

« Variable elimination (9.2-9.3)

 Complexity of VE (9.4)

e Conditioning (9.5)

 From VE to clique trees (10.1)

 Message passing on clique trees (10.2-10.3)
e Creating clique trees (10.4)

e Consider the following distribution

 Compute marginal probability someone has a job

 Push sums inside products (distributive law)

Variable elimination
Bucket elimination
Peeling

Non-serial dynamic programming

Algorithm 9.1 Sum-Product Variable Elimination algorithm

Procedure Sum-Product-Variable-Elimination |

iy Set of factors
Z, Set of variables to be eliminated
- Ordering on Z
]
1 Let Z1,..., Zg be an ardering of Z such that
2 £y < Z;iffe <
3 for i=1,....k
i @ «— Sum-Product-Eliminate-Var{®, £;)
5 ¢ — lsca®
(i return o
Procedure Sum-Product-Eliminate-Var |
iR Set of factors
Z Variable to be eliminated
]
1 D {pc® : ZE Seope[d]}
2 [P I
3 U — H¢E¢, Llf.l
1 T ZE?__.":
5 return &7 U {7}

$"

e Conditional prob is ratio of uncond prob

» Soft/ virtual evidence: f (X)) = p(y,|X)

« Hard evidence: f(X) = I(Xi=x")

" " &

* |f nodes are instantiated (fully observed), we can
remove them and their edges and absorb their
effect by updating all the other factors that
reference them

« Egif Gis observed
Coherence

| L]

Difficulty — Intelligence
-.-'"-.____ d______d-F-'_“-q_H_h___- Difficutry — Infelligence
/ J'_:.|"-a::|1'_ SAT =
/ / ; SAT
.". | \><4 - ..
lIl.-"I Letier ¥ o ." Lerter |
""-. ! G i
5 }
.-"l \-\ Ty _~~_ Jah
J e JE N >
i e apy
Happy i

Procedure Cond Prob VE |

K. A network over X
¥ Set of guery vaniables
E=¢ EvidenCce
|
] $ — Factours parameterizing K
)

Replace siich ¢ £ @ by o[E = €]
i Select wn elimination ordering <
| Z— =XA-Y - E
y a* +— Sum Product Vanable Elimination{$, <, Z')
li O 4— Eu:-; vatiyy @ (Y)
j return o, o’

10

11

» At step I, we multiply all factors involving x; into a
large factor, then sum out x; to get t..

* Let N, be number of entries in factor y ..

 The total number of factors is m+n, where m =
original number of factors in model (m n), and

Nn=num. vars.

« Each factor gets multiplied into something bigger
once. Hence #mult Is at most

 When we sum out a node from a factor, we touch
each entry once, so #adds Is at most

12

 If each variable has v values, and factor y; involves
ki variables, then N, ¥

* S0 complexity is exponential in the size of the
largest factor.

13

14

e A bad ordering can create larger intermediate
factors, and therefore Is slower

Step Variabls Fartars Variahles New
el st el TEER | prrvinlved frartar
1 i del O aplD C) oD L)
2 I dgl G L DN, o (I &, I, D Tol 0
4 { g (L) eg(&5 1) mid,) Jo 0 Tl s, &)
I H dg (5T g e J =,)
3 s ml, JL ml L 5) @il &) (gL, 5 [—‘/
b s (S LS apld LS} J LS Ta(.J. L)
T I m(J, L) J, L ()

Talbsle 9.1

A run of variable elimisation for the guery P{J).

Step | Vanabl: Factars Variables New
elirinated L e frrtor
1 i gl G I 0). e (LG eg(H. G T) (¥ J nil, DL J) g
2 y ap(dl). g5 T) m{ L. DVL S J H) (D LS 0 H) {
3 S gl L LSy D LS. JH) D LS JH myl DL T H)
! L O L, J H) oL.aH DI H)
7 H ml DT H) noaH el T}
fi i iDL) @p(D,C) ooa o el J)
7 I (LT o el

Table o2

A different run of variable elimination for the guery PULT).

15

* &)}

 Every time we eliminate a node, we build a new
factor which combines variables that may have
previously been In separate factors. Let us add an
edge (fill-in edge) between such nodes to create

tha inAiirad naranh

{ Coherence) [Coherence { Coherence)

'—...__r_. - e T S

!

H U S — o .
Difficulty —— Infelligence [, Ditticulty —— Intelligence o Difficuly b Intelligence

- e '-..____r._ e _r '-..___H._..-

e - ; '-.--"'--- -\-""\-\.
L Erode S5AT 4. rode SAT / Lrode e 54T

i - : . =
/TN ; [T\ 77 /TN
; M, ! II." N h ,-"II xx,f /
§ ; - ! Py f
/ Letter] / Letter ™ / / Letter ¥ ™ /
I
I

i
N/ / S\ / S\ /
i Job d ~_ Job Job

|III _--"'---- '
Happy

-

i » i
Happy Happy

When we eliminate |, we add a fill-in between G and S

16

 Def 9.4.3. Let I(G,<) represent the graph induced
by applying VE with order < to graph G.

« Thm 9.4.4.Every factor generated by VE Is a clique
In 1(G,<). Also, every maximal clique In I(G,<)
corresponds to some intermediate factor.

! -:-:.;I-.a-'e.;'._-:z---" Variables
! l ! PRE LR trevalved
N Bitflalty - Tntelligence T, o, 0
B ¥ e e el . W &, I, D

N, s &, 8.1
X Grade m::_h_,-f sat | Bl
/i\ e I SR .y

: ._eTe ?.- B TL.s
{1 .
4 ; ___.."-“~ Job i 4L

17

+ |

e Def 9.4.5. The width of an induced graph is the
number of nodes In the largest clique minus 1. The
minimal induced width of a graph, aka the
treewidth, 1s defined as

* The treewidth of a tree is 1, since the max clique
(edge) In the original graph has size 2, and the
optimal elimination order (eliminate all the leaves,

then the root) adds no fill-in edges. 3

/ \
; 2

18

« Thm 9.4.6. Finding the optimal elimination order
(which minimizes induced width) is NP-hard.

 Typical approach: greedy search, where at each
step, we eliminate the node that minimizes some
cost function

 Min-fill heuristic: the cost of a node Is the number of
fill-in edges that would be added.

« Min-weight heuristic: the cost of a node Is the
number of states In the factor that would be created
(product of cardinalities).

19

w omeenan mawwemm| | e e e

Min-fill is often close to best known ordering (computed with simAnneal)

20

e Def2.2.15. Let X;—X,-... X, —X;bealoopina
graph. A chord is an edge connecting X; and X; for
two nonconsecutive nodes. An undirected graph is
chordal (triangulated) Iif every loop of length k >= 4

has a chord.
Y\\“/XL X "/XL
l X | l /Kl\ l
X\»r/-——' £ ¢ Xy — K¢

« Thm 9.4.7. Every induced graph is chordal.

« Thm 9.4.8. Any chordal graph admits a perfect
elimination order which does not introduce any fill-
In edges.

21

The max cardinality search algorithm will find a
perfect elimination ordering for a chordal graph.

Procedure Max Cardinality |

H An undirected graph over A
I
| Initialize all nodes in A as unmarked
2 for &= |A4...1
R X «— unmuarked variable in A with larpest nomber of marked neighbors
| 1rr|:_3"i'.':| — k
3 Murk X
[i return T
Lanerence
Lanerence Lanerence
| | Saherencea
ﬁl”l‘i‘f:}' .aﬂ'.-ﬂl?em{ 9 Difficulty —— Intelligence D”r‘.l] ¥ ‘
. T TR d_..--"ﬁ'“ﬂ.,_q_ ? o — Tint ellgeﬂ:{
Grade AT = e e
J fﬂ,* ,."' Grade - 5-:’.1' # Grade E-r’T
,.-“'F pposa / / A l,-“ | g\/f,f G v:r'_ie 5.-!'r
J Cletten S f{x @ < / ;’ AL
l.' r i i

."
) e j S < 1 / ciana
! e i = Tals = J:.._., ! .\\ *_ q
Hepgy T ; .-'-‘"----—- .-'-‘"----—- / 3
Hoppy — = 7 . Jab
.:-"'_F--

Hempy

For non-chordal graphs, the MCS ordering often results in large induced width 29

23

 We can condition on a variable to break the graph
Into smaller pieces, run VE on each piece, and then
add up the results. We also need the probability of
each conditioning case.

Conerence
CeherEnce Cohérdnie
I_':lll"f'l::-J|""g.I — In "e”lga-::'l-:‘:-&_
e e T = s ¥
-\---""'-\.-"'--F "--..___H Defficubyy —]'ﬂrlufg.wnr Biif ety —— Intellicence
. Grade 5AT -
F My T SAT
I."' Letter ll." Latler / Letber
/ %, % | i
._!f H_H‘ J;‘.;. : Pt P
i o Hepgy quf. v
Hapmy =
Evidence G=g Condition on S

24

Procedure Sum-Product-Conditioning |

i Set of factors. possibly reduced by evidence
Y Set of query variables
[Set of variables on which to condition

I for each u € Val(lT)

2 Gy — (U =u| : ¢ d}

3 Construct He,

| Izlft'ﬂ.tlf.'ﬂ“’";]:l «— Cond-Prob-V t[;Heﬁu.. F-.'E'J
5 oY) — ZuulX)

KD

(i Heturn q:'a*[}“’TJ

25

 If we Instantiate a set of nodes such that the
resulting network Is a tree, we can apply a simple
message passing algorithm on the tree (see later).

* This Is called cutset conditioning.

« Thm 9.5.2. Conditioning + VE Is never more
efficient than VE.

Left: condition on A,. Repeatedly

1 | .ﬁ"‘“w re-eliminate A, ... A_, instead
) ' E\A“} of reusing computation (as in DP/VE).
i ﬁ Right: condition on A, k odd.
G \4&/ Exponential in k. But induced width is only 2.
(B & @& o .
L i Space-time tradeoff.

26

27

28

e Consider a chain X1 — X2 - .. — XT, where the local
evidence has been absorbed into the node factors.

* |f we use VE to compute p(XT|y(1:T)), itis
equivalent to the forwards algorithm for HMMs, and
takes O(T K?2) time, where K = #states.

e Suppose we also want to compute p(X(T-1)|y(1:T)).
We could rerun the algorithm for an additional O(T
K2) time.

* We now discuss how to reuse most of the
computation we have already done in eliminating
X(1:T-2). We can then compute all marginals in
O(2 K2 T) time (FB algorithm).

29

 Def 10.1.1. A cluster graph for a set of factors on X
IS an undirected graph, each of whose nodes | is
associated with aset C; X. Each factor is
contained in precisely one cluster. Each edge
between a pair of clusters C;, C; Is associated with

a sepset (separating set) S;;

!/ Coherence | |

; e
W I Dafficulty =—{Inteligence ™.

|.\,-__h_- .----'-T:.-"" e — " _.'-'l- "-. }
o e, e Ty G.l.n H G.5. '—l G.5L l—l I-I.E..l]
.'__-;_:': Grade o GA _." D Gl G.5 G

o R E T B
.II'“. Letter
:-I_." .I T
£ o T
b pory "

30

 We can create a cluster graph to represent the process of
VE. Before we marginalize out x;, we create factor y, (its
bucket potential); make this a cluster. When we marginalize
out x;, we create factor t; which is stored in bucket j; think of
this as a message from i to J. Draw an edge C; — C..

Step Variable Factors Variables New
eliminated nsed involved factor
1 ' b (C). ap (D, C) (D 0 (
2 D DG I, D). 1LD.F |l (G T) C
3 I ar(I), os(S.I), G, 5.1 (G, S)
I H o (H. G, Jj H, G.J TG T)
3 e G T), (GOS8, e (LG | GO LS | ms(J L, 5)
i S melJ LS, @gi(d L, S) J L5 TalJ, L)
’C (,D) i L TelJ. L] J L T (J)
D '
1: ¢.DFH2: 61023 6.8
dcs
J.S,L JL \
5: G,J, S, Limmmems 6: J,S,L T[?: JL |
Ty
4HGY

31

& | &

 The VE cluster graph is a tree, since each message gets
sent to a single bucket (so each cluster connects to at most
one other cluster)

Def 10.1.3. Let T be a cluster tree. T has the running
Intersection property if , whenever X in Ci and X in Cj,
then X is also in every cluster on the unique path from Ci to
CJ.

Thm 10.1.5. The VE CG has RIP.

Pf (sketch). A variable appears in every factor from the
moment it is introduced to when it is summed out.

1:C.DFH2: GI.D=H3: G

32

« Thm 10.1.6. The scope of the msq t; from C;to C; is ;.
n: c,nﬁz: G,I,D: < 3: GS,|

eﬂ-J,S,Lr JL \

. G,J.8, 6:J,SL==T7:JL

 Def. For any sepset S;, let W_; be the variables in the scope

of the clusters on the C; side, and W_; be the vars on the C,

side.
« Thm 10.1.8. T satisfies RIP iff for every Sij,
W Wg | Sy

* Hence msg from C; to C; is sufficient statistic for all info to
left of C; — C..

* RIP ensures local communication => global consistency.

33

-3

 Def 10.1.7. A cluster tree that satisfies RIP is called
a clique tree or join tree or junction tree.

« Thm 4.5.15. A graph has a Jtree (where the
clusters are the maxcliques) Iiff it is chordal.

« Thm 10.4.1. We can always remove non maximal
cligues from a Jtree without violating RIP.

Ditficulty - Infeligence ”
LY o gl
i i T STt i
1& Grode :‘5—-"-— =T
tr_:._.....-.n._':;'f_..__}
..- II". ,l. et ter
/ N
.' -5 Job
.
cn GI[I| [_GSIJ I_G,JSL | G,J|
J”’lr___ -"-ll_‘ '\-_

P |) By | 0] | Fi If PiL | G) | P | G 2l
F{ C) PSIH | |PUILS)
I ., . h, A

35

211 &1 3

 To compute p(X 1), find a cligue that contains X |,
make It the root, and send messages to it from all
other nodes.

* A clique cannot send a node to its parent until it IS
ready, ie. Has received msgs from all its children.

e Hence we send from leaves to root.

| P 36

§4,n¢0)= T,())

(C\s W, (¢ W4 Multiply terms in bucket (local & incoming),
L<‘ () (\}‘) (‘/9(‘) sum out those that are not in sepset,
send to nbr upstream 37

4& "1& IS5 6

QOD"
_—

D
/E-b? %La\',

JA

§/:Js y

38

 |f we send messages to a different root, many of
them will be the same

 Hence If we send messages to all the cliques, we
can reuse the messages- dynamic programming!

39

T&IS"

« At the end of the upwards pass, the root has seen
all the evidence.

e We send back down from root to leaves.
gr——)Z L'// e

Pl
g(u“; lﬁb/ gL/\',
n
JA
g'/:Js.‘,

Use division operator to avoid double counting

40

« Thm 10.2.7. After collect/distribute, each clique
potential represents a marginal probability
(conditioned on the evidence)

 If we get new evidence on X;, we can multiply it in
to any clique containing I, and then distribute
messages outwards from that cligue to restore
consistency.

41

 We can generalize the Viterbi algorithm to find a
MAP configuration as follows.

* On the upwards pass, replace sum with max.

e At the root, find the most probable joint setting and
send this as evidence to the root’s children.

e Each child finds its most probable setting and
sends this to its children.

* The jtree property ensures that when the state of a
variable is fixed in one clique, that variable
assumes the same state In all other cligues.

42

 We can generalize forwards-filtering backwards-
sampling to draw exact samples from the joint as
follows.

Do a collect pass to the root as usual.

« Sample xR from the root marginal, and then enter it
as evidence in all the children.

e Each child then samples itself from its updated
local distribution and sends this to its children.

43

3

« Def 102.8. A cligue tree is calibrated Iif, for all pairs
of neighboring cliques, we have

 Eg. A-B-C clg tree AB — [B] — BC. We require

 Thm. After collect/distribute, all cliques are
calibrated.

« Thm 10.2.12. A calibrated tree defines a joint
distribution as follows

€g
44

' 3 $

e Suppose at every step, clique | sends a msg to
clique J, and stores it in m;:

+ Initially m=1 and b; = Oy 5 10 f 1 Hence the
following holds.

« Thm 10.3.4. This property holds after every belief
updating operation.

45

 We can compute the distribution on any set of
variables inside a clique. But suppose we want the
joint on variables in different cliques. We can run
VE on the calibrated subtree

*e0 A O—c-p AL-DB—=<D
YR 2; c(RCY)
.y PLMC) P,){w)
) /3 (9
=7 plhe)e)

C

46

47

48

Murphy PhD thesis (2002) p140

49

2(3| &

e Triangulate the graph according to some ordering.

o At each step, keep track of the clique that Is
created; If it Is a subset of any previously created
clique, discard it (since non maximal).

50

 Build a weighted graph where
W;; = |C; intersect Cj|
 FIind max weight spanning tree. This is a jtree.

51

