
1

���������
	
���
��

2

������

• Variable elimination (9.2-9.3)

• Complexity of VE (9.4)
• Conditioning (9.5)

• From VE to clique trees (10.1)
• Message passing on clique trees (10.2-10.3)

• Creating clique trees (10.4)

3

���

��

• Consider the following distribution

� � �� �� � � �� �� �� 	�
 �

� � � � � � � � �� � � � � � � � � �� � � � � � � �� � � � � �� � � � 	 ��� � � � �
 ��� 	

� � �� �� � � �� �� �� 	�
 �

� � � � � � � � � �� � � � � � � � � � � �� � � � � � � � �� � �

� � � �� � � � � � 	� �� � � � � �
� �� 	 �

4

���
�����
�
���
�����

• Compute marginal probability someone has a job

� � 	 � �
�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � �� �� � � �� �� �� 	�
 �

5

������
�
������������

• Push sums inside products (distributive law)

� � 	 � �
�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � �� �� � � �� �� �� 	�
 �

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

� � � � � � � � �� � � � � � � � � � � �� � � � � � � � �� � �

� � � �� � � � � � 	� �� � � � � �
� �� 	 �

�
�

�

�

�

� � � 	� �� � �
�

�

� � � �� � �
�

�

� � �
� �� 	 �
�

�

� � � �� � � � � � � �

�

�

� � � �� � � � �
�

�

� � � � � � � � �� � �

6

�������������������
��
� � 	 � �

�

�

�

�

� � � 	� �� � �
�

�

� � � �� � �
�

�

� � �
� �� 	 �
�

�

� � � �� � � � � � � �
�

�

� � � �� � � � �
�

�

� � � � � � � � �� � �

� �� �
	 � � � �

�
�

�

�

�

� � � 	� �� � �
�

�

� � � �� � �
�

�

� � �
� �� 	 �
�

�

� � � �� � � � � � � �
�

�

� � � �� � � � � � � � � �

� �� �
	 � � �
� �

�
�

�

�

�

� � � 	� �� � �
�

�

� � � �� � �
�

�

� � �
� �� 	 �
�

�

� � � �� � � � � � � � � � � �� � �

� �� �
	 � � �
� �

�
�

�

�

�

� � � 	� �� � �
�

�

� � � �� � �
�

�

� � �
� �� 	 �

� �� �
	 � � �
� �

� � � �� � �

�
�

�

�

�

� � � 	� �� � �
�

�

� � � �� � � � � � �� 	 � � � � �� � �

� �� �
	 � � �
�
� �

�
�

�

�

�

� � � 	� �� � � � � � 	� �� � �

� �� �
	 � � �
� �

�
�

�

� � � 	� � �

� � � �
	 � � � �

Variable elimination
Bucket elimination
Peeling
Non-serial dynamic programming

7

 !
�"���"

8

#
�����������
$�"
��

• Conditional prob is ratio of uncond prob

• Soft/ virtual evidence: f i(Xi) = p(yi|Xi)

• Hard evidence: f i(Xi) = I(Xi=xi
*)

� � 	 �� � � �
 � �� �
� � 	� � � � �
 � ��
� � � � � �
 � ��

� � 	� � � � �
 � �� �
�

�

�

�

� � � 	� �� � �
�

�

� � � �� � �
�

�

� � �
� �� 	 � � � � �
�

�

� � � �� � � � � � � � � � � �

�

�

� � � �� � � � �
�

�

� � � � � � � � �� � �

� � 	� � � � �
 � �� �
�

�

�

�

� � � 	� �� � �
�

�

� � � �� � � � � �
 � � � �� 	 � � � � �� � � �� � � � � � ��

�

�

� � � �� � � � �
�

�

� � � � � � � � �� � �

9

%
"��
"���&�

• If nodes are instantiated (fully observed), we can
remove them and their edges and absorb their
effect by updating all the other factors that
reference them

• Eg if G is observed

10

����������"�
$�"
��

11

12

'��&�
(��)�����)!�!������

• At step i, we multiply all factors involving xi into a
large factor, then sum out xi to get t i.

• Let Ni be number of entries in factor y i.
• The total number of factors is m+n, where m =

original number of factors in model (m � n), and

n=num. vars.
• Each factor gets multiplied into something bigger

once. Hence #mult is at most

• When we sum out a node from a factor, we touch
each entry once, so #adds is at most

� � � � � � � � � � � � � � �� � � � �� �� �

�� � �

13

'��&�
(��)������)!�!������

• If each variable has v values, and factor y i involves
ki variables, then Ni � vk

• So complexity is exponential in the size of the
largest factor.

14

#���

���
������������"
���
� � 	 � �

�

�

�

�

� � � �� � �
�

�

�

�

�

�

� � � 	� �� � �
�

�

� � � � � � � � �� � �
�

�

� � � �� � � � � � � � �� � � � �
� �� 	 �

� �� �
	 � � �
�
�
�
� �

�
�

�

�

�

� � � �� � �
�

�

�

�

�

�

� � � 	� �� � �
�

�

� � � � � � � � �� � � � � � � � �� �� 	�
 �

� �� �
	 � � �
�
�
�
� �

�
�

�

�

�

� � � �� � �
�

�

�

�

�

�

� � � 	� �� � � � � � �� �� �� 	�
 �

� �� �
	 � � �
�
�
� �

�
�

�

�

�

� � � �� � �
�

�

�

�

� � � �� �� 	�
 �

� �� �
	 � � �
�
� �

�
�

�

�

�

� � � �� � �
�

�

� � � �� 	�
 �

� �� �
	 � � �
� �

�
�

�

�

�

� � � �� � � � � � �� 	 �

� �� �
	 � � �
� �

�
�

�

� � � �� 	 �

� � � �
	 � � � �

15

���
�������"
���

• A bad ordering can create larger intermediate
factors, and therefore is slower

16

*�&����
�
��������)!�!

• Every time we eliminate a node, we build a new
factor which combines variables that may have
previously been in separate factors. Let us add an
edge (fill-in edge) between such nodes to create
the induced graph.

� � � �� � � �
�

�

� � � �� � � � � � � � � � � �� � �

When we eliminate I, we add a fill-in between G and S

17

��"��
"���&�

• Def 9.4.3. Let I(G,<) represent the graph induced
by applying VE with order < to graph G.

• Thm 9.4.4.Every factor generated by VE is a clique
in I(G,<). Also, every maximal clique in I(G,<)
corresponds to some intermediate factor.

� �� � � � � �� � � � � � � �� �� �� 	 � � � �� 	�
 � � � �� � � � �

18

+

��"��

• Def 9.4.5. The width of an induced graph is the
number of nodes in the largest clique minus 1. The
minimal induced width of a graph, aka the
treewidth, is defined as

• The treewidth of a tree is 1, since the max clique
(edge) in the original graph has size 2, and the
optimal elimination order (eliminate all the leaves,
then the root) adds no fill-in edges.

� � � ��	
�

�
�
�

�� � � � �

� � � � �
�

� �

�

� �

 � � � � � � �
�

� �

 � � � � � � �

 � � � � �
�

� �

�

� �

�

� �

 � � � � � � � � � � � � � �

19

,��"�������
��� �"

• Thm 9.4.6. Finding the optimal elimination order
(which minimizes induced width) is NP-hard.

• Typical approach: greedy search, where at each
step, we eliminate the node that minimizes some
cost function

• Min-fill heuristic: the cost of a node is the number of
fill-in edges that would be added.

• Min-weight heuristic: the cost of a node is the
number of states in the factor that would be created
(product of cardinalities).

20

��&���������&��!�������
��!���!

Min-fill is often close to best known ordering (computed with simAnneal)

21

'��"�� ��&�!

• Def 2.2.15. Let X1 – X2 - … Xk – X1 be a loop in a
graph. A chord is an edge connecting Xi and Xj for
two nonconsecutive nodes. An undirected graph is
chordal (triangulated) if every loop of length k >= 4
has a chord.

• Thm 9.4.7. Every induced graph is chordal.

• Thm 9.4.8. Any chordal graph admits a perfect
elimination order which does not introduce any fill-
in edges.

22

,��"����&
�
���
��� �"

• The max cardinality search algorithm will find a
perfect elimination ordering for a chordal graph.

For non-chordal graphs, the MCS ordering often results in large induced width

23

24

'��"��������

• We can condition on a variable to break the graph
into smaller pieces, run VE on each piece, and then
add up the results. We also need the probability of
each conditioning case.

�� � � � �
�

�
�� � � � � �

Evidence G=g Condition on S

� �
�

�
� � � �

25

'��"���������-���

26

'��!
� ���"��������

• If we instantiate a set of nodes such that the
resulting network is a tree, we can apply a simple
message passing algorithm on the tree (see later).

• This is called cutset conditioning.

• Thm 9.5.2. Conditioning + VE is never more
efficient than VE.

Left: condition on Ak. Repeatedly
re-eliminate A1… Ak-1 instead
of reusing computation (as in DP/VE).

Right: condition on Ak, k odd.
Exponential in k. But induced width is only 2.

Space-time tradeoff.

27

28

������������.�����"!���������

� � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

 � � � � � � � � � � � � � � � � �� � �

 � � � � � � � � � � �� � � � � � �

� � � � � � � � � � � � � � � �� � � � �

� � � � �� �	� � � � � � � �
�

� �

 � � � � � � � � � � � � �
�

� �

 � � � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � �
�

� �

� � � � � � � � � � � � � �

� � � � � � � � � � � �
�

� �

� � � � � � � � � � � � � �

29

/���0!�������������1

• Consider a chain X1 – X2 - .. – XT, where the local
evidence has been absorbed into the node factors.

• If we use VE to compute p(XT|y(1:T)), it is
equivalent to the forwards algorithm for HMMs, and
takes O(T K2) time, where K = #states.

• Suppose we also want to compute p(X(T-1)|y(1:T)).
We could rerun the algorithm for an additional O(T
K2) time.

• We now discuss how to reuse most of the
computation we have already done in eliminating
X(1:T-2). We can then compute all marginals in
O(2 K2 T) time (FB algorithm).

30

'��!�
���&�!

• Def 10.1.1. A cluster graph for a set of factors on X
is an undirected graph, each of whose nodes I is
associated with a set Ci � X. Each factor is

contained in precisely one cluster. Each edge
between a pair of clusters Ci, Cj is associated with
a sepset (separating set) Sij. � �� � � � 	 � �

31

'��!�
���&��������
• We can create a cluster graph to represent the process of

VE. Before we marginalize out xi, we create factor y i (its
bucket potential); make this a cluster. When we marginalize
out xi, we create factor t i which is stored in bucket j; think of
this as a message from i to j. Draw an edge Ci – Cj.

32

 �&
��
!����������!�
���&�
• The VE cluster graph is a tree, since each message gets

sent to a single bucket (so each cluster connects to at most
one other cluster)

• Def 10.1.3. Let T be a cluster tree. T has the running
intersection property if , whenever X in Ci and X in Cj,
then X is also in every cluster on the unique path from Ci to
Cj.

• Thm 10.1.5. The VE CG has RIP.
• Pf (sketch). A variable appears in every factor from the

moment it is introduced to when it is summed out.

33

2
!!��
!
• Thm 10.1.6. The scope of the msg t i from Ci to Cj is Si,j.

• Def. For any sepset Sij, let W<ij be the variables in the scope
of the clusters on the Ci side, and W<ji be the vars on the Cj
side.

• Thm 10.1.8. T satisfies RIP iff for every Sij,W<ij
 W<ji | Sij.

• Hence msg from Ci to Cj is sufficient statistic for all info to
left of Ci – Cj.

• RIP ensures local communication => global consistency.

34

'��3�
��

!

• Def 10.1.7. A cluster tree that satisfies RIP is called
a clique tree or join tree or junction tree.

• Thm 4.5.15. A graph has a Jtree (where the
clusters are the maxcliques) iff it is chordal.

• Thm 10.4.1. We can always remove non maximal
cliques from a Jtree without violating RIP.

35

36

2
!!��
�&�!!������������3�
��

• To compute p(X_i), find a clique that contains X_i,
make it the root, and send messages to it from all
other nodes.

• A clique cannot send a node to its parent until it is
ready, ie. Has received msgs from all its children.

• Hence we send from leaves to root.

37

2
!!��
�&�!!������������3�
��

• .
� � 	 � �

�

�

�

�

� � � 	� �� � �
�

�

� � � �� � �
�

�

� � �
� �� 	 �
�

�

� � � �� � � � � � � �
�

�

� � � �� � � � �
�

�

� � � � � � � � �� � �

� �� �
	 � � � �

�
�

�

�

�

� � � 	� �� � �
�

�

� � � �� � �
�

�

� � �
� �� 	 �
�

�

� � � �� � � � � � � �
�

�

� � � �� � � � � � � � � �

� � � �
	 � � �
� �

Multiply terms in bucket (local & incoming),
sum out those that are not in sepset,
send to nbr upstream

38

4&��"!�&�!!�5����
���������6

� � � � � � � � � � � �
�

� � � �
� �
 �

� � � � � � �
� �

� � � � � � �� � �
�

� � � � ��

� � � � � �

39

2
!!��
�&�!!���������"���

������

• If we send messages to a different root, many of
them will be the same

• Hence if we send messages to all the cliques, we
can reuse the messages- dynamic programming!

40

#�����"!�&�!!�5"�!�����
��������6

• At the end of the upwards pass, the root has seen
all the evidence.

• We send back down from root to leaves.

� � � � � � � � � � � �
�

� � � �

� � � � � � �
� �

� � � � � � �� � �
�

� � � � ��

 � � � � �
�

� � � �
� �
 �

� � � � � � �
� �

�
�

� � � � ��

� � � � � �
� � � � � � �� � Use division operator to avoid double counting

41

�
��
�!

• Thm 10.2.7. After collect/distribute, each clique
potential represents a marginal probability
(conditioned on the evidence)

• If we get new evidence on Xi, we can multiply it in
to any clique containing i, and then distribute
messages outwards from that clique to restore
consistency.

� � � � � � �
�

� � �

�� � � �

42

2� �������������

• We can generalize the Viterbi algorithm to find a
MAP configuration as follows.

• On the upwards pass, replace sum with max.

• At the root, find the most probable joint setting and
send this as evidence to the root’s children.

• Each child finds its most probable setting and
sends this to its children.

• The jtree property ensures that when the state of a
variable is fixed in one clique, that variable
assumes the same state in all other cliques.

43

���&�
!

• We can generalize forwards-filtering backwards-
sampling to draw exact samples from the joint as
follows.

• Do a collect pass to the root as usual.

• Sample xR from the root marginal, and then enter it
as evidence in all the children.

• Each child then samples itself from its updated
local distribution and sends this to its children.

44

'������
"����3�
��

• Def 102.8. A clique tree is calibrated if, for all pairs
of neighboring cliques, we have

• Eg. A-B-C clq tree AB – [B] – BC. We require

• Thm. After collect/distribute, all cliques are
calibrated.

• Thm 10.2.12. A calibrated tree defines a joint
distribution as follows

�

� � � � ���

� � � � � � �
�

� � � � ���

� � � � � � � � �
� � � �
� �

�

� � � �� � � �
�

�

� �� � �� �

� � � � �

�
� � � � � � ��

���� � �
� � � �� �

� � !� "� � � �
� � !� " � � � "� � �

� � � �
� � � !� " � � � � �" � � � � ! �" � � � "� � �eg

45

'��3�
��

���$�����

• Suppose at every step, clique i sends a msg to
clique j, and stores it in mi,j:

• Initially mi,j=1 and bi = Õf: f ass to i f f. Hence the
following holds.

• Thm 10.3.4. This property holds after every belief
updating operation.

� � � � �

�
� � � � � � ��

���� � �
� � � �� �

46

����������3�
�3�
�
!

• We can compute the distribution on any set of
variables inside a clique. But suppose we want the
joint on variables in different cliques. We can run
VE on the calibrated subtree

• eg

47

����������3�
����

��

48

49

'
��������7�

Murphy PhD thesis (2002) p140

50

2�(����3�
!����������"�� ��&�

• Triangulate the graph according to some ordering.

• At each step, keep track of the clique that is
created; if it is a subset of any previously created
clique, discard it (since non maximal).

51

'��3�
!����7�

• Build a weighted graph where
Wij = |Ci intersect Cj|

• Find max weight spanning tree. This is a jtree.

