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Outline

• Scoring functions for DAGs with hidden vars
(19.4.1)

• Structure search (19.4.2)

• Structural EM (19.4.3)
• Inventing hidden variables in DGMs (19.5)
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Bayesian score

• Need a way to measure model quality; orthogonal 
to issue of how we search through space of models

• Bayesian score hard to compute since posterior is 
an exponential number of modes

• Approximations: asymptotic, variational, MCMC

p(D|G) =

∫ ∏

m

p(o[m]|θ, G)p(θ|G)dθ

p(o[m]|θ, G) =
∑

h

p(o[m],h|θ, G)
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Chib’s candidate method

• Approximate p(D|G) using output of a standard 
MCMC run.  For any θ (eg MAP) compute

• Requires that p(θ|D,G) cover chosen θ.
• This requires that MCMC mix over all posterior 

modes, even if symmetrical. If not, it will 
underestimate p(D|G). See rejected letter to editor 
by Radford Neal.*

* http://www.cs.utoronto.ca/~radford/ftp/chib-letter.pdf
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RJMCMC

• Instead of doing discrete search, and integrating 
out params at each point, let us jointly sample in 
graph and param space

• Since the size of the cts space is changing, we 
need to use a change of measure when we move 
between dimensionalities

• This results in reversible jump MCMC

• Getting it working is delicate…
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Laplace approximation
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Laplace approximation cont’d

• Let g(w) = log p(D,w|G).

• Laplace approximation to p(D,G) is

C is negative Hessian: requires inference on xi, xj, ui, uj
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BIC score

• BIC is the limit of Laplace as M->inf.
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Cheeseman-Stutz approximation

• CS approx to log p(D|G) is more accurate than BIC, 
yet faster than Laplace

• Matt Beal’s thesis proves CS is a lower bound 

• Example: we plot log p(D|K) vs K for a mixture of 
Bernoullis for different methods; ‘candidate’ is a 
‘gold standard’ MCMC method
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CS approx

• Idea 1: If D* is complete, p(D*|G) just relies on 
sufficient statistics, so use ESS instead 

• Unfortunately this does not work well, since it sums 
over 1 (imputed) dataset whereas p(D|G) sums 
over an exponential number

• Idea 2: add an approximate correction term

Approximate with BIC
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CS approx
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Variational lower bound

Beal, M.J. and Ghahramani, Z.
Variational Bayesian Learning of Directed Graphical Models with Hidden Variables
Bayesian Analysis 1(4), 2006. 

Binary hidden nodes, 5-ary obs nodes
136 distinct DAGs

VB provably tighter lower
Bound than CS
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Log p(D|G) vs dof(G)
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Structure search

• P(D|G) does not factorize across families, unlike 
the fully observed case

• Cannot find (easily) optimal tree or optimal DAG 
given ordering.

• For local search, evaluating score of neighbors is 
expensive – score does not decompose, so need to 
find MAP estimate for each graph just to compute 
its BIC score
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Illustration of non-decomposability

{1,2} and 3: weak corr
3 and 4: strong corr
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Structural EM

• Given current graph Gt and MAP params theta(t), 
compute ESS for all possible families (potentially in 
a lazy fashion – may need out-of-clq queries)

• Evaluate BIC score for G(t+1) using ESS|G(t)

• Thm: increasing expected BIC score increases true 
BIC score
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Sparse mixture model

Initialization: if start from no children, will never add any! So start from all
Children or random subset.
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Inventing hidden variables

• Can add hidden variables in ‘canonical’ places
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Structural signatures

• Can learn structure with no hidden vars, then look 
for ‘semi-cliques’. 

• Unfortunately original model discourages nodes 
with high fan-in.

Can also look for signatures in the data  - eg FCI* algorithm
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Cardinality of hidden nodes

• Need to choose number of states.

• Can use an “infinite” number using Dirichlet
processes.

• Let us first consider DP mixture models.
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Marginalizing out θ

Collapsed Gibbs sampling
Cf DP mixtures

O(M K) per iter
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DP mixture model (p865)

• Identity of clusters does not matter. Let σ={I1,...,IL} 
be a partition, Ic=cases in cluster c. For case m’, 
either join existing cluster or create new one O(ML) 
per iter

• Now let K->inf.

• More likely to join a cluster if it is already crowded.

• Chinese Restaurant process.


