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e CS auditors: please turn in your form to Joyce
Poon, who will pass it to Laks for signing



e Aside on canonical parameterization (ex 4.4.14)
e Structured factors (4.4.1.2)

e Structured CPDs (5.2-5.6)

 Temporal models (6.2)



Degrees of freedom of a UGM
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Why do we just need 8 numbers to uniquely parameterize the distribution?

Eg a™L, b™1, ¢, di, (a~1,b ), (bA,c ), (cL,dM), (arl,dn )



Num params = rank of feature matrix

e Let F(n, )=1 iff I'th bit vector turns on n’th feature

« Each feature specifies a value for every pair of
nodes connected by an edge, and hence Is a vector
In RM16}. 4 edges, 3 unigue settings = 12 rows.

Rank =8

Eg atl, b, e, dM, (atL,br), (bAL,c), (chL,dM), (anl,dM)



Rank of feature matrix

edges = {[1 2], [1 3], [2 4], [3 4]};
ndx =1;
F = zeros(0, 2™4);
for e=1:length(edges)
s = edges{e}(1); t = edges{e}(2);
for j=1:2
for k=1:2

If |==2 && k==2, continue; end
for x=1:16
xv=ind2subv([2 2 2 2], X);
If xv(s)==) && xv(t)==k
F(ndx,x)=1;
end
end
ndx = ndx + 1;
end
end
end
rank(F)






Log-linear factors

e A factor defined on m discrete rv’'s with K states
needs K™ parameters.

* Imagine a factor on triples of letters. Instead of
having 263 numbers, we can define binary features
that only turn on for certain values, eg fi,,(x) = 1 iff
X1='1"'X,="n",X3="g". This has weight w,,. We define

¢C(XC) — eXp(Z wc,ifc,i(xc))



Jordan, fig 19.1

Tables are a special case
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CRF features

« Typical features used in a CRF model for language
processing (X=words, Y=labels)

o Fi(YyuXp X, X+ L) = 1(X.,="New”, X="York”,
X1 ="Times”, Y="Object’)

* Fo(YuXuXe1, Xt 1) = I(Xp,="New”, X="York", X, #
“Times”, Y,="Place”)

 Models often have ~100k manually specified
features.

« Common to use L1 reqgularization to sparsify.

e Can also perform feature induction, by eg greedily
creating conjunctions or disjunctions
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Exponential family (maxent) models

 Combining all the local potentials

p(x) = VA H Pc(Xc)
¢C(XC) — eXp(Z We zfc z(Xc))
p) = exp(3] wifilxe,)

DAGs are a special case where each @.(x,) = p(X|Pa(X)) sums to 1, so Z=1

See ch 8
11
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Tabular CPDs

e |f all nodes are discrete and have K values, we can
represent p(X_Ii|Pa(X_1)) as a table, with one row

per conditioning case (KMpa), and K columns
which sum to 1

 |f K and/or #pa is large, this is too many
parameters, so we seek more parsimonious
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Deterministic CPDs

* |In some cases, the child is a deterministic function
of the parents, eg bloodtype is determined by the 2
alleles

* Deterministic nodes often denoted by double-
ringed oval.

« Determinism can imply additional (non-graphical)
Independencies

« EgD L E|A,Bsince C =1fn(A,B)
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Context specific independence (CSI)

¢ Sometimes, the set of edges which are “active”
depends on the value of the nodes

 Eg Y Is a noisy observation of object X1, or X2.

Z specifies the identity of the measurement. Let X
=multiplexer(X1,X2, Z). Then X2 L Y | Z=1. So our

posterior on X2 is not affected by the
measurement. (Data association ambiguity)
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Contingently acyclic BNs

e Sometimes we can define a directed graph with
cycles, but where some of the edges are not active
for a given setting of certain variables C.

 |f we can guarantee that the graph is a DAG for
each context C=c, the result is a mixture of
differently structured BNs.

* This Is called a Bayesian multinet.
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Tree-structured CPDs

« Different parents can be rendered irrelevant,
depending on the values
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Printer fault diagnosis in MS windows

e Uses tree structured CPDs, since different sets of
variables are relevant in different contexts
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Rule-structured CPDs

o Specify a pattern and a value

darraxaan
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Logistic regression (sigmoid BNs)

e Suppose all nodes are binary. We can use logreg
CPDs
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Multinomial logreg

e If Y Is K-ary, and the parents are binary or cts, we
can use a softmax function
exp(W X)

K
D =1 eXp(WJT,X)

p(y = jlx) =
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For K-ary parents, use 1-of-K encoding
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Independence of causal influence

 We can model the effects of many parents by
assuming that each parent is corrupted by
Independent noise, and the results are
deterministically combined via a simple function
such as OR or MAX
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Noisy-or model

e Each Xiin {0,1} gets passed through a noisy wire to
produce Zi in {0,1}. 0 maps to 0, 1 maps to O wp w.
(fallure probability). A=1-w;, Is the prob. that Xi alone
turnson Y.

 The Zi's are combined in an OR to produce Z. Then
Y=Z.

« The only way Y can be off is if all ZI's are off, which
means all the wires for Xi st Xi=1 independently

failed: k
p(y =0|x) = H w; = H w;
i=1

;=1
ply=1|x) =1-p(y = 0]x)

Popular in cogsci models of causality 23



» P(fever=0|cold=1, flu=0, malaria=0)=0.6
* P(fever=0|cold=0, flu=1, malaria=0)=0.2
» P(fever=0|cold=0, flu=0, malaria=1)=0.1

Cold Flu Malaria | p(Fever=1) | p(Fever=0)

0 0 0 0.0 1.0

0 0 1 0.0 0.1

0 1 0 0.8 0.2

0 1 1 0.98 0.02=0.2 x0.1

1 0 0 0.4 0.6

1 0 1 0.94 0.0.6 = 0.6 x 0.1

1 1 0 0.88 0.12=10.6 x 0.2

1 1 1 0.988 0.012=0.6 x 0.2 x 0.1

Russell & Norvig, p501 24



e If Y=0 and all Xi=0, the CPD assigns 0 probability
to this event. To prevent this, we add a leak node,
X0=1, which is always on, to model “any other
cause”. The leak can fail wp wO.
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BN20 networks

* In medical diagnosis, It iIs common to construct 2
layered bipartite networks of binary nodes,
mapping diseases to symptoms (findings).

 Because of the large number of parents, the child
nodes use noisy-or.

e Conditional on F, the diseases D are correlated.

e The QMR-DT network is a standard testbed for
evaluating approximate inference algorithms.

(— $0°—>

'k I [ ] L 'k
.-I --J =
y Ta Ty @ mE § Tm

G— [ypov > .




Negative findings

e If FI=1, the disease parents fight to explain the
finding. Hence they become fully correlated.

e But if FI=0, the parents are independent! Hence the
p(FI=0|Pa(F1i)) likelihood fully factorizes, and does
not make inference harder (homework).

D,

9, L0 |F =o
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Conditional linear Gaussian CPDs

* If Y Is continuous and all the parents are cts we
can define

p(ylx) = N (y[x' w,0?)
 Networks of linear Gaussian CPDs define a joint
multivariate Gaussian (see ch 7)

* For discrete parents u, we can use 1-of-K and LG,
or we can use a different set of parameters for each
discrete setting (CLG). The resulting distribution is
a mixture of Gaussians, where each discrete
setting defines a mixture component.

p(ylx,u=k) = N(y|x" wg,o})

28



Example of CLG network
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Russell & Norvig, p502 29



Hybrid network
Scbit) By

P(buys=1|cost) = logreg or probit. \
Joint distribution is no longer mixture of Gaussians. \//
Closed-form inference no longer possible (see ch14).
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Russell & Norvig, p502 30



Encapsulated BNs

« We can embed a BN inside a CPD, and “hide” the
Internal nodes using an interface layer.

* This, combined with parameter tying, yields OOBN.
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 We can define a distribution over a semi-infinite sequence
X 1, X 2, ... by using a discrete-time Markov chain with
tied parameters (stationary)
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p(x|0) = p(zi|m) [ ] p(Xe|Xi—1, A)
A(G,j) = p(Xe=j|Xso1 =1)
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State transition diagram

Picture of the stochastic finite state automaton
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Hidden Markov Models

« An HMM Is a function of a Markov chain.
 We observe V,, hidden state is H; in {1,...,K}
 P(H=j|H._,=1) Is the transition model

* P(V{H;=)) Is the observation model (eg mixture of
Gaussians)

(/(l = A
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HMMs for speech recognition

Bigram model of words Pronunciation model : word -> phonemes
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Acoustic model: phonemes -> observations
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State space models

 Same graph (Cl assumptions) as HMM, but now X
and Y are real-valued vectors

e Special case: linear dynamical system (LDS)

p(Xt‘Xt—l) = N(Xt|AXt—1a Q)
p(Yt|Xt) — N(yt|HXt7 R)
X+t — A-Xt—l —+ N(O, Q)

Y HXt +N(07R)

37



Example: tracking in 2D
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LDS as DGM
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For linear Gaussian systems, sparse matrices = sparse graphs
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Dynamic Bayes Nets
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If the variables are discrete, the transition matrix of the compound

model (all 4 variables) is not sparse or structured. So the graph
structure is crucial.

P(X1(t),X2(t) | X1(t-1),X2(t-1)

See ch 15
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