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Outline

• Variable elimination (9.2-9.3)

• Complexity of VE (9.4)
• Conditioning (9.5)

• From VE to clique trees (10.1) 
• Message passing on clique trees (10.2-10.3)

• Creating clique trees (10.4)
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Inference

• Consider the following distribution

P (C,D, I,G, S, L, J,H)

= P (C)P (D|C)P (I)P (G|I,D)P (S|I)P (L|G)P (J |L,S)P (H|G,J

P (C,D, I,G, S, L, J,H)

= ψC(C)ψD(D,C)ψI(I)ψG(G, I,D)ψS(S, I)

ψL(L,G)ψJ(J,L, S)ψH(H,G, J)
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Brute  force enumeration

• Compute marginal probability someone has a job

P (J) =
∑

L

∑

S

∑

G

∑

H

∑

I

∑

D

∑

C

P (C,D, I,G, S, L, J,H)
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Variable elimination 1

• Push sums inside products (distributive law)

P (J) =
∑

L

∑

S

∑

G

∑

H

∑

I

∑

D

∑

C

P (C,D, I,G, S, L, J,H)

=
∑

L

∑

S

∑

G

∑

H

∑

I

∑

D

∑

C

ψC(C)ψD(D,C)ψI(I)ψG(G, I,D)ψS(S, I)

ψL(L,G)ψJ (J, L, S)ψH(H,G, J)

=
∑

L

∑

S

ψJ (J, L, S)
∑

G

ψL(L,G)
∑

H

ψH(H,G, J)
∑

I

ψS(S, I)ψI(I)

∑

D

ψG(G, I,D)
∑

C

ψC(C)ψD(D,C)
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VE 2: work right to left

P (J) =
∑

L

∑

S

ψJ (J,L, S)
∑

G

ψL(L,G)
∑

H

ψH(H,G, J)
∑

I

ψS(S, I)ψI(I)
∑

D

ψG(G, I,D)
∑

C

ψC(C)ψD(D,C)

︸ ︷︷ ︸
τ1(D)

=
∑

L

∑

S

ψJ (J,L, S)
∑

G

ψL(L,G)
∑

H

ψH(H,G, J)
∑

I

ψS(S, I)ψI(I)
∑

D

ψG(G, I,D)τ1(D)

︸ ︷︷ ︸
τ2(G,I)

=
∑

L

∑

S

ψJ (J,L, S)
∑

G

ψL(L,G)
∑

H

ψH(H,G, J)
∑

I

ψS(S, I)ψI(I)τ2(G, I)

︸ ︷︷ ︸
τ3(G,S)

=
∑

L

∑

S

ψJ (J,L, S)
∑

G

ψL(L,G)
∑

H

ψH(H,G, J)

︸ ︷︷ ︸
τ4(G,J)

τ3(G,S)

=
∑

L

∑

S

ψJ (J,L, S)
∑

G

ψL(L,G)τ4(G, J)τ3(G,S)

︸ ︷︷ ︸
τ5(J,L,S)

=
∑

L

∑

S

ψJ (J,L, S)τ5(J, L, S)

︸ ︷︷ ︸
τ6(J,L)

=
∑

L

τ6(J, L)

︸ ︷︷ ︸
τ7(J)

Variable elimination
Bucket elimination
Peeling
Non-serial dynamic programming
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Pseudocode
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Dealing with evidence

• Conditional prob is ratio of uncond prob

• Soft/ virtual evidence: φi(Xi) = p(yi|Xi)

• Hard evidence: φi(Xi) = I(Xi=xi
*)

P (J |I = 1, H = 0) =
P (J, I = 1, H = 0)

P (I = 1, H = 0)

P (J, I = 1, H = 0) =
∑

L

∑

S

ψJ(J, L, S)
∑

G

ψL(L,G)
∑

H

ψH(H,G, J)φH(H)
∑

I

ψS(S, I)ψI(I)φI(I)

∑

D

ψG(G, I,D)
∑

C

ψC(C)ψD(D,C)

P (J, I = 1, H = 0) =
∑

L

∑

S

ψJ (J, L, S)
∑

G

ψL(L,G)ψH(H = 0, G, J)ψS(S, I = 1)ψI(I = 1)

∑

D

ψG(G, I,D)
∑

C

ψC(C)ψD(D,C)
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Reduced graph

• If nodes are instantiated (fully observed), we can 
remove them and their edges and absorb their 
effect by updating all the other factors that 
reference them

• Eg if G is observed
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VE with hard evidence
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Complexity analysis of VE

• At step i, we multiply all factors involving xi into a 
large factor, then sum out xi to get τi.

• Let Ni be number of entries in factor ψi.
• The total number of factors is m+n, where m = 

original number of factors in model (m ≥ n), and 

n=num. vars.
• Each factor gets multiplied into something bigger 

once. Hence #mult is at most

• When we sum out a node from a factor, we touch 
each entry once, so #adds is at most

(n+m)Ni ≤ (n+m)Nmax = O(mNmax)

nNmax
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Complexity  analysis of VE

• If each variable has v values, and factor ψi involves 
ki variables, then Ni ≤ vk

• So complexity is exponential in the size of the 
largest factor.
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Different elimination ordering

P (J) =
∑

D

∑

C

ψD(D,C)
∑

H

∑

L

∑

S

ψJ (J, L, S)
∑

I

ψI(I)ψS(S, I)
∑

G

ψG(G, I,D)ψL(L, )ψH(H,G, J)

︸ ︷︷ ︸
τ1(I,D,L,J,H)

=
∑

D

∑

C

ψD(D,C)
∑

H

∑

L

∑

S

ψJ (J, L, S)
∑

I

ψI(I)ψS(S, I)τ1(I,D,L, J,H)

︸ ︷︷ ︸
τ2(D,L,S,J,H)

=
∑

D

∑

C

ψD(D,C)
∑

H

∑

L

∑

S

ψJ (J, L, S)τ2(D,L, S, J,H)

︸ ︷︷ ︸
τ3(D,L,J,H)

=
∑

D

∑

C

ψD(D,C)
∑

H

∑

L

τ3(D,L, J,H)

︸ ︷︷ ︸
τ4(D,J,H)

=
∑

D

∑

C

ψD(D,C)
∑

H

τ4(D,J,H)

︸ ︷︷ ︸
τ5(D,J)

=
∑

D

∑

C

ψD(D,C)τ5(D, J)

︸ ︷︷ ︸
τ6(D,J)

=
∑

D

τ6(D,J)

︸ ︷︷ ︸
τ7(J)



15

Effect of ordering

• A bad ordering can create larger intermediate 
factors, and therefore is slower
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Graph theoretic analysis

• Every time we eliminate a node, we build a new 
factor which combines variables that may have 
previously been in separate factors. Let us add an 
edge (fill-in edge) between such nodes to create 
the induced graph.

τ3(G,S) =
∑

I

ψS(S, I)ψI(I)τ2(G, I)

When we eliminate I, we add a fill-in between G and S
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Induced graph

• Def 9.4.3. Let I(G,<) represent the graph induced 
by applying VE with order < to graph G.

• Thm 9.4.4.Every factor generated by VE is a clique 
in I(G,<). Also, every maximal clique in I(G,<) 
corresponds to some intermediate factor.

{C,D}, {D, I,G}, {G,L, S, J}, {G, J,H}, {G, I, S}
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Treewidth

• Def 9.4.5. The width of an induced graph is the 
number of nodes in the largest clique minus 1. The 
minimal induced width of a graph, aka the 
treewidth, is defined as

• The treewidth of a tree is 1, since the max clique 
(edge) in the original graph has size 2, and  the 
optimal elimination order (eliminate all the leaves, 
then the root) adds no fill-in edges.

WG = min
≺
max
i
|τi| − 1

1, 2, 3 :
∑

x3

∑

x2

φ(x3, x2)
∑

x1

φ(x3, x1)

3, 2, 1 :
∑

x1

∑

x2

∑

x3

φ(x3, x1)φ(x3, x2)
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Finding an elim order

• Thm 9.4.6. Finding the optimal elimination order 
(which minimizes induced width) is NP-hard.

• Typical approach: greedy search, where at each 
step, we eliminate the node that minimizes some 
cost function

• Min-fill heuristic: the cost of a node is the number of 
fill-in edges that would be added.

• Min-weight heuristic: the cost of a node is the 
number of states in the factor that would be created 
(product of cardinalities).
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Empirical comparison of heuristics

Min-fill is often close to best known ordering (computed with simAnneal)
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Chordal graphs

• Def 2.2.15. Let X1 – X2 - … Xk – X1 be a loop in a 
graph. A chord is an edge connecting Xi and Xj for 
two nonconsecutive nodes. An undirected graph is 
chordal (triangulated) if every loop of length k >= 4 
has a chord.

• Thm 9.4.7. Every induced graph is chordal.

• Thm 9.4.8. Any chordal graph admits a perfect 
elimination order which does not introduce any fill-
in edges.
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Finding perfect elim order

• The max cardinality search algorithm will find a 
perfect elimination ordering for a chordal graph.

For non-chordal graphs, the MCS ordering often results in large induced width
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Conditioning

• We can condition on a variable to break the graph 
into smaller pieces, run VE on each piece, and then 
add up the results. We also need the probability of 
each conditioning case.

P̃ (Y) =
∑

u

P̃ (Y,u)

Evidence G=g Condition on S

Z =
∑

u

Z(u)
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Conditioning + VE
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Cutset conditioning

• If we instantiate a set of nodes such that the 
resulting network is a tree, we can apply a simple 
message passing algorithm on the tree (see later).

• This is called cutset conditioning.

• Thm 9.5.2. Conditioning + VE is never more 
efficient than VE.

Left: condition on Ak. Repeatedly
re-eliminate A1… Ak-1 instead
of reusing computation (as in DP/VE).

Right: condition on Ak, k odd. 
Exponential in k. But induced width is only 2.

Space-time tradeoff.
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VE on chain = forwards algorithm

p(x1, x2, x3|y1, y2, y3) ∝ φ1(x1)ψ(x1, x2)φ2(x2)ψ(x2, x3)φ3(x3)

φ1(x1) = π1(x1)p(y1|x1)

φt(xt) = p(yt|xt), t > 1

ψ(xt−1, xt) = p(xt|xt−1)

p(x3|y1:3) ∝ φ3(x3)
∑

x2

φ2(x2)ψ(x2, x3)
∑

x1

φ1(x1)ψ(x1, x2)

α1(x1) ∝ φ1(x1)

α2(x2) ∝ φ2(x2)
∑

x1

α1(x1)ψ(x1, x2)

α3(x3) ∝ φ3(x3)
∑

x2

α2(x2)ψ(x2, x3)
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What’s wrong with VE?

• Consider a chain X1 – X2 - .. – XT, where the local 
evidence has been absorbed into the node factors.

• If we use VE to compute p(XT|y(1:T)), it is 
equivalent to the forwards algorithm for HMMs, and 
takes O(T K2) time, where K = #states.

• Suppose we also want to compute p(X(T-1)|y(1:T)). 
We could rerun the algorithm for an additional O(T 
K2) time. 

• We now discuss how to reuse most of the 
computation we have already done in eliminating 
X(1:T-2). We can then compute all marginals in
O(2 K2 T) time (FB algorithm).
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Cluster graphs

• Def 10.1.1. A cluster graph for a set of factors on X 
is an undirected graph, each of whose nodes I is 
associated with a set Ci ⊆ X. Each factor is 

contained in precisely one cluster. Each edge 
between a pair of clusters Ci, Cj is associated with 
a sepset (separating set) Sij. Sij = Ci∩Cj
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Cluster graph from VE

• We can create a cluster graph to represent the process of 
VE. Before we marginalize out xi, we create factor ψi (its 
bucket potential); make this a cluster. When we marginalize 
out xi, we create factor τi which is stored in bucket j; think of 
this as a message from i to j. Draw an edge Ci – Cj.
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Properties of VE cluster graph

• The VE cluster graph is a tree, since each message gets 
sent to a single bucket (so each cluster connects to at most 
one other cluster)

• Def 10.1.3. Let T be a cluster tree. T has the running 
intersection property if , whenever X in Ci and X in Cj, 
then X is also in every cluster on the unique path from Ci to 
Cj. 

• Thm 10.1.5. The VE CG has RIP.
• Pf (sketch). A variable appears in every factor from the 

moment it is introduced to when it is summed out.
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Messages

• Thm 10.1.6. The scope of the msg τi from Ci to Cj is Si,j.

• Def. For any sepset Sij, let W<ij be the variables in the scope 
of the clusters on the Ci side, and W<ji be the vars on the Cj
side.

• Thm 10.1.8. T satisfies RIP iff for every Sij,W<ij ⊥ W<ji | Sij.

• Hence msg from Ci to Cj is sufficient statistic for all info to 
left of Ci – Cj.

• RIP ensures local communication => global consistency.
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Clique trees

• Def 10.1.7. A cluster tree that satisfies RIP is called 
a clique tree or join tree or junction tree.

• Thm 4.5.15. A graph has a Jtree (where the 
clusters are the maxcliques) iff it is chordal.

• Thm 10.4.1. We can always remove non maximal 
cliques from a Jtree without violating RIP.
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Message passing on a clique tree

• To compute p(X_i), find a clique that contains X_i, 
make it the root, and send messages to it from all 
other nodes.

• A clique cannot send a node to its parent until it is 
ready, ie. Has received msgs from all its children.

• Hence we send from leaves to root.
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Message passing on a clique tree

• .
P (J) =

∑

L

∑

S

ψJ (J,L, S)
∑

G

ψL(L,G)
∑

H

ψH(H,G, J)
∑

I

ψS(S, I)ψI(I)
∑

D

ψG(G, I,D)
∑

C

ψC(C)ψD(D,C)

︸ ︷︷ ︸
τ1(D)

=
∑

L

∑

S

ψJ (J,L, S)
∑

G

ψL(L,G)
∑

H

ψH(H,G, J)
∑

I

ψS(S, I)ψI(I)
∑

D

ψG(G, I,D)τ1(D)

︸ ︷︷ ︸
τ2(G,I)

Multiply terms in bucket (local & incoming),
sum out those that are not in sepset,
send to nbr upstream
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Upwards pass (collect to root)

βi(Ci) = φi(Ci)
∏

k∈ni,k �=j

δk→i(Sk,i)

δi→j(Sij) =
∑

Ci\Sij

βi(Ci)
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Message passing to a different root

• If we send messages to a different root, many of 
them will be the same

• Hence if we send messages to all the cliques, we 
can reuse the messages- dynamic programming!
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Downwards pass (distribute from root)

• At the end of the upwards pass, the root has seen 
all the evidence.

• We send back down from root to leaves.

βj(Cj) = φj(Cj)
∏

k∈nj

δk→j(Sk,j)

δj→i(Sij) =
∑

Cj\Sij

φj(Cj)
∏

k∈nj ,i �=k

δk→j(Sk,j)

=
∑

Cj\Sij

βj(Cj)

δi→j(Sij) Use division operator to avoid double counting
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Beliefs

• Thm 10.2.7. After collect/distribute, each clique 
potential represents a marginal probability 
(conditioned on the evidence)

• If we get new evidence on Xi, we can multiply it in 
to any clique containing i, and then distribute 
messages outwards from that clique to restore 
consistency.

βi(Ci) =
∑

x Ci

P̃ (x)
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MAP configuration

• We can generalize the Viterbi algorithm to find a 
MAP configuration as follows.

• On the upwards pass, replace sum with max.

• At the root, find the most probable joint setting and 
send this as evidence to the root’s children.

• Each child finds its most probable setting and 
sends this to its children.

• The jtree property ensures that when the state of a 
variable is fixed in one clique, that variable 
assumes the same state in all other cliques.
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Samples

• We can generalize forwards-filtering backwards-
sampling to draw exact samples from the joint as 
follows.

• Do a collect pass to the root as usual.

• Sample xR from the root marginal, and then enter it 
as evidence in all the children.

• Each child then samples itself from its updated 
local distribution and sends this to its children. 
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Calibrated clique tree

• Def 102.8. A clique tree is calibrated if, for all pairs 
of neighboring cliques, we have

• Eg. A-B-C  clq tree AB – [B] – BC. We require

• Thm. After collect/distribute, all cliques are 
calibrated.

• Thm 10.2.12. A calibrated tree defines a joint 
distribution as follows

∑

Ci\Si,j

βi(Ci) =
∑

Cj\Si,j

βj(Cj) = µi,j(Si,j)

∑

a

βab(a, b) =
∑

c

βbc(b, c)

p(x) =

∏
i βi(Ci)∏

<ij> µi,j(Sij)

p(A,B,C) =
p(A,B)p(B,C)

p(C)
= p(A,B)p(C|B) = p(A|B)p(B,C)eg
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Clique tree invariant

• Suppose at every step, clique i sends a msg to 
clique j, and stores it in µi,j:

• Initially µi,j=1 and βi = ∏f: f ass to i φf. Hence the 
following holds.

• Thm 10.3.4. This property holds after every belief 
updating operation.

p(x) =

∏
i βi(Ci)∏

<ij> µi,j(Sij)
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Out of clique queries

• We can compute the distribution on any set of 
variables inside a clique. But suppose we want the 
joint on variables in different cliques. We can run 
VE on the calibrated subtree

• eg
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Out of clique inference
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Creating a Jtree

Murphy PhD thesis (2002) p140
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Max cliques from a chordal graph

• Triangulate the graph according to some ordering.

• At each step, keep track of the clique that is 
created; if it is a subset of any previously created 
clique, discard it (since non maximal).
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Cliques to Jtree

• Build a weighted graph where
Wij = |Ci intersect Cj|

• Find max weight spanning tree. This is a jtree.


