Stat 521A Lecture 26

Structure learning in UGMs

- Dependency networks
- Gaussian UGMs
- Discrete UGMs

Dependency networks

- A simple way to learn a graph is to regress each node on all others, p(x_i | x_{-i})
- If the full conditionals are sparse, this gives rise to a sparse graph
- Heckerman et al used classification trees to do variable selection
- Meinshausen & Buhlman proved that if you use lasso, the method is a consistent estimator of graph structure
- Wainwright et al extended the proof to L1 penalized logistic regression

Problem with depnets

- Although one can recover the structure, the params of the full conditionals need not correspond to any consistent joint
- To estimate params given the graph can be computationally hard (esp for discrete variables)
- Only give a point estimate of the structure*

* Parent fusion project

Bayesian inference for GGMs

- If we use decomposable graphical models, we can use the hyper inverse wishart as a conjugate prior, and hence compute p(D|G) analytically
- Problem reduces to discrete search
- Can use MCMC, MOSS, etc.
- For non-decomposable models, have to approximate p(D|G) eg by BIC. Have to compute MLE for every neighboring graph! *
- See work by Adrian Dobra.

^{*} Derive analog of structural EM to speed this up – nips project, anyone?

Graphical lasso

 We can estimate parameters and structure for GGMs simultaneously by optimizing

$$f(\Omega) = \log \det \Omega - \text{tr}(S\Omega) - \lambda ||\Omega||_1$$

 $e ||\Omega||_1 = \sum_{j,k} |\omega_{jk}|$

- Convex
- Can solve in O(#iter d⁴) time by solving a sequence of lasso subproblems

Example

MLE params for GGM

 Consider first the problem of estimating Ω given known zeros (absent edges)

$$\ell_C(\Omega) = \log \det \Omega - \operatorname{tr}(\mathbf{S}\Omega) - \sum_{(j,k) \notin E(G)} \gamma_{jk} \Omega_{jk}$$

Setting gradient to zero gives

$$\Omega^{-1} - S - \Gamma = 0$$
 $W_{12} - S_{12} - \gamma_{12} = 0$

Let j be a specific node in group 1. Then if $G_{j2} \neq 0$, then $\gamma_{j2} = 0$, so $w_{j2} = s_{j2}$. In other words, edges that are not constrained to be zero must have an MLE covariance equal to the empirical covariance.

Consider this partition

$$\begin{pmatrix} \mathbf{W}_{11} & \mathbf{w}_{12} \\ \mathbf{w}_{12}^T & w_{22} \end{pmatrix} \begin{pmatrix} \Omega_{11} & \omega_{12} \\ \omega_{12}^T & \omega_{22} \end{pmatrix} = \begin{pmatrix} \mathbf{I} & 0 \\ 0^T & 1 \end{pmatrix}$$

$$- \mathbf{w}_{12} = -\mathbf{W}_{11}\omega_{12}/\omega_{22} = \mathbf{W}_{11}\beta$$

$$e \beta \stackrel{\text{def}}{=} -\omega_{12}/\omega_{22}.$$

$$\mathbf{W}_{11}\beta - \mathbf{s}_{12} - \gamma_{12} = \mathbf{0}$$

Cont'd

- We have $W_{11}\beta s_{12} \gamma_{12} = 0$
- Dropping the zeros $W_{11}^*\beta^* s_{12}^* = 0$
- Can recover Ω from weights using $\omega_{12} = -\beta_{12}\omega_{22}$
- To find w_22, use block inversion lemma

$$\omega_{22} = (\mathbf{W}/\mathbf{W}_{11})^{-1} = (w_{22} - \mathbf{w}_{12}^T \mathbf{W}_{11}^{-1} \mathbf{w}_{12})^{-1}$$

Now $W_{11}^{-1}w_{12}=(W_{11}^*)^{-1}s_{12}^*=(\beta,0)$, since $w_{12}=s_{12}$ in all locations that are not constrained to be zero. Similarly, $w_{22}=s_{22}$. Hence

$$\frac{1}{\omega_{22}} = s_{22} - \mathbf{w}_{12}^T \boldsymbol{\beta} \tag{3.82}$$

code

```
W = S; % W = inv(precMat)
precMat = zeros(p,p);
beta = zeros(p-1,1);
iter = 1:
converged = false;
normW = norm(W);
while ~converged
 for i = 1:p
  % partition W & S for i
  noti = [1:i-1 i+1:p];
  W11 = W(noti, noti);
  w12 = W(noti,i);
  s22 = S(i,i);
  s12 = S(noti,i);
  % find G's non-zero index in W11
  idx = find(G(noti,i)); % non-zeros in G11
  beta(:) = 0;
  beta(idx) = W11(idx,idx) \setminus s12(idx);
  % update W
  w12 = W11 * beta;
  W(noti,i) = w12;
  W(i,noti) = w12';
  % update precMat (technically only needed on last iteration)
  p22 = max([0 \ 1/(s22 - w12'*beta)]); \% must be non-neg
  p12 = -beta * p22;
  precMat(noti,i) = p12;
  precMat(i,noti) = p12';
  precMat(i,i) = p22;
 converged = convergenceTest(norm(W), normW) || (iter > maxIter);
 normW = norm(W);
 iter = iter + 1;
end
```

Example

Let us now give a worked example of this algorithm. Let the input be the following adjacency matrix, representing the cyclic structure, $X_1 - X_2 - X_3 - X_4 - X_1$, and empirical covariance matrix:

$$\mathbf{G} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}, \quad \mathbf{S} = \begin{pmatrix} 10 & 1 & 5 & 4 \\ 1 & 10 & 2 & 6 \\ 5 & 2 & 10 & 3 \\ 4 & 6 & 3 & 10 \end{pmatrix}$$
(3.83)

After 3 iterations we converge to the following MLE:

$$\Sigma = \begin{pmatrix} 10.00 & 1.00 & \mathbf{1.31} & 4.00 \\ 1.00 & 10.00 & 2.00 & 0.87 \\ \mathbf{1.31} & 2.00 & 10.00 & 3.00 \\ 4.00 & \mathbf{0.87} & 3.00 & 10.00 \end{pmatrix}, \quad \Omega = \begin{pmatrix} 0.12 & -0.01 & \mathbf{0} & -0.05 \\ -0.01 & 0.11 & -0.02 & \mathbf{0} \\ \mathbf{0} & -0.02 & 0.11 & -0.03 \\ -0.05 & \mathbf{0} & -0.03 & 0.13 \end{pmatrix}$$
(3.84)

Graphical lasso

$$f(\Omega) = \log \det \Omega - \operatorname{tr}(\mathbf{S}\Omega) - \lambda ||\Omega||_1 \qquad \quad \lambda_{jj} \geq 0, \, \lambda_{jk}^{max} = |\hat{\Sigma}_{jk}|$$

The basic idea is very similar to the method in Section 3.3.7, except we replace the least squares subproblem with a lasso subproblem. The analog of the gradient equation (3.75) is the following:

$$\Omega^{-1} - S - \lambda \operatorname{Sign}(\Omega) = 0 \tag{3.86}$$

As discussed in Section ??, we must replace the gradient with the subgradient, due to the non differentiable penalty term. So we define $Sign(\omega_{jk}) = sign(\omega_{jk})$ if $\omega_{jk} \neq 0$, and $Sign(\omega_{jk}) \in [-1,1]$ otherwise. The analogous result to Equation 3.79 is

$$\mathbf{W}_{11}\beta - \mathbf{s}_{12} + \lambda \operatorname{Sign}(\beta) = \mathbf{0} \tag{3.87}$$

since β and ω_{12} have opposite signs.

Subgradients

We can generalize the notion of derivative to handle this case as follows. We define a subderivative of a function $f: \mathcal{I} \rightarrow \mathbb{R}$ at a point x_0 to be a scalar c such that

$$f(x) - f(x_0) \ge c(x - x_0) \forall x \in I$$
 (29.84)

where \mathcal{I} is some interval containing x_0 . See Figure 29.16. We define the set of subderivatives as the interval [a, b] where a and b are the one-sided limits

$$a = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}, \quad b = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$$
(29.85)

The set [a,b] of all subderivatives is called the subdifferential of the function f at x_0 and is denoted $\partial f(x)|_{x_0}$. For example, the subdifferential of the absolute value function f(x) = |x| is

$$\partial f(x) = \begin{cases} \{-1\} & \text{if } x < 0 \\ [-1,1] & \text{if } x = 0 \\ \{+1\} & \text{if } x > 0 \end{cases}$$
 (29.86)

If the function is everywhere differentiable, then $\partial f(x) = \{\frac{df(x)}{dx}\}$. By analogy to the standard calculus result, one can show that the point \hat{x} is a local minimum of f iff $0 \in \partial f(x)$.

Graphical lasso

$$f(\Omega) = \log \det \Omega - tr(S\Omega) - \lambda ||\Omega||_1$$

The basic idea is very similar to the method in Section 3.3.7, except we replace the least squares subproblem with a lasso subproblem. The analog of the gradient equation (3.75) is the following:

$$\Omega^{-1} - S - \lambda \operatorname{Sign}(\Omega) = 0 \tag{3.86}$$

As discussed in Section ??, we must replace the gradient with the subgradient, due to the non differentiable penalty term. So we define $Sign(\omega_{jk}) = sign(\omega_{jk})$ if $\omega_{jk} \neq 0$, and $Sign(\omega_{jk}) \in [-1,1]$ otherwise. The analogous result to Equation 3.79 is

$$\mathbf{W}_{11}\beta - \mathbf{s}_{12} + \lambda \operatorname{Sign}(\beta) = 0 \tag{3.87}$$

since β and ω_{12} have opposite signs.

This is equivalent to a lasso problem. To see this, consider the objective

$$J(\beta) = \frac{1}{2} (\mathbf{y} - \mathbf{Z}\beta)^T (\mathbf{y} - \mathbf{Z}\beta) + \lambda ||\beta||_1$$
(3.88)

Setting the gradient to zero we get

$$\mathbf{Z}^{T}\mathbf{Z}\boldsymbol{\beta} - \mathbf{Z}^{T}\mathbf{y} + \lambda \operatorname{Sign}(\boldsymbol{\beta}) = 0$$
(3.89)

We see that $\mathbf{Z}^T \mathbf{y}$ is similar to \mathbf{s}_{12} (namely an estimate of the covariance between target and inputs), and that $\mathbf{Z}^T \mathbf{Z}$ gets replaced by \mathbf{W}_{11} , which represents correlation amongst the current inputs.

Shooting (coord desc for lasso)

We now present a coordinate descent algorithm called shooting [Fu98] for solving the unconstrained lasso problem:

$$J(\mathbf{w}, \lambda) = RSS(\mathbf{w}) + \lambda \sum_{j=1}^{d} |w_j|$$
 (17.36)

Besides being simple and fast, this method yields additional insight into why an L1 regularizer results in a sparse solution.

We can compute the partial derivative of the lasso objective function wrt a particular parameter, say w_k as follows. One can show (Exercise 17) that

$$\frac{\partial}{\partial w_k} RSS(\mathbf{w}) = a_k w_k - c_k \tag{17.37}$$

$$a_k = 2\sum_{i=1}^n x_{ik}^2 (17.38)$$

$$c_k = 2\sum_{i=1}^n x_{ik} (y_i - \mathbf{w}_{-k}^T \mathbf{x}_{i,-k})$$
 (17.39)

$$= 2\sum_{i=1}^{n} \left[x_{ik}y_i - x_{ik}\mathbf{w}^T\mathbf{x}_i + w_k x_{ik}^2 \right]$$
 (17.40)

where $\mathbf{w}_{-k} = \mathbf{w}$ without component k, and similarly for $\mathbf{x}_{i,-k}$. We see that c_k is (proportional to) the correlation between the k'th feature $\mathbf{x}_{:,k}$ and the residual due to the other features, $\mathbf{r}_{-k} = \mathbf{y} - \mathbf{X}_{:,-k}\mathbf{w}_{-k}$; if this correlation is zero, then feature k would be orthogonal to the residual, and we couldn't reduce the RSS by updating w_k . Hence the magnitude of c_k is an indication of how relevant feature k is for predicting \mathbf{y} (relative to the other features and the current parameters).

Shooting cont'd

The L1 penalty function is not differentiable, so we need to compute the **subdifferential** (see Section 29.6.1) rather than the standard differential. This is given by

$$\partial_{w_{k}} J(\mathbf{w}, \lambda) = (a_{k} w_{k} - c_{k}) + \lambda \partial_{w_{k}} ||\mathbf{w}||_{1}$$

$$= \begin{cases} \{a_{k} w_{k} - c_{k} - \lambda\} & \text{if } w_{k} < 0 \\ [-c_{k} - \lambda, -c_{k} + \lambda] & \text{if } w_{k} = 0 \\ \{a_{k} w_{k} - c_{k} + \lambda\} & \text{if } w_{k} > 0 \end{cases}$$
(17.41)

This subdifferential is a piecewise linear function of w_k . Since $a_k > 0$, it is sloping up and to the right, except it has a vertical "kink" in it at $w_k = 0$, spanning the range $[-c_k - \lambda, -c_k + \lambda]$: see Figure 17.6. Depending on the value of c_k , the solution to $\partial_{w_k} J(\mathbf{w}, \lambda) = 0$ can occur at 3 different values of w_k , as follows:

Soft thresholding

- 1. $c_k < -\lambda$, so the feature is strongly negatively correlated with the residual. In this case, the subgradient is zero at $\hat{w}_k = \frac{c_k + \lambda}{a_k} < 0$.
- 2. $c_k \in [-\lambda, \lambda]$, so the feature is only weakly correlated with the residual. In this case, the subgradient is zero at $\hat{w}_k = 0$. Thus if the correlation is not less than λ , we set the corresponding coefficient to 0.
- 3. $c_k > \lambda$, so the feature is strongly positively correlated with the residual. In this case, the subgradient is zero at $\hat{w}_k = \frac{c_k \lambda}{a_k} > 0$.

In summary, we have

$$\hat{w}_k(c_k) = \begin{cases} (c_k + \lambda)/a_k & \text{if } c_k < -\lambda \\ 0 & \text{if } c_k \in [-\lambda, \lambda] \\ (c_k - \lambda)/a_k & \text{if } c_k > \lambda \end{cases}$$
(17.43)

$$\hat{w}_k = \operatorname{soft}(\frac{c_k}{a_k}; \frac{\lambda}{a_k})$$

$$soft(a; \delta) = sign(a) max\{0, |a| - \delta\} = sign(a) (|a| - \delta)_+$$

Lasso vs ridge vs subset selection

For orthonormal features, we have explicit solns

the lasso solution as follows (using the fact that $a_k=2$ and $\hat{w}_k^{OLS}=c_k/2$)

$$\hat{w}_k^{lasso} = \operatorname{sign}(\hat{w}_k^{OLS}) \left(|\hat{w}_k^{OLS}| - \frac{\lambda}{2} \right)_+ \tag{17.46}$$

By contrast, the ridge estimate would be

$$\hat{w}_k^{ridge} = \frac{\hat{w}_k^{OLS}}{1+\lambda} \tag{17.47}$$

which does not force sparsity. If we pick the best K features using subset selection, the parameter estimate is as follows

$$\hat{w}_k^{SS} = \begin{cases} \hat{w}_k^{OLS} & \text{if } \text{rank}(|w_k|) \le K \\ 0 & \text{otherwise} \end{cases}$$
 (17.48)

Graphical lasso with shooting

$$f(\Omega) = \log \det \Omega - \operatorname{tr}(S\Omega) - \lambda ||\Omega||_1$$

The basic idea is very similar to the method in Section 3.3.7, except we replace the least squares subproblem with a lasso subproblem. The analog of the gradient equation (3.75) is the following:

$$\Omega^{-1} - S - \lambda \operatorname{Sign}(\Omega) = 0 \tag{3.86}$$

As discussed in Section ??, we must replace the gradient with the subgradient, due to the non differentiable penalty term. So we define $Sign(\omega_{jk}) = sign(\omega_{jk})$ if $\omega_{jk} \neq 0$, and $Sign(\omega_{jk}) \in [-1,1]$ otherwise. The analogous result to Equation 3.79 is

$$\mathbf{W}_{11}\beta - \mathbf{s}_{12} + \lambda \operatorname{Sign}(\beta) = 0 \tag{3.87}$$

since β and ω_{12} have opposite signs.

This is equivalent to a lasso problem. To see this, consider the objective

$$J(\beta) = \frac{1}{2} (\mathbf{y} - \mathbf{Z}\beta)^T (\mathbf{y} - \mathbf{Z}\beta) + \lambda ||\beta||_1$$
(3.88)

Setting the gradient to zero we get

$$\mathbf{Z}^{T}\mathbf{Z}\boldsymbol{\beta} - \mathbf{Z}^{T}\mathbf{y} + \lambda \operatorname{Sign}(\boldsymbol{\beta}) = 0 \tag{3.89}$$

We see that $\mathbf{Z}^T \mathbf{y}$ is similar to \mathbf{s}_{12} (namely an estimate of the covariance between target and inputs), and that $\mathbf{Z}^T \mathbf{Z}$ gets replaced by \mathbf{W}_{11} , which represents correlation amongst the current inputs.

One simple way to solve this lasso problem is to use coordinate descent, known as the **shooting algorithm** (see Section ??). To apply this to the current problem, let $V = W_{11}$. (Recall $W = \Sigma$.) Then the update for β becomes

$$\beta_j := S_\lambda \left(s_{12j} - \sum_{k \neq j} V_{kj} \beta_k \right) / V_{jj} \tag{3.90}$$

where S is the soft-threshold operator

$$S_t(x) = \operatorname{sign}(x) \max(0, |x| - t) \tag{3.91}$$

We can implement this in a way which is very similar to Listing ??. The only change is to replace the line beta(idx) = W11(idx,idx) \ s12(idx) with the code shown below.

Discrete UGMs

- Computing Z and hence the likelihood is intractable unless the graph is decomposable
- Hence Bayesian methods "never" used
- Even search and score is inefficient

Ising models

Analogous to GGM for binary data

$$\mathcal{N}(\mathbf{x}|\mathbf{K}) = \frac{1}{Z(\mathbf{K})} \exp(-\frac{1}{2} \sum_{j,k} K_{j,k} x_j x_k), \ x_j \in \mathbb{R}$$

$$p(\mathbf{x}|\mathbf{W}) = \frac{1}{Z(\mathbf{W})} \exp(\sum_{j,k} W_{jk} x_j x_k), \ x_j \in \{-1, +1\}$$

$$\mathbf{W} = \begin{pmatrix} W_{11} & W_{12} & 0 & 0 \\ W_{21} & W_{22} & W_{23} & 0 \\ 0 & W_{32} & W_{33} & W_{34} \\ 0 & 0 & W_{43} & W_{44} \end{pmatrix} \qquad (X1) \qquad (X2) \qquad (X3) \qquad (X4)$$

$$w_{jk} \ge 0$$
 attractive (ferro magnet)

$$w_{jk} \leq 0$$
 repuslive (anti ferro magnetic)

 w_{ik} mixed sign frustrated system

$$X_j \perp X_{-j} | X_{N_j}$$

Markov property

Glasso for Ising models (Banerjee)

$$p(\mathbf{x}|\boldsymbol{\theta}) = \frac{1}{Z} \exp[\sum_{i=1}^{d-1} \sum_{j=i+1}^{d} W_{ij} x_i x_j]$$

$$Z = \sum_{\mathbf{X} \in \{-1,+1\}^d} \exp[\sum_{i=1}^{d-1} \sum_{j=i+1}^{d} W_{ij} x_i x_j]$$

Convex relaxation of matrix permanent to matrix determinant

$$\hat{\mathbf{W}} = \text{graphicalLasso}(\text{Cov}(\mathbf{X}) - \lambda \mathbf{I} + \frac{1}{3}\mathbf{I}, \ \lambda)$$

Senate voting data

20 newsgroups

n=16,000, d=100

Courtesy Mark Schmidt

Markov random fields

Markov random fields for y_i ∈ {1,...,K}

$$p(\mathbf{y}|\mathbf{W}) = \frac{1}{Z(\mathbf{W})} \exp(\sum_{j,k} \mathbf{w}_{jk}^T \mathbf{f}_{jk}(y_j, y_k)) \propto \exp(\boldsymbol{\theta}^T \mathbf{F}(\mathbf{y}))$$

$$y_j$$
 y_k $\mathbf{f}_{jk}(y_j, y_k)$
1 1 (1,0,0,0,0,0,0,0,0)
1 2 (0,1,0,0,0,0,0,0)
1 3 (0,0,1,0,0,0,0,0,0)
2 1 (0,0,0,1,0,0,0,0,0)
...

3 3 (0,0,0,0,0,0,0,0,0)

Parameter vector on each edge

No longer a 1:1 mapping between G and W

Conditional random fields

CRFs are a conditional density model

$$p(\mathbf{y}|\mathbf{x}, \mathbf{W}, \mathbf{V}) = \frac{1}{Z(\mathbf{W}, \mathbf{V}, \mathbf{x})} \exp(\sum_{j,k} \mathbf{w}_{j,k}^T \mathbf{f}_{jk}(y_j, y_k, \mathbf{x}) + \sum_j \mathbf{v}_j^T \mathbf{g}_j(y_j, \mathbf{x}))$$

No longer a 1:1 mapping between G and W

Heart wall abnormality data

• d=16, n=345, $y_j \in \{0,1\}$ representing normal or abnormal segment, x_j in R^{100} representing features derived from image processing

"Structure Learning in Random Fields for Heart Motion Abnormality Detection" Mark Schmidt, Kevin Murphy, Glenn Fung, Romer Rosales.

CVPR 2008.

Siemens Medical 29

Group L1 regularization

 Solution: penalize groups of parameters, one group per edge

$$J(\mathbf{w}, \mathbf{v}) = -\log \sum_{i} p(\mathbf{y}_{i} | \mathbf{x}_{i}, \mathbf{w}, \mathbf{v}) + \lambda_{2} ||\mathbf{v}||_{2}^{2} + \lambda_{1} \sum_{g} ||\mathbf{w}_{g}||_{p}$$

$$||\mathbf{w}||_{2} = \sqrt{\sum_{k} w_{k}^{2}}$$

$$||\mathbf{w}||_{\infty} = \max_{k} |w_{k}|$$

Group lasso

 Sometimes we want to select groups of parameters together (e.g., when encoding categorical inputs)

$$\hat{\mathbf{w}} = \arg\min RSS(\mathbf{w}) + \lambda R(\mathbf{w})$$

$$R(\mathbf{w}) = \sum_{g} ||\mathbf{w}_g||_2 = \sum_{g} \sqrt{\sum_{j \in g} w_{gj}^2}$$

$$R(\mathbf{w}) = \sum_{g} ||\mathbf{w}_g||_{\infty} = \sum_{g} \max_{j \in g} |w_{gj}|$$

Still convex, but much harder to optimize...

Group L1 for graphs

 Penalize groups of parameters, one group per edge

$$J(\mathbf{w}, \mathbf{v}) = -\log \sum_{i} p(\mathbf{y}_{i} | \mathbf{x}_{i}, \mathbf{w}, \mathbf{v}) + \lambda_{2} ||\mathbf{v}||_{2}^{2} + \lambda_{1} \sum_{g} ||\mathbf{w}_{g}||_{p}$$

$$||\mathbf{w}||_{2} = \sqrt{\sum_{k} w_{k}^{2}}$$

$$||\mathbf{w}||_{\infty} = \max_{k} |w_{k}|$$

- Issues
 - How deal with intractable log-likelihood? Use PL (Schmidt) or LBP (Lee & Koller)
 - How handle non-smooth penalty functions? (Projected gradient or projected quasi newton)

Pseudo likelihood

PL is locally normalized

$$L(\mathbf{W}) = \prod_{i=1}^{n} p(\mathbf{x}_{i}|\mathbf{W}) = \prod_{i=1}^{n} \frac{1}{Z(\mathbf{W})} \exp(\sum_{j} \sum_{k} x_{ij} W_{jk} x_{ik})$$

$$PL(\mathbf{W}) = \prod_{i=1}^{n} \prod_{j=1}^{d} p(x_{ij}|\mathbf{x}_{i,n_{i}}, \mathbf{w}_{j,:})$$

$$= \prod_{j} \prod_{i} \frac{1}{Z(\mathbf{w}_{j}, \mathbf{x}_{i,N_{j}})} \exp(x_{ij} \sum_{k} W_{jk} x_{ik})$$

$$Z(\mathbf{w}_{j}, \mathbf{x}_{N_{j}}) = \sum_{x_{j} \in \{-1, +1\}} \exp(x_{j} \sum_{k \in N_{j}} W_{jk} x_{k})$$

Constrained formulation

Convert penalized negative log pseudo likelihood

$$f(\mathbf{w}, \mathbf{v}) = -\log \sum_{i} PL(\mathbf{y}_{i} | \mathbf{x}_{i}, \mathbf{v}, \mathbf{w}) + \lambda_{2} ||\mathbf{v}||_{2}^{2}$$

$$\min_{\mathbf{w}, \mathbf{v}} = f(\mathbf{w}, \mathbf{v}) + \lambda_{1} \sum_{g} ||\mathbf{w}_{g}||_{p}$$

into constrained form

$$egin{array}{lll} L(oldsymbol{lpha},\mathbf{w},\mathbf{v}) &=& f(\mathbf{w},\mathbf{v}) + \lambda_1 \sum_g lpha_g \\ &\min_{oldsymbol{lpha},\mathbf{w},\mathbf{v}} &=& L(oldsymbol{lpha},\mathbf{w},\mathbf{v}) ext{ st } orall g.lpha_g \geq ||\mathbf{w}_g||_p \end{array}$$

Desiderata for an optimizer

- Must handle $\binom{d}{2}$ groups (d = 16 in our application, so 120 groups)
- Must handle 100s features per group
- Cannot use second-order information (Hessian too expensive to compute or store) – so interior point is out
- Must converge quickly

Projected gradient method

 At each step, we perform an efficient projection onto the convex constraint set

$$\mathbf{x}_{k} = (\boldsymbol{\alpha}, \mathbf{w})_{k}$$

$$\mathbf{x}_{k+1} = t\Pi_{S_{p}}(\mathbf{x}_{k} - \beta \mathbf{g}_{k})$$

$$\mathbf{g}_{k} = \nabla f(\mathbf{x})_{\mathbf{x}_{k}}$$

$$\Pi_{\mathcal{S}}(\mathbf{x}) = \arg\min_{\mathbf{x}^{*} \in \mathcal{S}} ||\mathbf{x} - \mathbf{x}^{*}||_{2}$$

$$\mathcal{S}_{p} = \{\mathbf{x} : \forall g.\alpha_{g} \geq ||\mathbf{w}_{g}||_{p}\}$$

Project each group separately.

Takes O(N) time for p=2, O(N log N) time for p= ∞ ,

Where N = #params per group.

Spectral step size

- Gradient descent can be slow
- Barzilai and Borwein proposed the following stepsize, which in some cases enjoys super-linear convergence rates

$$\mathbf{x}_{k+1} = t\Pi(\mathbf{x}_k - \beta_k \mathbf{g}_k)$$

$$\mathbf{g}_k = \nabla f(\mathbf{x})|_{\mathbf{X}_k}$$

$$\beta_{k+1} = \frac{(\mathbf{x}_k - \mathbf{x}_{k-1})^T (\mathbf{x}_k - \mathbf{x}_{k-1})}{(\mathbf{x}_k - \mathbf{x}_{k-1})^T (\mathbf{g}_k - \mathbf{g}_{k-1})}$$

t chosen using non-monotone Armijo line search

Projected quasi Newton

 Use LBFGS in outer loop to create a constrained quadratic approximation to objective

Use spectral projected gradient in inner loop to

solve subproblem

[&]quot;Optimizing Costly Functions with Simple Constraints: A Limited-Memory Projected Quasi-Newton Algorithm", Mark Schmidt, Ewout van den Berg, Michael P. Friedlander, and Kevin Murphy, Al/Stats 2009

Experiments

- We compared classification accuracy on synthetic 10-node CRF and real 16-node CRF.
- For each node, we compute the max of marginal using exact inference

```
\hat{y}_j = \arg \max p(y_j | \mathbf{x}, \mathbf{w}, G)
```

- First learn (or fix) G, then learn w given G
 - Empty, chain, full, true
 - Best DAG (greedy search), best tree (Chow-Liu)
 - max p(y|w) $||w||_1$, $||w||_2$, $||w||_{\infty}$
- Jointly learn G and w
 - Max p(y|x,w,v) $||w||_1$, $||w||_2$, $||w||_{\infty}$

Results on synthetic data

• d=10, n=500 train, 1000 test

90% confidence interval derived from 10 random trials

Results on heart data

90% confidence interval derived from 10-fold cross validation

Incremental feature addition

- Lee, Ganapathi & Koller compute gradient and expectations using LBP instead of PL
- They greedily add features according to their expected gain (change in penalized loglik)
- Initially the graph is sparse so LBP is accurate, but degrades over time

Della Pietra

Can use Gibbs sampling + IS corrections Della Pietra, Della Pietra, Lafferty, PAMI 1997

m, r, xevo, ijjiir, b, to, jz, gsr, wq, vf, x, ga, msmGh, pcp, d, oziVlal, hzagh, yzop, io, advzmxnv, ijv_bolft, x, emx, kayerf, mlj, rawzyb, jp, ag, ctdnnnbg, wgdw, t, kguv, cy, spxcq, uzflbbf, dxtkkn, cxwx, jpd, ztzh, lv, zhpkvnu, l^, r, qee, nynrx, atze4n, 1k, se, w, lrh, hp+, yrqyka'h, zcngotcnx, igcump, zjcjs, lqpWiqu, cefmfhc, o, lb, fdcY, tzby, yopxmvk, by, fz,, t, govyccm, ijyiduwfzo, 6xr, duh, ejv, pk, pjw, l, fl, w

The second most important feature, according to the algorithm, i that two adjacent lower-case characters are extremely common The second-order field now becomes

$$p(\omega) = \frac{1}{Z} e^{\sum_{i \sim j} \lambda_{[\mathbf{a} - \mathbf{z}][\mathbf{a} - \mathbf{z}]} \chi_{[\mathbf{a} - \mathbf{z}][\mathbf{a} - \mathbf{z}]}(\omega_{ij}) + \sum_{i} \lambda_{[\mathbf{a} - \mathbf{z}]} \chi_{[\mathbf{a} - \mathbf{z}]}(\omega_{i})}$$

The first 1000 features that the algorithm induces include the strings s>, <re, 1y>, and ing>, where the character "<" denotes beginning-of-string and the character ">" denotes end-of-string. In addition, the first 1000 features include the regular expressions [0-9] [0-9] (with weight 9.15) and [a-z] [A-Z] (with weight -5.81) in addition to the first two features [a-z] and [a-z] [a-z]. A set of strings obtained by Gibbs sampling from the resulting field is shown here:

was, reaser, in, there, to, will, ,, was, by, homes, thing, be, reloverated, ther, which, conists, at, fores, anditing, with, Mr., proveral, the, ,, ***, on't, prolling, prothere, ,, mento, at, yaou, 1, chestraing, for, have, to, intrally, of, qut, ., best, compers, ***, cluseliment, uster, of, is, deveral, this, thise, of, offect, inatever, thifer, constranded, stater, vill, in, thase, in, youse, menttering, and, ., of, in, verate, of, to

Maxent models of faces

Use importance sampling to reweight the Gibbs samples when evaluating feature gain

C. Liu and S.C. Zhu and H.Y. Shum, ICCV 2001