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Structure learning in UGMs

e Dependency networks
e Gaussian UGMs
e Discrete UGMs



Dependency networks

A simple way to learn a graph Is to regress each
node on all others, p(x_1 | x_{-1})

If the full conditionals are sparse, this gives rise to a
sparse graph

Heckerman et al used classification trees to do
variable selection

Meinshausen & Buhlman proved that if you use
lasso, the method Is a consistent estimator of graph
structure

Walinwright et al extended the proof to L1 penalized
logistic regression



Problem with depnets

e Although one can recover the structure, the params

of the full conditionals need not correspond to any
consistent joint

e To estimate params given the graph can be
computationally hard (esp for discrete variables)

* Only give a point estimate of the structure*

* Parent fusion project 4






Bayesian inference for GGMs

 |f we use decomposable graphical models, we can
use the hyper inverse wishart as a conjugate prior,
and hence compute p(D|G) analytically

e Problem reduces to discrete search
e Can use MCMC, MOSS, etc

 For non-decomposable models, have to
approximate p(D|G) eg by BIC. Have to compute
MLE for every neighboring graph! *

o See work by Adrian Dobra.

* Derive analog of structural EM to speed this up — nips project, anyone? 6



Graphical lasso

 We can estimate parameters and structure for
GGMs simultaneously by optimizing

f(€2) =logdet © — tr(SQ2) — A||2],
2|19 = 22k Wikl
e Convex

e Can solve in O(#iter d4) time by solving a sequence
of lasso subproblems






MLE params for GGM

e Consider first the problem of estimating Q given
known zeros (absent edges)

(e () = log det @ — tr(SQ2) — Z Yk Lk
(dk)EE(G)

e Setting gradient to zero gives

Ql'_S_Tr=0 Wiz —Si2 — V=10

Let j be a specific node in group 1. Then if G5 # 0, then ;0 = 0, s0 w;2 = §;2. In other words, edges that are not
constrained to be zero must have an MLE covariance equal to the empirical covariance.

e Consider this partition

Wi wi) (2 w2 _ (1 0
w{z Wao w{z Wao 0" 1

wia = —Wiwio/wa =Wy 3

def
a Ira p ‘12.-"{' 0. o
““11;‘3 —S12 — Y12 =10



e We have  Wus-suz-r.=0

 Dropping the zeros  wis -, =0

« Can recover Q from weights using «i = 8w
 To find w_22, use block inversion lemma

woy = [EV_I;“'Tll]I_l = (waa — W{Q“frl_llwlgj_l

Now "Wl‘llwlg = (Wi, tsi, = (3.0), since wio = sqo in all locations that are not constrained to be zero.
Similarly, wea = s922. Hence

1
— = 599 — WE-‘G (3.82)
wao
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W =S; % W = inv(precMat)
precMat = zeros(p,p);
beta = zeros(p-1,1);
iter = 1;
converged = false;
normwW = norm(W);
while ~converged
fori=1:p
% partition W & S for i
noti = [1:i-1 i+1:p];
W11 = W(noti,noti);
w12 = W(noti,i);
s22 = S(i,i);
s12 = S(noti,i);

% find G's non-zero index in W11

idx = find(G(noti,i)); % non-zeros in G11
beta(:) = 0;

beta(idx) = W11(idx,idx) \ s12(idx);

% update W

w12 = W11 * beta;
W(noti,i) = w12 ;
W (i,noti) = wl2';

% update precMat (technically only needed on last iteration)
p22 = max([0 1/(s22 - wl2*beta)]); % must be non-neg
pl2 = -beta * p22;
precMat(noti,i) = p12 ;
precMat(i,noti) = p12';
precMat(i,i) = p22;

end

converged = convergenceTest(norm(W), normW) || (iter > maxliter);

normW = norm(W);

iter = iter + 1;

end

ggmFitHtf in pmtk (by Baback Moghaddam)

11



Example

Let us now give a worked example of this algorithm. Let the input be the following adjacency matrix, representing
the cyclic structure, X'y — Xy — X3 — Xy — X4, and empirical covariance matrix:

01 0 1 0 1 5 4
ot ot 0)] L f1 10 2 6 |
G=10101]"5=|5 2 10 3 (3.83)
1010 4 6 3 10
After 3 iterations we converge to the following MLE:
1000 1.00 1.31 4.00 0.12 —001 0  —0.05
.00 10.00 2.00 0.87 —0.01 011 -002 0 |
X=1131 200 1000 300 | ¥=| 0o _002 o011 —003 (3.84)
400 0.87 3.00 10.00 005 0  —0.03 0.13
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Graphical lasso

mar __ |\
£(82) = log det €2 — tr(SE2) — A[|€2]; Ajj = 0, N4 = X

The basic idea is very similar to the method in Section 3.3.7, except we replace the least squares subproblem with
a lasso subproblem. The analog of the gradient equation (3.75) is the following:

Q' — 8 — \Sign(2) =0 (3.86)

As discussed in Section 7?7, we must replace the gradient with the subgradient, due to the non differentiable penalty
term. So we define Sign{w,z ) = sign{w;g ) if w;p 7 0, and Sign(w;) € [—1.1] otherwise. The analogous result to
Equation 3.79 is

Wii13 —si12 + ASign(3) =0 (3.87)

since /3 and w12 have opposite signs.
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Subgradients

We can generalize the notion of derivative to handle this case as follows. We define a subderivative of a function
F:I—=Ratapoint roto be a scalar o such that

Azl — flzg) 2 elz —xpj¥r T (29.84)

where T is some inkerval containing =, See Figur 29,16, We define the ser of subderivatives as the interval [a, b
where a and & ar the ong-sided limits

Ry — Flzg)
a= lim 12700
gzl T —T0 g—zl I — 0

(20.85)

The sat [a, b of all subderivatives is called the subdifferential of the function f at = and is denoted 2f(x}|5,. For
example, the subdifferential of the absolute value function fix) = || is

(1} ifz<0
af(zi =4 [11] ifz=0 (29.86)
+1} ifx=0

If the function is everywhere differentiable, then &fi(x) = {35.%}. By analogy to the standard calculus rasult, one
can show that the point = is a local minimum of §f iff0 = @f(x).
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Graphical lasso

F(£2) = log det £2 — tr(S€2) — A4

The basic idea is very similar to the method in Section 3.3.7, except we replace the least squares subproblem with
a lasso subproblem. The analog of the gradient equation (3.75) is the following:

Q' — 8 — \Sign(2) =0 (3.86)

As discussed in Section 7?7, we must replace the gradient with the subgradient, due to the non differentiable penalty
term. So we define Sign{w,z ) = sign{w;g ) if w;p 7 0, and Sign(w;) € [—1.1] otherwise. The analogous result to
Equation 3.79 is

Wii13 —si12 + ASign(3) =0 (3.87)

since /3 and w12 have opposite signs.
This is equivalent to a lasso problem. To see this, consider the objective

J(B) =Yy -ZB3) (y — Z8) + N8| (3.88)

Setting the gradient to zero we get
Z'Z3 — Z"y + ASign(B8) = 0 (3.89)

We see that Z” y is similar to s15 (namely an estimate of the covariance between target and inputs), and that Z* Z gets
replaced by W4, which represents correlation amongst the current inputs.
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Shooting (coord desc for lasso)

We now present a coordinate descent algorithm called shooting [Fu98] for solving the unconstrained lasso problem:
d
J(w, ) = RSS(w)+A) _ Juwy] (17.36)
i=1

Besides being simple and fast, this method yields additional insight into why an L1 regularizer results in a sparse
solution.

We can compute the partial derivative of the lasso objective function wrt a particular parameter, say wy, as follows.
One can show (Exercise 17) that

o

—— RSS(w) = apwp —ep (17.37)
dwy,
n
ap = 2) ad (17.38)
i=1
n
e = 2) wu(u = WEpXi—i) (17.39)
i=1
n
= 2 Z [y — 2w X + wipas, ] (17.40)

ﬁ
I
[N

where w_; = w without component /%, and similarly for x; _;. We see that ¢;, is (proportional to) the correlation
between the k’th feature x. 5 and the residual due to the other features, r— = y — X. _pw_; if this correlation is
zero, then feature & would be orthogonal to the residual, and we couldn’t reduce the RSS by updating «,. Hence the
magnitude of ¢, is an indication of how relevant feature k is for predicting y (relative to the other features and the
current paramefers).
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Shooting cont'd

The L1 penalty function is not differentiable, so we need to compute the subdifferential (see Section 29.6. 1) rather
than the standard differential. This is given by

Owy, J(W, X)) = (apwi — cr) + Auy || W] |1 (17.41)
{apwg — ep — A} ifwe <0
= [k — A, —er+ 2] ifwr =0 (17.42)

{apwr —ex + A} ifwg >0

This subdifferential is a piecewise linear function of wy. Since a; > 0, it is sloping up and to the right, except it
has a vertical “kink™ in it at w;, = 0, spanning the range [—cj, — A, —c, + A]: see Figure 17.6. Depending on the value
of ¢y, the solution to d,,, J(w. A) = 0 can occur at 3 different values of wy,, as follows:

Doy T (W, A) B, J (W, A) O, J (W, A)
-C, A0 / By >
u-‘-)k < [}/ —CI( -a=0 P . e
; W =0 [c +i=0 w
// " : f‘:-ck “x<0 Cy+ A <0 @ ‘
/ < -A<0
(a) (b) / ()

17



Soft thresholding

1. e < —A, so the feature is strongly negatively correlated with the residual. In this case, the subgradient is zero
at iy, = 2 <0,

[

e € [—A, Al, so the feature is only weakly correlated with the residual. In this case, the subgradient is zero at
wy, = 0. Thus if the correlation is not less than A, we set the corresponding coefficient to 0.

3. ¢ > A, sothe feature is strongly positively correlated with the residual. In this case, the subgradient is zero at
tE-‘k = k=2 = (.
ap

In summary, we have
(cp + A)fag  ifep < —A

W (k) = 0 if e € [—A, A (17.43)
(cke — A)/ak ifep = A

~ {ak; ”
Y /
GK
+h
/ soft{a; 6) = sign{a)max{0,|a| — 4} = sign(a) (|a| — ),

18



Lasso vs ridge vs subset selection

For orthonormal features, we have explicit solns

the lasso solution as follows (using the fact that ap, = 2 and wg™® = c;/2)

whasse = sjon(w{ET) (|1§.1§L5 | — %) (17.46)
<)+
By contrast, the ridge estimate would be
~ ridge EE’ELS
wy, T (17.47)

which does not force sparsity. If we pick the best K features using subset selection, the parameter estimate is as
follows

4S8 { w5 i rank(|wy|) < K

0 otherwise L0,

19



Graphical lasso with shooting

F(£2) = log det £2 — tr(S€2) — A4

The basic idea is very similar to the method in Section 3.3.7, except we replace the least squares subproblem with
a lasso subproblem. The analog of the gradient equation (3.75) is the following:

Q' — 8 — \Sign(2) =0 (3.86)

As discussed in Section 7?7, we must replace the gradient with the subgradient, due to the non differentiable penalty
term. So we define Sign{w,z ) = sign{w;g ) if w;p 7 0, and Sign(w;) € [—1.1] otherwise. The analogous result to
Equation 3.79 is

Wii13 —si12 + ASign(3) =0 (3.87)

since /3 and w12 have opposite signs.
This is equivalent to a lasso problem. To see this, consider the objective

J(B) =Yy -ZB3) (y — Z8) + N8| (3.88)
Setting the gradient to zero we get
Z'Z3 — Z"y + ASign(B8) = 0 (3.89)

We see that Z” y is similar to s15 (namely an estimate of the covariance between target and inputs), and that Z* Z gets
replaced by W4, which represents correlation amongst the current inputs.

One simple way to solve this lasso problem is to use coordinate descent, known as the shooting algorithm (see
Section 7). To apply this to the current problem, let V.= W4. (Recall W = X.) Then the update for /3 becomes

By i=Sx | 512 — X Vs | /Vis (3.90)
k2
where S is the soft-threshold operator
Si(r) = sign(x) max(0, |z| —t) (3.91)

We can implement this in a way which is very similar to Listing ??. The only change is to replace the line
beta(idx) = W11l (idx,idx) % s12(idx) withthe code shown below.
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Discrete UGMs

 Computing Z and hence the likelihood is intractable
unless the graph is decomposable

 Hence Bayesian methods “never” used
 Even search and score is inefficient

22



Ising models

* Analogous to GGM for binary data

1
N(x|K) = 7K exp(—3 ZKj,kxjxk), z; € R
4.k

p(x|W) = exp(Y  Wikzjax), ;€ {~1,+1}

Win Wia 0 0

L‘/n, L‘/l3 lA/)’-r
o[B8 erEtEtE
0 Wiy Wiz Way
0 0 Wy Wy

X; L X ;| XN,
wjr > 0 attractive (ferro magnet) J i
wjk < 0 repuslive (anti ferro magnetic) Markov property

wj Mixed sign frustrated system

Besag, Hammersley & Clifford, Geman & Gengh



Glasso for Ising models (Banerjee)

d—1 d
1 .
p(x|8) = -_ZEXP[Z Z Wijmiz;)

d—1 d
4 = Z exp[z Z Wijrir;]

XE{—IH‘I}J i=1 j=i+1l

Convex relaxation of matrix permanent to matrix determinant

W = graphicalLasso(Cov(X) — AL + éI, A)
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Senate voting data

o e ke
AN Qﬂ_%l_ ;}n Dﬁ%ﬁ@" aan@mn *@R@‘};—L*
: ﬂﬁ_"i'#ﬁ W Is‘in \ :.'-'-.:.“".‘:iv@"’“”. Brofnifick Al )
i ﬂac&lw 4 fLﬂﬂ
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25



documents

20 newsgroups

word-document co-occurrence matrix for 20 newsgroups — e,

i
6000

©
o
o
o

=
o
o
o
o

12000 NS

70

50
words

40 60 80

n=16,000, d=100

Courtesy Mark Schmidt



Markov random fields

* Markov random fields for y; € {1,...,K}

Z(i?V) exp(Y Wi fik(ys, yk)) o< exp(8TF(y))
71,k

p(y|W) =

~

~

NP PR RPR
P WN P

w
w

(0,0,0,0,0,0,0,0,1)

Parameter vector on each edge

 No longer a 1:1 mapping between G and W

27



Conditional random fields

 CRFs are a conditional density model

1
YW, V) = g &P O wj ik (Y5, yr, X +ZV g;(y;,x
7,k

 No longer a 1:1 mapping between G and W

28



Heart wall abnormality data

* d=16, n=345, y, € {0,1} representing normal or

abnormal segment, x; in R1%° representing features
derived from image processing

Left Ventricular Segmentation

“Structure Learning in Random Fields for Heart Motion Abnormality Detection”
Mark Schmidt, Kevin Murphy, Glenn Fung, Romer Rosales.
CVPR 2008. Siemens Medical29



Group L1 regularization

« Solution: penalize groups of parameters, one group
per edge

J(w,v) = —log) ply;lxiw,v)+XllV|E+ A1) [lwll,

7 g
[wlls = > w}
k

Iwile = max fu

30



Group lasso

e Sometimes we want to select groups of parameters
together (e.g., when encoding categorical inputs)

w = argmin RSS(w) + AR(w)
Still convex, but
R(w) = Z [wgll2 = S: y:ng much harder to
g g J€y optimize...

R(w) = ZHWQHOOZZT?QQXWW‘
g g

L1-Regularization Path

s (Group 1
Group 2
| =—Giroup 3
G roup 4

— Group 1
Group 2
|| = Group 3
== Group 4

31



Group L1 for graphs

e Penalize groups of parameters, one group per
edge

J(w,v) = logZpyi!xi,w,v>+A2HvH%+Alzuwgup
g
wlls = \/Zwk
[Wlleo = maxfwy|
e |Ssues

— How deal with intractable log-likelinood? Use PL
(Schmidt) or LBP (Lee & Koller)

— How handle non-smooth penalty functions? (Projected
gradient or projected quasi newton)

32



Pseudo likelihood

e PLIS Iocally normalized

L(W) = Hp(xz\W) HZ exp sz” ikTik)

=1
n d
PL(W) = 1]1] p(ij]Xin, > Wj,:)
i=1j=1
——— exp(aiy Y Wik
_.j-~ ; Z(WJ,XzN) Y L ’ '
Z(Wj,XNj) = Z eXp(:I:j Z ijxk)
z;e{—1,+1} kEN;

Besag 33



Constrained formulation

e Convert penalized negative log pseudo likelihood
f(W,V) — _logZPL(yZ|X17V7W)+A2HV|‘§

min = f(w,v)+ )\ Z [Wyllp

W,V
g

e INnto constrained form

Lla,w,v) = f(w,v)+ X\ Z Qg
g

ar,nv%/_r,lv = L(a,w,V) stVg.ay > ||Wg||p

34



Desiderata for an optimizer

Must handle (;l) groups (d = 16 in our application,
so 120 groups)

Must handle 100s features per group

Cannot use second-order information (Hessian too
expensive to compute or store) — so interior point Is
out

Must converge quickly

35



Projected gradient method

« At each step, we perform an efficient projection
onto the convex constraint set

@ Current Point

. Steepest Descent
{ © Projected Steepest Descent | . @&

g
e
.,
.

lha
-,
.,

e,
""""""

xp = (o, w)g
Xp+1 = tlg (xx — Bgy)
gr — vf(X)Xk
IIg(x) = arg min ||x —x"||2
x*eS

Sp = A{x:Vg.ay > |lwgllp}
Project each group separately.
Takes O(N) time for p=2,

O(N log N)time for p=oo,
Where N = #params per group.

van der Berg, Schmidt, Friedlander, Murphy; Duchi etgl.



Spectral step size

e Gradient descent can be slow

e Barzilal and Borwein proposed the following
stepsize, which in some cases enjoys super-linear
convergence rates

= Steepest Descent

Barzilai-Borwein Xk—|—1 — tH(Xk . 6kgk)
g — vf(X)|Xk
p o (xp —xpo1) " (ke — Xp—1)
Bry1 =

(xk —Xp—1)1(8r — 8r_1)

t chosen using hon-monotone
Armijo line search

37



Projected quasi Newton

 Use LBFGS in outer loop to create a constrained
guadratic approximation to objective

* Use spectral projected gradient in inner loop to
solve subproblem

Objective Value

T T T T 1
10 20 30 40 50 & 70O 8D 9O 100

Function Bvaluations

“Optimizing Costly Functions with Simple Constraints:

A Limited-Memory Projected Quasi-Newton Algorithm”,

Mark Schmidt, Ewout van den Berg, Michael P. Friedlander, and Kevin Murphy,

Al/Stats 2009 38



 We compared classification accuracy on synthetic
10-node CRF and real 16-node CRF.

 For each node, we compute the max of marginal
using exact inference

y; = argmaxp(y;|x,w,G)

e First learn (or fix) G, then learn w given G
— Empty, chain, full, true
— Best DAG (greedy search), best tree (Chow-Liu)
— max p(y|w) [[wl|y, [[wll,, [Iwl]

e Jointly learn G and w
— Max p(y [x,w,v) |[w]],, [IW][5, [W]]

39



Results on synthetic data
e d=10, n=500 train, 1000 test

90% confidence interval derived from 10 random trials

1.0 - EE—
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©
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Results on heart data

90% confidence interval derived from 10-fold cross validation

1.0
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Incremental feature addition

* Lee, Ganapathi & Koller compute gradient and
expectations using LBP instead of PL

 They greedily add features according to their
expected gain (change in penalized loglik)

 |nitially the graph is sparse so LBP Is accurate, but
degrades over time
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Della Pietra

Can use Gibbs sampling + IS corrections
Della Pietra, Della Pietra, Lafferty, PAMI
1997

m, r, ¥evo, 1jjiir, b, te, Jz, gsr, wg, vI, x, ga,
msmGh, pep, 4, o21V1al, hzagh, yzop, 1o, advEmmnmv,
ijv bolft, =, emx, kayerf, mlj, rawzyb, Jjp, adg,
ctdnnnbg, wgdw, t, kguv, <y, spxoqg, uzflbbkf,
dxtkkn, cxwx, Jjpd, =ztzh, 1v, zhpkvou, 17, r, Jees,
nynrx, atzedn, 1k, =se, w, 1lrh, hp+, vrgvka'h,
zongotonx, lgoump, zjols, lgpeWiqu, cefmfhe, <, 1k,
fde¥, tzky, yopxmvk, by, L£zZ,, T, govyoom,
1jyiduwfzo, exr, duh, ejv, pk, piw, 1, £1, w

The second most important feature, according to the algorithm, 1
that two adjacent lower-case characters are extremely common
The second-order field now becomes

L S AbspgXp-sm 2l 2 Maomipoglen)

' bl
Plw ] = o=~

Z

The first 1000 features that the algorithm induces include the

strings &>, <re, 1y, and ings>. where the character <" de- was, reaser, in, there, to, will, ,, was, by,

notes beginning-of-string and the character **>" denotes end-of- homes, thing, be, reloverated, ther, which,

string. In addition, the first 1000 features include the regular ex- “ ! conists, at, fores, anditing, with, Mr., proveral,
. . . the, ,, ***, on't, prolling, prothere, ,, mento,

pressions [0-9] [0-9] (withweight 9.15)and [a-z] [A-Z] at, yaou, 1, chestralng, for, have, to, intrally,

(with weight —5 81) in addition to the first two features [a- z] of, qut, ., best, compers, ***, cluseliment, uster,

and [a-z] [a-z]. A set of strings obtained by Gibbs sampling of, 1s, deveral, this, thise, of, offect, lnatever,

thifer, constranded, stater, vill, in, thase, in,

trom the resulting field is shown here: youse, menttering, and, ., of, in, verate, of, to
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Maxent models of faces

Use importance sampling to reweight the Gibbs samples when evaluating
feature gain
C. Liuand S.C. Zhu and H.Y. Shum, ICCV 2001 44



