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Admin

• CS auditors: please turn in your form to Joyce 
Poon, who will pass it to Laks for signing
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Outline

• Aside on canonical parameterization (ex 4.4.14)

• Structured factors (4.4.1.2)
• Structured CPDs (5.2-5.6)

• Temporal models (6.2)
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Degrees of freedom of a UGM

Why do we just need 8 numbers to uniquely parameterize the distribution?

Eg a^1, b^1, c^1, d^1, (a^1,b^1), (b^1,c^1), (c^1,d^1), (a^1,d^1)
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Num params = rank of feature matrix

• Let F(n, i)=1 iff i’th bit vector turns on n’th feature 

• Each feature specifies a value for every pair of 
nodes connected by an edge, and hence is a vector 
in R^{16}. 4 edges, 3 unique settings = 12 rows.

Rank  = 8

Eg a^1, b^1, c^1, d^1, (a^1,b^1), (b^1,c^1), (c^1,d^1), (a^1,d^1)
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Rank of feature matrix
• edges = {[1 2], [1 3], [2 4], [3 4]};
• ndx = 1;
• F = zeros(0, 2^4);
• for e=1:length(edges)
• s = edges{e}(1); t = edges{e}(2);
• for j=1:2
• for k=1:2

• if j==2 && k==2, continue; end
• for x=1:16
• xv= ind2subv([2 2 2 2], x);
• if xv(s)==j && xv(t)==k
• F(ndx,x)=1;
• end
• end
• ndx = ndx + 1;
• end
• end
• end
• rank(F)
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Log-linear factors

• A factor defined on m discrete rv’s with K states 
needs Km parameters.

• Imagine a factor on triples of letters. Instead of 
having 263 numbers, we can define binary features 
that only turn on for certain values, eg fing(x) = 1 iff
x1=‘I’,x2=‘n’,x3=‘g’. This has weight ωing. We define 

φc(xc) = exp(

k∑

i=1

wc,ifc,i(xc))
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Tables are a special case

Jordan, fig 19.1
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CRF features

• Typical features used in a CRF model for language 
processing (X=words, Y=labels)

• F1(Yt,Xt,Xt-1,Xt+1) = I(Xt-1=“New”, Xt=“York”, 
Xt+1=“Times”, Yt=“Object”)

• F2(Yt,Xt,Xt-1,Xt+1) = I(Xt-1=“New”, Xt=“York”, Xt+1 ≠
“Times”, Yt=“Place”)

• Models often have ~100k manually specified 
features.

• Common to use L1 regularization to sparsify.

• Can also perform feature induction, by eg greedily 
creating conjunctions or disjunctions
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Exponential family (maxent) models

• Combining all the local potentials

p(x) =
1

Z

∏

c

φc(xc)

φc(xc) = exp(

k∑

i=1

wc,ifc,i(xc))

p(x) =
1

Z
exp(

∑

i

wifi(xci))

DAGs are a special case where each φc(xc) = p(Xi|Pa(Xi)) sums to 1, so Z=1

See ch 8
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Tabular CPDs

• If all nodes are discrete and have K values, we  can 
represent p(X_i|Pa(X_i)) as a table, with one row 
per conditioning case (K^#pa), and K columns 
which sum to 1

• If K and/or #pa is large, this is too many 
parameters, so we seek more parsimonious 
representations.
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Deterministic CPDs

• In some cases, the child is a deterministic function 
of the parents, eg bloodtype is determined by the 2 
alleles

• Deterministic nodes often denoted by double-
ringed oval.

• Determinism can imply additional (non-graphical) 
independencies

• Eg D ⊥ E | A,B since C = fn(A,B) 

Det-sep
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Context specific independence (CSI)

• Sometimes, the set of edges which are “active”
depends on the value of the nodes

• Eg Y is a noisy observation of object X1, or X2.
Z specifies the identity of the measurement. Let X 
=multiplexer(X1,X2, Z). Then X2 ⊥ Y | Z=1. So our 

posterior on X2 is not affected by the 
measurement.  (Data association ambiguity)
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Contingently acyclic BNs

• Sometimes we can define a directed graph with 
cycles, but where some of the edges are not active 
for a given setting of certain variables C.

• If we can guarantee that the graph is a DAG for 
each context C=c, the result is a mixture of 
differently structured BNs.

• This is called a Bayesian multinet.
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Tree-structured CPDs

• Different parents can be rendered irrelevant, 
depending on the values

Eg. J | S,L if A=0  since we go down left branch of tree 

P(J|A,S,L)
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Printer fault diagnosis in MS windows

• Uses tree structured CPDs, since different sets of 
variables are relevant in different contexts
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Rule-structured CPDs

• Specify a pattern and a value
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Logistic regression (sigmoid BNs)

• Suppose all nodes are binary. We can use logreg
CPDs

p(y = 1|x) = σ(w0 +
k∑

i=1

wixi) σ(u) =
1

1 + e−u
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Multinomial logreg

• If Y is K-ary, and the parents are binary or cts, we 
can use a softmax function

p(y = j|x) =
exp(wT

j x)
∑K

j′=1 exp(w
T
j′x)

For K-ary parents, use 1-of-K encoding
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Independence of causal influence

• We can model the effects of many parents by 
assuming that each parent is corrupted by 
independent noise, and the results are 
deterministically combined via a simple function 
such as OR or MAX
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Noisy-or model

• Each Xi in {0,1} gets passed through a noisy wire to 
produce Zi in {0,1}. 0 maps to 0, 1 maps to 0 wp wi
(failure probability). λi=1-wi is the prob. that Xi alone 
turns on Y.

• The Zi’s are combined in an OR to produce Z. Then 
Y=Z.

• The only way Y can be off is if all Zi’s are off, which 
means all the wires for Xi st Xi=1 independently 
failed: 

p(y = 0|x) =
∏

i:xi=1

wi =

k∏

i=1

wxii

p(y = 1|x) = 1− p(y = 0|x)

Popular in cogsci models of causality
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Example

• P(fever=0|cold=1, flu=0, malaria=0)=0.6

• P(fever=0|cold=0, flu=1, malaria=0)=0.2
• P(fever=0|cold=0, flu=0, malaria=1)=0.1

Cold Flu Malaria p(Fever=1) p(Fever=0)
0 0 0 0.0 1.0
0 0 1 0.0 0.1
0 1 0 0.8 0.2
0 1 1 0.98 0.02 = 0.2× 0.1
1 0 0 0.4 0.6
1 0 1 0.94 0.0.6 = 0.6× 0.1
1 1 0 0.88 0.12 = 0.6× 0.2
1 1 1 0.988 0.012 = 0.6× 0.2× 0.1

Russell & Norvig, p501



25

Leak nodes

• If Y=0 and all Xi=0, the CPD assigns 0 probability 
to this event. To prevent this, we add a leak node, 
X0=1, which is always on, to model “any other 
cause”. The leak can fail wp w0.

W0=1 W0=0.5
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BN20 networks

• In medical diagnosis, it is common to construct 2 
layered bipartite networks of binary nodes, 
mapping diseases to symptoms (findings).

• Because of the large number of parents, the child 
nodes use noisy-or.

• Conditional on F, the diseases D are correlated.
• The QMR-DT network is a standard testbed for 

evaluating approximate inference algorithms.
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Negative findings

• If Fi=1, the disease parents fight to explain the 
finding. Hence they become fully correlated.

• But if Fi=0, the parents are independent! Hence the 
p(Fi=0|Pa(Fi)) likelihood fully factorizes, and does 
not make inference harder (homework).
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Conditional linear Gaussian CPDs

• If Y is continuous and  all the parents are cts we 
can define

• Networks of linear Gaussian CPDs define a joint 
multivariate Gaussian (see ch 7)

• For discrete parents u, we can use 1-of-K and LG, 
or we can use a different set of parameters for each 
discrete setting (CLG). The resulting distribution is 
a mixture of Gaussians, where each discrete 
setting defines a mixture component.

p(y|x) = N (y|xTw, σ2)

p(y|x,u = k) = N (y|xTwk, σ
2

k)
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Example of CLG network

Russell & Norvig, p502
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Hybrid network

Russell & Norvig, p502

P(buys=1|cost) = logreg or probit.
Joint distribution is no longer mixture of Gaussians.
Closed-form inference no longer possible (see ch14).
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Encapsulated BNs

• We can embed a BN inside a CPD, and “hide” the 
internal nodes using an interface layer.

• This, combined with parameter tying, yields OOBN.
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Markov chains

• We can define a distribution over a semi-infinite sequence 
X_1, X_2, … by using a discrete-time Markov chain with 
tied parameters (stationary)

p(x|θ) = p(x1|π)
∞∏

t=T

p(Xt|Xt−1, A)

A(i, j) = p(Xt = j|Xt−1 = i)
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State transition diagram

Picture of the stochastic finite state automaton
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Hidden Markov Models

• An HMM is a function of a Markov chain.

• We observe Vt, hidden state is Ht in {1,…,K}
• P(Ht=j|Ht-1=i) is the transition model

• P(Vt|Ht=j) is the observation model (eg mixture of 
Gaussians)
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HMMs for speech recognition

Bigram model of words Pronunciation model : word -> phonemes

Acoustic model: phonemes -> observations
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State space models

• Same graph (CI assumptions) as HMM, but now X 
and Y are real-valued vectors

• Special case: linear dynamical system (LDS) 

p(xt|xt−1) = N (xt|Axt−1,Q)

p(yt|xt) = N (yt|Hxt,R)

xt = Axt−1 +N (0,Q)

yt = Hxt +N (0,R)
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Example: tracking in 2D






x1t
x2t
ẋ1t
ẋ2t




 =






1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1




×






x1t−1
x2t−1
ẋ1t−1
ẋ2t−1




+






w1t
w2t
w3t
w4t






(
y1t
y2t

)
=

(
1 0 0 0
0 1 0 0

)
×






x1t
x2t
ẋ1t
ẋ2t




+






v1t
v2t
v3t
v4t





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LDS as DGM

For linear Gaussian systems, sparse matrices = sparse graphs

A =






1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1






H =

(
1 0 0 0
0 1 0 0

)
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Dynamic Bayes Nets

If the variables are discrete, the transition matrix of the compound
model (all 4 variables) is not sparse or structured. So the graph
structure is crucial.

P(X1(t),X2(t) | X1(t-1),X2(t-1)

See ch 15


