherwise L0,

19



Graphical lasso with shooting

F(£2) = log det £2 — tr(S€2) — A4

The basic idea is very similar to the method in Section 3.3.7, except we replace the least squares subproblem with
a lasso subproblem. The analog of the gradient equation (3.75) is the following:

Q' — 8 — \Sign(2) =0 (3.86)

As discussed in Section 7?7, we must replace the gradient with the subgradient, due to the non differentiable penalty
term. So we define Sign{w,z ) = sign{w;g ) if w;p 7 0, and Sign(w;) € [—1.1] otherwise. The analogous result to
Equation 3.79 is

Wii13 —si12 + ASign(3) =0 (3.87)

since /3 and w12 have opposite signs.
This is equivalent to a lasso problem. To see this, consider the objective

J(B) =Yy -ZB3) (y — Z8) + N8| (3.88)
Setting the gradient to zero we get
Z'Z3 — Z"y + ASign(B8) = 0 (3.89)

We see that Z” y is similar to s15 (namely an estimate of the covariance between target and inputs), and that Z* Z gets
replaced by W4, which represents correlation amongst the current inputs.

One simple way to solve this lasso problem is to use coordinate descent, known as the shooting algorithm (see
Section 7). To apply this to the current problem, let V.= W4. (Recall W = X.) Then the update for /3 becomes

By i=Sx | 512 — X Vs | /Vis (3.90)
k2
where S is the soft-threshold operator
Si(r) = sign(x) max(0, |z| —t) (3.91)

We can implement this in a way which is very similar to Listing ??. The only change is to replace the line
beta(idx) = W11l (idx,idx) % s12(idx) withthe code shown below.

20
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Discrete UGMs

 Computing Z and hence the likelihood is intractable
unless the graph is decomposable

 Hence Bayesian methods “never” used
 Even search and score is inefficient

22



Ising models

* Analogous to GGM for binary data

1
N(x|K) = 7K exp(—3 ZKj,kxjxk), z; € R
4.k

p(x|W) = exp(Y  Wikzjax), ;€ {~1,+1}

Win Wia 0 0

L‘/n, L‘/l3 lA/)’-r
o[B8 erEtEtE
0 Wiy Wiz Way
0 0 Wy Wy

X; L X ;| XN,
wjr > 0 attractive (ferro magnet) J i
wjk < 0 repuslive (anti ferro magnetic) Markov property

wj Mixed sign frustrated system

Besag, Hammersley & Clifford, Geman & Gengh



Glasso for Ising models (Banerjee)

d—1 d
1 .
p(x|8) = -_ZEXP[Z Z Wijmiz;)

d—1 d
4 = Z exp[z Z Wijrir;]

XE{—IH‘I}J i=1 j=i+1l

Convex relaxation of matrix permanent to matrix determinant

W = graphicalLasso(Cov(X) — AL + éI, A)

24



Senate voting data

o e ke
AN Qﬂ_%l_ ;}n Dﬁ%ﬁ@" aan@mn *@R@‘};—L*
: ﬂﬁ_"i'#ﬁ W Is‘in \ :.'-'-.:.“".‘:iv@"’“”. Brofnifick Al )
i ﬂac&lw 4 fLﬂﬂ
I'J'EE Lmﬁ&an (u& ng‘“ alafl M qulg i @
Giahg o . ey EEW Vn@im. 5%5. o

Otaiha Siadar m@m ““‘—"*a"
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documents

20 newsgroups

word-document co-occurrence matrix for 20 newsgroups — e,

i
6000

©
o
o
o

=
o
o
o
o

12000 NS

70

50
words

40 60 80

n=16,000, d=100

Courtesy Mark Schmidt



Markov random fields

* Markov random fields for y; € {1,...,K}

Z(i?V) exp(Y Wi fik(ys, yk)) o< exp(8TF(y))
71,k

p(y|W) =

~

~

NP PR RPR
P WN P

w
w

(0,0,0,0,0,0,0,0,1)

Parameter vector on each edge

 No longer a 1:1 mapping between G and W

27



Conditional random fields

 CRFs are a conditional density model

1
YW, V) = g &P O wj ik (Y5, yr, X +ZV g;(y;,x
7,k

 No longer a 1:1 mapping between G and W

28



Heart wall abnormality data

* d=16, n=345, y, € {0,1} representing normal or

abnormal segment, x; in R1%° representing features
derived from image processing

Left Ventricular Segmentation

“Structure Learning in Random Fields for Heart Motion Abnormality Detection”
Mark Schmidt, Kevin Murphy, Glenn Fung, Romer Rosales.
CVPR 2008. Siemens Medical29



Group L1 regularization

« Solution: penalize groups of parameters, one group
per edge

J(w,v) = —log) ply;lxiw,v)+XllV|E+ A1) [lwll,

7 g
[wlls = > w}
k

Iwile = max fu

30



Group lasso

e Sometimes we want to select groups of parameters
together (e.g., when encoding categorical inputs)

w = argmin RSS(w) + AR(w)
Still convex, but
R(w) = Z [wgll2 = S: y:ng much harder to
g g J€y optimize...

R(w) = ZHWQHOOZZT?QQXWW‘
g g

L1-Regularization Path

s (Group 1
Group 2
| =—Giroup 3
G roup 4

— Group 1
Group 2
|| = Group 3
== Group 4

31



Group L1 for graphs

e Penalize groups of parameters, one group per
edge

J(w,v) = logZpyi!xi,w,v>+A2HvH%+Alzuwgup
g
wlls = \/Zwk
[Wlleo = maxfwy|
e |Ssues

— How deal with intractable log-likelinood? Use PL
(Schmidt) or LBP (Lee & Koller)

— How handle non-smooth penalty functions? (Projected
gradient or projected quasi newton)

32



Pseudo likelihood

e PLIS Iocally normalized

L(W) = Hp(xz\W) HZ exp sz” ikTik)

=1
n d
PL(W) = 1]1] p(ij]Xin, > Wj,:)
i=1j=1
——— exp(aiy Y Wik
_.j-~ ; Z(WJ,XzN) Y L ’ '
Z(Wj,XNj) = Z eXp(:I:j Z ijxk)
z;e{—1,+1} kEN;

Besag 33



Constrained formulation

e Convert penalized negative log pseudo likelihood
f(W,V) — _logZPL(yZ|X17V7W)+A2HV|‘§

min = f(w,v)+ )\ Z [Wyllp

W,V
g

e INnto constrained form

Lla,w,v) = f(w,v)+ X\ Z Qg
g

ar,nv%/_r,lv = L(a,w,V) stVg.ay > ||Wg||p

34



Desiderata for an optimizer

Must handle (;l) groups (d = 16 in our application,
so 120 groups)

Must handle 100s features per group

Cannot use second-order information (Hessian too
expensive to compute or store) — so interior point Is
out

Must converge quickly

35



Projected gradient method

« At each step, we perform an efficient projection
onto the convex constraint set

@ Current Point

. Steepest Descent
{ © Projected Steepest Descent | . @&

g
e
.,
.

lha
-,
.,

e,
""""""

xp = (o, w)g
Xp+1 = tlg (xx — Bgy)
gr — vf(X)Xk
IIg(x) = arg min ||x —x"||2
x*eS

Sp = A{x:Vg.ay > |lwgllp}
Project each group separately.
Takes O(N) time for p=2,

O(N log N)time for p=oo,
Where N = #params per group.

van der Berg, Schmidt, Friedlander, Murphy; Duchi etgl.



Spectral step size

e Gradient descent can be slow

e Barzilal and Borwein proposed the following
stepsize, which in some cases enjoys super-linear
convergence rates

= Steepest Descent

Barzilai-Borwein Xk—|—1 — tH(Xk . 6kgk)
g — vf(X)|Xk
p o (xp —xpo1) " (ke — Xp—1)
Bry1 =

(xk —Xp—1)1(8r — 8r_1)

t chosen using hon-monotone
Armijo line search

37



Projected quasi Newton

 Use LBFGS in outer loop to create a constrained
guadratic approximation to objective

* Use spectral projected gradient in inner loop to
solve subproblem

Objective Value

T T T T 1
10 20 30 40 50 & 70O 8D 9O 100

Function Bvaluations

“Optimizing Costly Functions with Simple Constraints:

A Limited-Memory Projected Quasi-Newton Algorithm”,

Mark Schmidt, Ewout van den Berg, Michael P. Friedlander, and Kevin Murphy,

Al/Stats 2009 38



 We compared classification accuracy on synthetic
10-node CRF and real 16-node CRF.

 For each node, we compute the max of marginal
using exact inference

y; = argmaxp(y;|x,w,G)

e First learn (or fix) G, then learn w given G
— Empty, chain, full, true
— Best DAG (greedy search), best tree (Chow-Liu)
— max p(y|w) [[wl|y, [[wll,, [Iwl]

e Jointly learn G and w
— Max p(y [x,w,v) |[w]],, [IW][5, [W]]

39



Results on synthetic data
e d=10, n=500 train, 1000 test

90% confidence interval derived from 10 random trials
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Results on heart data

90% confidence interval derived from 10-fold cross validation

1.0
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Incremental feature addition

* Lee, Ganapathi & Koller compute gradient and
expectations using LBP instead of PL

 They greedily add features according to their
expected gain (change in penalized loglik)

 |nitially the graph is sparse so LBP Is accurate, but
degrades over time

42



Della Pietra

Can use Gibbs sampling + IS corrections
Della Pietra, Della Pietra, Lafferty, PAMI
1997

m, r, ¥evo, 1jjiir, b, te, Jz, gsr, wg, vI, x, ga,
msmGh, pep, 4, o21V1al, hzagh, yzop, 1o, advEmmnmv,
ijv bolft, =, emx, kayerf, mlj, rawzyb, Jjp, adg,
ctdnnnbg, wgdw, t, kguv, <y, spxoqg, uzflbbkf,
dxtkkn, cxwx, Jjpd, =ztzh, 1v, zhpkvou, 17, r, Jees,
nynrx, atzedn, 1k, =se, w, 1lrh, hp+, vrgvka'h,
zongotonx, lgoump, zjols, lgpeWiqu, cefmfhe, <, 1k,
fde¥, tzky, yopxmvk, by, L£zZ,, T, govyoom,
1jyiduwfzo, exr, duh, ejv, pk, piw, 1, £1, w

The second most important feature, according to the algorithm, 1
that two adjacent lower-case characters are extremely common
The second-order field now becomes

L S AbspgXp-sm 2l 2 Maomipoglen)

' bl
Plw ] = o=~

Z

The first 1000 features that the algorithm induces include the

strings &>, <re, 1y, and ings>. where the character <" de- was, reaser, in, there, to, will, ,, was, by,

notes beginning-of-string and the character **>" denotes end-of- homes, thing, be, reloverated, ther, which,

string. In addition, the first 1000 features include the regular ex- “ ! conists, at, fores, anditing, with, Mr., proveral,
. . . the, ,, ***, on't, prolling, prothere, ,, mento,

pressions [0-9] [0-9] (withweight 9.15)and [a-z] [A-Z] at, yaou, 1, chestralng, for, have, to, intrally,

(with weight —5 81) in addition to the first two features [a- z] of, qut, ., best, compers, ***, cluseliment, uster,

and [a-z] [a-z]. A set of strings obtained by Gibbs sampling of, 1s, deveral, this, thise, of, offect, lnatever,

thifer, constranded, stater, vill, in, thase, in,

trom the resulting field is shown here: youse, menttering, and, ., of, in, verate, of, to
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Maxent models of faces

Use importance sampling to reweight the Gibbs samples when evaluating
feature gain
C. Liuand S.C. Zhu and H.Y. Shum, ICCV 2001 44



