Stat 521A Lecture 7

1

- Variable elimination (9.2-9.3)
- Complexity of VE (9.4)
- Conditioning (9.5)
- From VE to clique trees (10.1)
- Message passing on clique trees (10.2-10.3)
- Creating clique trees (10.4)

Inference

• Consider the following distribution

P(C, D, I, G, S, L, J, H)

= P(C)P(D|C)P(I)P(G|I,D)P(S|I)P(L|G)P(J|L,S)P(H|G, P(C,D,I,G,S,L,J,H))

 $= \psi_C(C)\psi_D(D,C)\psi_I(I)\psi_G(G,I,D)\psi_S(S,I)$ $\psi_L(L,G)\psi_J(J,L,S)\psi_H(H,G,J)$

Brute force enumeration

• Compute marginal probability someone has a job

 $P(J) = \sum_{L} \sum_{S} \sum_{G} \sum_{H} \sum_{I} \sum_{D} \sum_{C} P(C, D, I, G, S, L, J, H)$

Variable elimination 1

• Push sums inside products (distributive law)

$$P(J) = \sum_{L} \sum_{S} \sum_{G} \sum_{H} \sum_{I} \sum_{D} \sum_{C} P(C, D, I, G, S, L, J, H)$$

$$= \sum_{L} \sum_{S} \sum_{G} \sum_{H} \sum_{I} \sum_{D} \sum_{C} \psi_{C}(C)\psi_{D}(D, C)\psi_{I}(I)\psi_{G}(G, I, D)\psi_{S}(S, I)$$

$$\psi_{L}(L, G)\psi_{J}(J, L, S)\psi_{H}(H, G, J)$$

$$= \sum_{L} \sum_{S} \psi_{J}(J, L, S) \sum_{G} \psi_{L}(L, G) \sum_{H} \psi_{H}(H, G, J) \sum_{I} \psi_{S}(S, I)\psi_{I}(I)$$

$$\sum_{D} \psi_{G}(G, I, D) \sum_{C} \psi_{C}(C)\psi_{D}(D, C)$$

VE 2: work right to left

$$\begin{split} P(J) &= \sum_{L} \sum_{S} \psi_{J}(J,L,S) \sum_{G} \psi_{L}(L,G) \sum_{H} \psi_{H}(H,G,J) \sum_{I} \psi_{S}(S,I) \psi_{I}(I) \sum_{D} \psi_{G}(G,I,D) \underbrace{\sum_{C} \psi_{C}(C) \psi_{D}(D,C)}_{\tau_{1}(D)} \\ &= \sum_{L} \sum_{S} \psi_{J}(J,L,S) \sum_{G} \psi_{L}(L,G) \sum_{H} \psi_{H}(H,G,J) \sum_{I} \psi_{S}(S,I) \psi_{I}(I) \sum_{D} \psi_{G}(G,I,D) \tau_{1}(D) \\ &= \sum_{L} \sum_{S} \psi_{J}(J,L,S) \sum_{G} \psi_{L}(L,G) \sum_{H} \psi_{H}(H,G,J) \underbrace{\sum_{I} \psi_{S}(S,I) \psi_{I}(I) \tau_{2}(G,I)}_{\tau_{3}(G,S)} \\ &= \sum_{L} \sum_{S} \psi_{J}(J,L,S) \sum_{G} \psi_{L}(L,G) \underbrace{\sum_{H} \psi_{H}(H,G,J)}_{\tau_{4}(G,J)} \tau_{3}(G,S) \\ &= \sum_{L} \sum_{S} \psi_{J}(J,L,S) \underbrace{\sum_{G} \psi_{L}(L,G) \tau_{4}(G,J) \tau_{3}(G,S)}_{\tau_{5}(J,L,S)} \\ &= \sum_{L} \sum_{S} \psi_{J}(J,L,S) \underbrace{\sum_{G} \psi_{L}(L,G) \tau_{4}(G,J) \tau_{3}(G,S)}_{\tau_{6}(J,L)} \\ &= \sum_{L} \sum_{T} \underbrace{\sum_{S} \psi_{J}(J,L,S) \tau_{5}(J,L,S)}_{\tau_{6}(J,L)} \\ &= \sum_{T} \underbrace{\sum_{T} \tau_{6}(J,L)}_{\tau_{7}(J)} \\ \end{split}$$

Pseudocode

Algorithm 9.1 Sum-Product Variable Elimination algorithm

Dealing with evidence

Conditional prob is ratio of uncond prob

$$P(J|I = 1, H = 0) = \frac{P(J, I = 1, H = 0)}{P(I = 1, H = 0)}$$

• Soft/ virtual evidence: $\phi_i(X_i) = p(y_i|X_i)$ P(J, I = 1, H = 0) = $\sum_{L} \sum_{S} \psi_{J}(J,L,S) \sum_{G} \psi_{L}(L,G) \sum_{H} \psi_{H}(H,G,J) \phi_{\mathbf{H}}(\mathbf{H}) \sum_{I} \psi_{S}(S,I) \psi_{I}(I) \phi_{\mathbf{I}}(\mathbf{I})$ $\sum_{C} \psi_G(G, I, D) \sum_{C} \psi_C(C) \psi_D(D, C)$ • Hard evidence: $\phi_i(X_i) = I(X_i = x_i^*)$ P(J, I = 1, H = 0) = $\sum_{I} \sum_{S} \psi_{J}(J, L, S) \sum_{C} \psi_{L}(L, G) \psi_{H}(H = 0, G, J) \psi_{S}(S, I = 1) \psi_{I}(I = 1)$ $\sum_{C} \psi_G(G, I, D) \sum_{C} \psi_C(C) \psi_D(D, C)$

Reduced graph

- If nodes are instantiated (fully observed), we can remove them and their edges and absorb their effect by updating all the other factors that reference them
- Eg if G is observed

VE with hard evidence

Procedure Cond Prob VE (\mathcal{K}_{*} // A network over \mathcal{X} Y, // Set of query variables E = e // Evidence $\Phi \leftarrow$ Factors parameterizing \mathcal{K} 1 Replace each $\phi \in \Phi$ by $\phi[E = e]$ $2 \ 3 \ 4 \ 5 \ 6 \ 7$ Select an elimination ordering \prec $Z \leftarrow = \mathcal{X} - Y - E$ $\phi^* \leftarrow \mathsf{Sum} \mathsf{Product} \mathsf{Variable} \mathsf{Elimination}(\Phi,\prec,oldsymbol{Z})$ $\alpha \leftarrow \sum_{\boldsymbol{y} \in Val(\boldsymbol{Y})} \phi^*(\boldsymbol{y})$ return α, ϕ^*

Complexity analysis of VE

- At step i, we multiply all factors involving x_i into a large factor, then sum out x_i to get τ_i .
- Let N_i be number of entries in factor ψ_i .
- The total number of factors is m+n, where $m = original number of factors in model (<math>m \ge n$), and n=num, vars.
- Each factor gets multiplied into something bigger once. Hence #mult is at most

 $(n+m)N_i \le (n+m)N_{max} = O(mN_{max})$

• When we sum out a node from a factor, we touch each entry once, so #adds is at most

 nN_{max}

Complexity analysis of VE

- If each variable has v values, and factor ψ_i involves k_i variables, then $N_i \leq v^k$
- So complexity is exponential in the size of the largest factor.

Different elimination ordering

$$\begin{split} P(J) &= \sum_{D} \sum_{C} \psi_{D}(D,C) \sum_{H} \sum_{L} \sum_{S} \psi_{J}(J,L,S) \sum_{I} \psi_{I}(I)\psi_{S}(S,I) \underbrace{\sum_{C} \psi_{G}(G,I,D)\psi_{L}(L,)\psi_{H}(H,G,J)}_{\tau_{1}(I,D,L,J,H)} \\ &= \sum_{D} \sum_{C} \psi_{D}(D,C) \sum_{H} \sum_{L} \sum_{S} \psi_{J}(J,L,S) \underbrace{\sum_{I} \psi_{I}(I)\psi_{S}(S,I)\tau_{1}(I,D,L,J,H)}_{\tau_{2}(D,L,S,J,H)} \\ &= \sum_{D} \sum_{C} \psi_{D}(D,C) \sum_{H} \sum_{L} \underbrace{\sum_{S} \psi_{J}(J,L,S)\tau_{2}(D,L,S,J,H)}_{\tau_{3}(D,L,J,H)} \\ &= \sum_{D} \sum_{C} \psi_{D}(D,C) \sum_{H} \underbrace{\sum_{L} \tau_{3}(D,L,J,H)}_{\tau_{4}(D,J,H)} \\ &= \sum_{D} \sum_{C} \psi_{D}(D,C) \sum_{H} \underbrace{\sum_{L} \tau_{3}(D,L,J,H)}_{\tau_{4}(D,J,H)} \\ &= \sum_{D} \sum_{C} \psi_{D}(D,C) \underbrace{\sum_{H} \tau_{4}(D,J,H)}_{\tau_{6}(D,J)} \\ &= \sum_{D} \sum_{C} \psi_{D}(D,C) \tau_{5}(D,J) \underbrace{\sum_{H} \tau_{4}(D,J,H)}_{\tau_{6}(D,J)} \\ &= \sum_{D} \sum_{C} \underbrace{\sum_{D} \tau_{6}(D,J)}_{\tau_{7}(J)} \end{split}$$

Effect of ordering

• A bad ordering can create larger intermediate factors, and therefore is slower

Step	Variable	Factors	Variables	New
	$\operatorname{eliminated}$	use d	involved	factor
1	C	$\phi_C(C), \phi_D(D, C)$	C, D	$\tau_1(D)$
2	D	$\phi_G(G, I, D), \tau_1(D)$	G, I, D	$\tau_2(G, I)$
3	Ι	$\phi_I(I), \phi_S(S,I), \tau_2(G,I)$	G, S, I	$ au_{3}(G,S)$
-4	H	$\phi_H(H,G,J)$	H,G,J	$\tau_4(G, J)$
5	G	$\tau_4(G, J), \tau_3(G, S), \phi_L(L, G)$	\dot{G}, J, L, S	$\tau_5(J, L, S)$
6	S	$\tau_5(J, L, S), \phi_J(J, L, S)$	J,L,S	$ au_6(J,L)$
7	L	$ au_6(J,L)$	J, L	$ au_7(J)$

Table 9.1 A run of variable elimination for the query P(J).

Step	Variable	Factors	Variables	New	
	eliminated	used	involved	factor	1
1	G	$\phi_G(G, I, D), \phi_L(L, G), \phi_H(H, G, J)$	G, L, D, L, J, H	$\tau_1(I, D, L, J, H)$	6
2	Ι	$\phi_{I}(I), \phi_{S}(S, I), \tau_{1}(I, D, L, S, J, H)$	S, I, D, L, J, H	$ au_2(D,L,S,J,H)$	6
3	S	$\phi_J(J,L,S), \tau_2(D,L,S,J,H)$	D,L,S,J,H	$ au_3(D,L,J,H)$	
-4	L	$\tau_3(D,L,J,H)$	D, L, J, H	$\tau_4(D, J, H)$	
5	H	$\tau_4(D, J, H)$	D, J, H	$\tau_5(D, J)$	
6	C	$\tau_5(D, J), \phi_D(D, C)$	D, J, C	$ au_6(D,J)$	
7	D	$\tau_6(D, J)$	D, J	$\tau_7(J)$	

Table 9.2 A different run of variable elimination for the query P(J).

Graph theoretic analysis

 Every time we eliminate a node, we build a new factor which combines variables that may have previously been in separate factors. Let us add an edge (fill-in edge) between such nodes to create the induced graph

When we eliminate I, we add a fill-in between G and S

$$\tau_3(G,S) = \sum_I \psi_S(S,I)\psi_I(I)\tau_2(G,I)$$

Induced graph

- Def 9.4.3. Let I(G,<) represent the graph induced by applying VE with order < to graph G.
- Thm 9.4.4.Every factor generated by VE is a clique in I(G,<). Also, every maximal clique in I(G,<) corresponds to some intermediate factor.

 $\{C,D\},\{D,I,G\},\{G,L,S,J\},\{G,J,H\},\{G,I,S\}$

Treewidth

 Def 9.4.5. The width of an induced graph is the number of nodes in the largest clique minus 1. The minimal induced width of a graph, aka the treewidth, is defined as

 $W_G = \min_{\prec} \max_i |\tau_i| - 1$

 The treewidth of a tree is 1, since the max clique (edge) in the original graph has size 2, and the optimal elimination order (eliminate all the leaves, then the root) adds no fill-in edges.

$$1, 2, 3 : \sum_{x_3} \sum_{x_2} \phi(x_3, x_2) \sum_{x_1} \phi(x_3, x_1)$$

$$3, 2, 1 : \sum_{x_1} \sum_{x_2} \sum_{x_3} \phi(x_3, x_1) \phi(x_3, x_2)$$

Finding an elim order

- Thm 9.4.6. Finding the optimal elimination order (which minimizes induced width) is NP-hard.
- Typical approach: greedy search, where at each step, we eliminate the node that minimizes some cost function
- Min-fill heuristic: the cost of a node is the number of fill-in edges that would be added.
- Min-weight heuristic: the cost of a node is the number of states in the factor that would be created (product of cardinalities).

Empirical comparison of heuristics

Min-fill is often close to best known ordering (computed with simAnneal)

Chordal graphs

Def 2.2.15. Let X₁ – X₂ - ... X_k – X₁ be a loop in a graph. A chord is an edge connecting X_i and X_j for two nonconsecutive nodes. An undirected graph is chordal (triangulated) if every loop of length k >= 4 has a chord.

- Thm 9.4.7. Every induced graph is chordal.
- Thm 9.4.8. Any chordal graph admits a perfect elimination order which does not introduce any fillin edges.

Finding perfect elim order

• The max cardinality search algorithm will find a perfect elimination ordering for a chordal graph.

For non-chordal graphs, the MCS ordering often results in large induced width

Conditioning

 We can condition on a variable to break the graph into smaller pieces, run VE on each piece, and then add up the results. We also need the probability of each conditioning case.

Conditioning + VE

Cutset conditioning

- If we instantiate a set of nodes such that the resulting network is a tree, we can apply a simple message passing algorithm on the tree (see later).
- This is called cutset conditioning.
- Thm 9.5.2. Conditioning + VE is never more efficient than VE.

Left: condition on A_k . Repeatedly re-eliminate $A_1 \dots A_{k-1}$ instead of reusing computation (as in DP/VE).

Right: condition on A_k , k odd. Exponential in k. But induced width is only 2.

Space-time tradeoff.

VE on chain = forwards algorithm X1->> X2-> X3 $p(x_1, x_2, x_3 | y_1, y_2, y_3) \propto \phi_1(x_1) \psi(x_1, x_2) \phi_2(x_2) \psi(x_2, x_3) \phi_3(x_3)$ $\phi_1(x_1) = \pi_1(x_1)p(y_1|x_1)$ $\phi_t(x_t) = p(y_t|x_t), t > 1$ $\psi(x_{t-1}, x_t) = p(x_t | x_{t-1})$ $p(x_3|y_{1:3}) \propto \phi_3(x_3) \sum \phi_2(x_2) \psi(x_2, x_3) \sum \phi_1(x_1) \psi(x_1, x_2)$ x_2 $\alpha_1(x_1) \propto \phi_1(x_1)$ $\alpha_2(x_2) \propto \phi_2(x_2) \sum \alpha_1(x_1) \psi(x_1, x_2)$ x_1 $lpha_3(x_3) \propto \phi_3(x_3) \sum lpha_2(x_2) \psi(x_2,x_3)$ x_2

What's wrong with VE?

- Consider a chain X1 X2 .. XT, where the local evidence has been absorbed into the node factors.
- If we use VE to compute p(XT|y(1:T)), it is equivalent to the forwards algorithm for HMMs, and takes O(T K²) time, where K = #states.
- Suppose we also want to compute p(X(T-1)|y(1:T)).
 We could rerun the algorithm for an additional O(T K²) time.
- We now discuss how to reuse most of the computation we have already done in eliminating X(1:T-2). We can then compute all marginals in O(2 K² T) time (FB algorithm).

Cluster graphs

• Def 10.1.1. A cluster graph for a set of factors on X is an undirected graph, each of whose nodes I is associated with a set $C_i \subseteq X$. Each factor is

contained in precisely one cluster. Each edge between a pair of clusters C_i , C_j is associated with a sepset (separating set) S_{ij} . $S_{ij} = C_i \cap C_j$

Cluster graph from VE

We can create a cluster graph to represent the process of VE. Before we marginalize out x_i, we create factor ψ_i (its bucket potential); make this a cluster. When we marginalize out x_i, we create factor τ_i which is stored in bucket j; think of this as a message from i to j. Draw an edge C_i – C_i.

	Step	Variable	Factors	Variables	New				
		eliminated	used	involved	factor				
	1	C	$\phi_C(C), \phi_D(D,C)$	C, D	$\tau_1(D)$				
	2	D	$\phi_G(G, I, D), \tau_1(D)$	C, I, D	$\tau_2(G,I) \subset$				
	3	Ι	$\phi_I(I), \phi_S(S, I), \tau_2(G, I)$	G, S, I	$\tau_3(G, S)$				
	4	H	$\phi_H(H,G,J)$	H, G, J	$\tau_4(G, J)$				
	5	G	$\tau_4(G, J), \ \tau_3(G, S), \ \phi_L(L, G)$	G, J, L, S	$\tau_5(J, L, S)$				
	6	S	$\tau_5(J, L, S), \phi_J(J, L, S)$	J, L, S	$\tau_6(J,L)$				
$\tau(0)$	7	L	$\tau_6(J,L)$	J, L	$\tau_7(J)$				
		•							
	G,I								
1: C,D + 2: G,I,D + 3: G,S,I									
5; G.J.S.L 6; J.S.L 7; J.L									

G,J

4: H.G.J

Properties of VE cluster graph

- The VE cluster graph is a tree, since each message gets sent to a single bucket (so each cluster connects to at most one other cluster)
- Def 10.1.3. Let T be a cluster tree. T has the running intersection property if , whenever X in Ci and X in Cj, then X is also in every cluster on the unique path from Ci to Cj.
- Thm 10.1.5. The VE CG has RIP.
- Pf (sketch). A variable appears in every factor from the moment it is introduced to when it is summed out.

$$\begin{array}{c} 1: \text{C,D} \xrightarrow{\text{D}} 2: \text{G,I,D} \xrightarrow{\text{G,I}} 3: \text{G,S,I} \\ & \downarrow \text{G,S} \\ 5: \text{G,J,S,L} \xrightarrow{\text{J,S,L}} 6: \text{J,S,L} \xrightarrow{\text{J,L}} 7: \text{J,L} \\ & \uparrow \text{G,J} \\ \hline 4: \text{H,G,J} \end{array}$$

Messages

• Thm 10.1.6. The scope of the msg τ_i from C_i to C_i is S_{i,i}.

- Def. For any sepset S_{ij} , let $W_{<ij}$ be the variables in the scope of the clusters on the C_i side, and $W_{<ji}$ be the vars on the C_j side.
- Thm 10.1.8. T satisfies RIP iff for every $S_{ij}, W_{< ij} \perp W_{< ji} \mid S_{ij}.$
- Hence msg from C_i to C_j is sufficient statistic for all info to left of C_i – C_j.
- RIP ensures local communication => global consistency.

Clique trees

- Def 10.1.7. A cluster tree that satisfies RIP is called a clique tree or join tree or junction tree.
- Thm 4.5.15. A graph has a Jtree (where the clusters are the maxcliques) iff it is chordal.
- Thm 10.4.1. We can always remove non maximal cliques from a Jtree without violating RIP.

Message passing on a clique tree

- To compute p(X_i), find a clique that contains X_i, make it the root, and send messages to it from all other nodes.
- A clique cannot send a node to its parent until it is ready, ie. Has received msgs from all its children.
- Hence we send from leaves to root.

Message passing on a clique tree

$$P(J) = \sum_{L} \sum_{S} \psi_{J}(J, L, S) \sum_{G} \psi_{L}(L, G) \sum_{H} \psi_{H}(H, G, J) \sum_{I} \psi_{S}(S, I) \psi_{I}(I) \sum_{D} \psi_{G}(G, I, D) \underbrace{\sum_{C} \psi_{C}(C) \psi_{D}(D, C)}_{\tau_{1}(D)}$$

$$= \sum_{L} \sum_{S} \psi_{J}(J, L, S) \sum_{G} \psi_{L}(L, G) \sum_{H} \psi_{H}(H, G, J) \sum_{I} \psi_{S}(S, I) \psi_{I}(I) \underbrace{\sum_{D} \psi_{G}(G, I, D) \tau_{1}(D)}_{\tau_{2}(G, I)}$$

4, (C,)= 4, (C) 40(D,C)

Multiply terms in bucket (local & incoming), sum out those that are not in sepset, send to nbr upstream

Upwards pass (collect to root)
Procedure Ciree Sum Product Up (

$$\Phi, // Set of factors$$

 $T, // Cirgue tree over Φ
 $\alpha, // Initial assignment of factors to cliques
 C_r // Some selected root clique
)
1 Initialize Cliques
2 while C_r is not ready
3 Let C_t be a ready clique
4 $\delta_{t\to p_r(i)}(S_{t,p_r(i)}) \leftarrow SP Message(i, p_r(i)))$
5 $\beta_r \leftarrow \psi_r \cdot \prod_{k \in Nb_{C_r}} \delta_{k \to r}$
6 return β_r
Procedure Initialize Cliques (
)
1 for each clique C_i
2 $\psi_i[C_i] \leftarrow \prod_{\phi_j : \alpha(\phi_j)=i} \phi$
3 $\beta_i(C_i) = \phi_i(C_i) \prod_{k \in n_i, k \neq j} \delta_k \to i(S_{k,i})$
Procedure SP Message (
 $i, // sending clique$
 $j // receiving clique$
 $\delta_{i \to j}(S_{ij}) = \sum_{C_i \setminus S_{ij}} \beta_i(C_i)$
1 $\psi(C_i) \leftarrow \psi_i \cdot \prod_{k \in (Nb_i - \{j\})} \delta_{k \to i}$$$

Message passing to a different root

- If we send messages to a different root, many of them will be the same
- Hence if we send messages to all the cliques, we can reuse the messages- dynamic programming!

Downwards pass (distribute from root)

- At the end of the upwards pass, the root has seen all the evidence.
- We send back down from root to leaves.

Beliefs

 Thm 10.2.7. After collect/distribute, each clique potential represents a marginal probability (conditioned on the evidence)

$$\beta_i(C_i) = \sum_{\mathbf{x}, C} \tilde{P}(\mathbf{x})$$

 If we get new evidence on X_i, we can multiply it in to any clique containing i, and then distribute messages outwards from that clique to restore consistency.

MAP configuration

- We can generalize the Viterbi algorithm to find a MAP configuration as follows.
- On the upwards pass, replace sum with max.
- At the root, find the most probable joint setting and send this as evidence to the root's children.
- Each child finds its most probable setting and sends this to its children.
- The jtree property ensures that when the state of a variable is fixed in one clique, that variable assumes the same state in all other cliques.

Samples

- We can generalize forwards-filtering backwardssampling to draw exact samples from the joint as follows.
- Do a collect pass to the root as usual.
- Sample xR from the root marginal, and then enter it as evidence in all the children.
- Each child then samples itself from its updated local distribution and sends this to its children.

Calibrated clique tree

• Def 102.8. A clique tree is calibrated if, for all pairs of neighboring cliques, we have

$$\sum_{C_i \setminus S_{i,j}} \beta_i(C_i) = \sum_{C_j \setminus S_{i,j}} \beta_j(C_j) = \mu_{i,j}(S_{i,j})$$

• Eg. A-B-C clq tree AB – [B] – BC. We require

$$\sum_{a} \beta_{ab}(a,b) = \sum_{c} \beta_{bc}(b,c)$$

- Thm. After collect/distribute, all cliques are calibrated.
- Thm 10.2.12. A calibrated tree defines a joint distribution as follows $p(x) = \frac{\prod_i \beta_i(C_i)}{\prod_{\langle ij \rangle} \mu_{i,j}(S_{ij})}$

eg
$$p(A, B, C) = \frac{p(A, B)p(B, C)}{p(C)} = p(A, B)p(C|B) = p(A|B)p(B, C)$$

Clique tree invariant

 Suppose at every step, clique i sends a msg to clique j, and stores it in μ_{i,i}: Procedure Send-BU-Msg (

i, // sending clique j // receiving clique) 1 $\sigma_{i \rightarrow j} \leftarrow \sum_{C_i - S_{i,j}} \beta_i$ 2 // marginalize the clique over the sepset 3 $\beta_j \leftarrow \beta_j \cdot \frac{\sigma_{i \rightarrow j}}{\mu_{i,j}}$ 4 $\mu_{i,j} \leftarrow \sigma_{i \rightarrow j}$

- Initially $\mu_{i,j}=1$ and $\beta_i = \prod_{f: f \text{ ass to } i} \phi_f$. Hence the following holds. $p(x) = \frac{\prod_i \beta_i(C_i)}{\prod_{\langle ij \rangle} \mu_{i,j}(S_{ij})}$
- Thm 10.3.4. This property holds after every belief updating operation.

Out of clique queries

- We can compute the distribution on any set of variables inside a clique. But suppose we want the joint on variables in different cliques. We can run VE on the calibrated subtree
- eg A D c p AD BC CD $P(S, 0) = \sum_{c} P(BCA)$ $= \sum_{c} \frac{P_{c}(BC)}{M_{23}(c)}$ $= \sum_{c} P(B(c))P(C, 0)$ $= \sum_{c} P(B(c))P(C, 0)$

Out of clique inference

Procedure CTree-Query (

 $\mathcal{T}, ~~//$ Clique tree over Φ $\{\beta_i\}, \{\mu_{i,j}\}, ~~//$ Calibrated clique and sepset beliefs for \mathcal{T} Y~~// A query

Let \mathcal{T}' be a subtree of \mathcal{T} such that $Y \subseteq Scope[\mathcal{T}']$ Select a clique $r \in \mathcal{V}_{\mathcal{T}'}$ to be the root

$$\begin{array}{l} \Phi \leftarrow \beta_r \\ \text{for each } i \in \mathcal{V}'_T \\ \phi \leftarrow \frac{\beta_i}{\mu_{i,Pr}(0)} \\ \Phi \leftarrow \Phi \cup \{\phi\} \\ Z \leftarrow Scope[T'] - Y \\ \text{Let } \prec \text{ be some ordering over } Z \\ \text{return Sum-Product-Variable-Elimination}(\Phi, Z, \neg) \end{array}$$

Creating a Jtree

Max cliques from a chordal graph

- Triangulate the graph according to some ordering.
 - Start with all vertices unnumbered, set counter i := N.
 - While there are still some unnumbered vertices:
 - Let $v_i = \pi(i)$.
 - Form the set C_i consisting of v_i and its (unnumbered/uneliminated) neighbors.
 - Fill in edges between all pairs of vertices in C_i.
 - Eliminate v_i and decrement i by 1.
- At each step, keep track of the clique that is created; if it is a subset of any previously created clique, discard it (since non maximal).

Cliques to Jtree

- Build a weighted graph where $W_{ii} = |C_i|$ intersect $C_i|$
- Find max weight spanning tree. This is a jtree.