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e Overview of structure learning
e Constraint based approach (18.2)
e Scoring functions (18.3)



Overview of structure learning

Goals: density estimation and knowledge discovery
Can only learn graph up to Markov equivalence
2 main approaches:

Find PDAG which is an I-map of the empirical
distribution, using conditional independence test
(eg \chi*2) at the 5% level in lieu of oracle

Find MAP DAG by defining a scoring and search
through DAG space

Can also do Bayes model averaging over DAGSs to
get posterior of features of interest eg predictive
density, edge/path marginals, etc



Assumptions behind constraint based

Each node has a fan-in of at most d
We have a Cl oracle X L Y | Z that gives correct

results for conditioning sets up to size 2d+2
P* is faithful to G*

Def 3.3.4. A distribution P is faithful to G If,
whenever X 1 Y | Z in I(P), we have dsep_ G(X;Y|2)

l.e., there are no “non-graphical” independencies
buried In the parameters



Deriving graphs from distributions

Sec 3.4, from Lecture 2

So far, we have discussed how to derive
distributions from graphs.

But how do we get the DAG?

Assume we have access to the true distribution P,
and can answer guestions of the form

P=X 1Y|Z
For finite data samples, we can approximate this

oracle with a Cl test — the frequentist approach to
graph structure learning (see ch 18)

What DAG can be used to represent P?




Minimal I-map

 The complete DAG is an |-map for any distribution
(since it encodes no ClI relations)

e Def 3.4.1. A graph K is a minimal I-map for a set of
Independencies | if it iIs an |-map for |, and if the
removal of even a single edge from K renders it not
an I-map.

e To derive a minimal I-map, we pick an arbitrary
node ordering, and then find some minimal subset
U to be X/s parents, where

Xi L{Xy,..., Xs 1} \UU

e (K2 algorithm replace this CI test with a Bayesian
scoring metric: sec 18.4.2).



Constructing I-map given ordering

Algorithm 3.2 Procedure to build a minimal I-map given an ordering

Procedure Build-Minimal-1-Map (

Xi.....X,, // an ordering of random variables in X’
I // Setof independencies
)

1 Set G to an empty graph over A
2 fori=1.....n
3 U— {X1,...,Xiz1} // U is the current candidate for parents of X
4 for [si” '; {Xl,...,z 3'_1}
5 ifU " cU and (X; L{X,,....X,_1} -U"|U") €T then

§ [.#r"— E.-'Tf
// At this stage U is a minimal set satisfying (X, L
(Xq,.... X —U | U)

s /) MNow set U to be the parents of X
4 for X j € )
10 Add Xy — Xy t0 @

11 return &




Effect of node ordering

« “Bad” node orderings can result in dense,
unintuitive graphs.

e EgL,S5,G,I,D. Add L. Add S: must add L as parent,
since P /&=L 1 SAdd G: must add L,S as parents.
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Dealing with node ordering

e Search over orders
e Work with PDAGS



Perfect maps

 Minimal I-maps can have superfluous edges.

o Def 3.4.2. Graph K is a perfect map for a set of
Independencies | if I(K)=I. K is a perfect map for P if
1(K)=I(P).

* Not all distributions can be perfectly represented by
a DAG.

 Eglet Z=xor(X,Y) and use some independent prior

on X, Y. Minimal |- maP Is X -> Z <-Y. However, X
1 ZinI(P), but not in I(G)

- EgALC|{B,D}and B L D |{A,C}, Adep | B,C,
etc o
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Finding perfect maps

e |If P has a perfect map, we can find it in polynomial
time, using an oracle for the Cl tests.

 We can only identify the graph up to I-equivalence,
so we return the PDAG that represents the
corresponding equivalence class.

 The method has 3 steps (see sec 3.4.3)
— ldentify undirected skeleton
— ldentify immoralities
— Compute eclass (compelled edges)

e This algorithm has been used to claim one can infer
causal models from observational data, but this
claim Is controversial

Algorithm due to Verma & Pearl 1991, Spirtes, Glymour, Scheines 1993, Meek 1995 11



Identifying the undirected skeleton

 |nitially connect all node pairs
e Remove anedgeifwefindaUst Xi L Xj|U

Lemma 3.4.8: Lel G* be an I-map of a distribution P, and let X and Y be two variables
that are not adjacent in G*. Then either Pl=(X LY |Pa% ) or Pl=(X LY | Paf ).

e Hence we can restrlct OUI’ search for witnesses U to

the sets  ca—_(x. x,) -,
and UCX—{X,X;} - N
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Identifying the undirected skeleton

Algorithm 3.3 Algorithm for recovering undirected
a distribution F for which % is a ’-map
Procedure Build-PMap-5Skeleton |

|
A = A:_jf1 ...... kY ﬂ_}. Set of random wvariables
P, Distribution over A
Bound on witness set
|
1 Let 'H be the complete undirected graph over A

2 fl:lr ..Y.i.,:ifj T 1'1?

3 {.s'-_};!:_};l? — 1

1 for UV & Witnesses(X;, X, H.d)

0 Consider U7 as a witness set for X, X
[ iIFFP=(X; LX,;|U)then

T L-'-_'!{Il_'!{", «— [J

= Bemove X; X from 'H

4 break

10 return (M {Ux, x, 14,5 €{1,...,n})
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Complexity

This algorithm will recover the correct skeleton given that G* is a P-map of P and
has bounded indegree d. If P does not have a P-map, then the algorithm can fail; see
Exercise 3.22. This algorithm has complexity of O(n®?) since we rconsider O(n?) pairs,
and for each perform O((n — 2)%) independence tests. We greatly reduce the number of
independence tests by ordering potential witnesses accordingly, and by aborting the inner
loop once we find a witness for a pair (after line 9). However, for pairs of variables that are
directly connected in the skeleton, we still need to evaluate all potential witnesses.
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Identifying immoralities

Proposition 3.4.9: Let G* be o P-map of o distribution P, and let XY and £ be voriables
that form an immorality X — Z <Y, Then, PE (X LY |U) for any set U that contains
Z.

Proposition 3.4.10: Lei GF be o P-mop of o distribution P, oand let the triplet XY, Z e
o potentiol immorality in the skeleton of G¥. such that X — Z — Y is not in G¥. {f U is
such that P=(X LY |U), then Z €U,

Combining these two results, we see that a potential immorality X £ Y is an immoral-

triplet is an immorality or not: we simply check whether Z2 e Uxy. f Z € Ux y, then we
declare the triplet an immorality. Otherwise, we declare that it is not an immorality. The

|
1 K— 5
2 for X;, X;, Xp such that X; X; XpeSandX; Xp €58
3 X;—X;— Xk is a potential immorality
1 if X; 20 x x, then
D Add the orientations X; — X, and X; «— Xy to K
i return A
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Compute PDAG

Skeleton plus immoralities defines equiv class

e But we might want to orient as many edges as
possible, not just those In Immoralities

Definition 3.4.11: Lei G be o DAG A chain graph K is o class PDAG of the equivalenee
class of G if shares the same skeleton as G, and contains o directed edge X — Y if and only
if wll G that are I-equivelent to G contain the edge X — Y0 H

Q(
_n>

&
" dfp oy
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Overall PC algorithm

Algorithm 3.5 Procedure for finding the class PDAG that characterizes the -
map of a distribution P,

Procedure Build-PDAG |

A {IL. e -_Yﬂ} A specification of the random variables
P Distribution of interest
|

1 5, 1Ux, x;} +— Build-PMap-Skeleton(X, P)
2 K — Find—lmmnralitieﬂf-’e'.5}{[.J'xi_xd,}]l
4 while not converged
1 Find a subgraph in K matching the left-hand side of a rule K1 H3
) Beplace the subgraph with the right-hand side of the rule
¥ return h

Theorem 3.4.14: Let P be o distribution that has o P-map GF. and let K be the PDAG
returned by Builld-PDAGIA, P). Then, K is a vloss PDAG of G*

n=#nodes, d=fanin, complexity = O(n{d+2})
One error in a Cl test can propagate through whole structure — not robust
Can choose thresholds to control the FDR

17



Recent developments

Kalisch, M. and Buhimann, P. (2007). Estimating high-dimensional directed acyclic
graphs with the PC-algorithm. Journal of Machine Learning Research 8, 613-636.
[Proves uniform consistency in the Gaussian case]

Kalisch, M. and Buhimann, P. (2008). Robustification of the PC-algorithm for
directed acyclic graphs. Journal of Computational and Graphical Statistics 17, 773-
7809.

[Uses robust estimate of covariance matrix]

Maathuis, M.H., Kalisch, M. and Buhimann, P. (2008). Estimating high-dimensional
intervention effects from observational data. To appear in the Annals of Statistics.
[Causal DAGS]

BUhlmann, P., Kalisch, M. and Maathuis, M.H. (2009). Variable selection for high-

dimensional models: partially faithful distributions and the PC-simple algorithm.
[Lasso-type methods]
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Score functions

 We can treat model selection as an optimization
problem: arg max score(G,D)

« ML score:  score (G : D) =¢((G,0g) : D)
e Obviously this will prefer the fully connected graph

« But Iif we limit the fan-in (eg restrict attention to
simple trees), this can be useful

20



ML score and Mutual information

e Consider GO: X, Y and G1: X->Y

scorer,(Gg @ D) = Z log éx[m] + log éy[?ﬂ]

e

scorer,(Gy @ D) = Z log ém[qn] + log éy[1n]|.1‘[??1]

e

scorer (G; : D) —scorep (Gy @ D) = Z log éy[ﬂl]lﬂ?[m] —log n’;jy[m]

m

scorer (Gy @ D) —scorer (Gg @ D) = Z Mz, y]log éy|I - Z My]log éy
T,y y

scorer(Gy : D) —scorer(Go : D) =M Y P(z,y)log i E’{'J‘” = M -I5(X;Y)
Y

T,y
Proposition 18.3.1: The bkelihood score decomposes as follows:
score(G © D) =M Ip(X;;Pa%,) — M) Hp(X;)
=1

i=1
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Bayesian score

Defined as log marginal likelihood plus log prior
Log p(G) is constant whereas log p(D|G) grows linearly with nsamples
Log p(D|G) offers automatic complexity control — Bayesian Occam’s razor

scorep(G : D) =log P(D | G) +log P(G)

P(D|G) = / P(D|6g.G)P(8g | G)dbg
E"g

P(D|G) = HP Em] | €[], . ... Em—1].G)

m=1

ﬁ log P(D | G) = Ep+[log P(X | G.D)]

22



Expected log pred lik vs avg log marg lik

-1581 AR T T T T T T r T
-454 Aaf E
™
- — L ]
] o
L 5 LT .
g, e B s Lo ' .
(M . ar % — J
157 BET | :
F
agg E E
" _4“.5_ Ard -i7.3 -3 Ard -7 l:ﬁln.'r Bl N Aks Ad AR A3
1 ) i
Sreafin|#) e r (o] &)
S InstEnre s LI tnst soees
45
Anaf

-
g
Wy Asaf .
- ot
3 e
::-15_1- ‘.-: .
sl __.-.'."-.-
L -.l'-"E‘
P
I ~ihl A5 <A =453 AR
1
—flea (D | &)

LU Instanees

23



Computation of marginal likelihood

 For a Dirichlet-multinomial we have

ke

_ ~ Tia) Il + M=)
Piz[l]....,z|M]) = Tla 01 H T .

e For a DAG X->Y we have

PiD|Gx—v) = (Jf P(ox | Gx—y) [] Plelm] Iﬁ'x-E?x—:-'thﬂx)
=B m

(L Ploye |Gx—y) J[ Plulwl| 5'}'|T¢-§I—1'J-‘fﬁ'}'|ﬂ.~'=')

m: 2[m )=

(L Py | Gx—=v) H Ply[m] | 5'1-'|1-=-§x—-r,hfﬁ'r|ml]

T 2 [ | 2

e For CPTs with dirichlet priors:BDe score

(0,0 {rmzﬂu. - Mlxw]

rota=11 1l g iy 1

i weval(Pa% ) xleval(X,)

T(a¥ )

i
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Asymptotic approximations to Bayesian score

We have

Theorem 18.3.4: ff we use a Dirichlet parameter priov for all purameters in owr nefwork,

then, ns M — oc, we have that:

log A
2

where Dim[G) is the number of independent parometers in G,

log P(D | G) = £(0g : D) — Dim[G] + O(1)

log A
2

scoregra(G @ D) =£{0g : D) — Dim|G|

scoregro (G 0 D) =

MY Ip(XiPax,)— MY Hp(X,) - o M 6]
i=1 i=1
MDL = BIC

Thm 18.3.6. BIC, MDL and Bayesian score are consistent (so score(G)=score(G*)
iff G is l-equivlent to G*)
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Structure priors

* P(G) only matters in small sample setting

e Penalized number of edges P(g) x 9
e Penalize deviation from fixed prior structure

26



Decomposable score

« When we make local changes to a graph, we want
to evaluate the score change in constant time

Definition 18.3.8: A structure score function score is decomposable if the seore of o strue-
Lure Q ean be writfen ns

score(G @ D)= Z FamScore(.X; | }._";-1?' - D)

e BIC score:is decomposable

Definition 18.3.9: Lef {P[ﬂg | G):G €@} be aset of parameter priovs that satisfy global
paurameter independence. The prior satisfies Parameter modularity i for each G,G" such
that PH?-’: = Paz, =U, then PI:'H';{”U | G) = P[ﬂ'_\i_'||U | &% [

« Thm 18.3.10. parameter modularity => BDe score
IS decomposable
o Defn: Structural modularity if p(G) decomposes

 Thm 18.3.10. param & struct modularity =>
Bayesian score decomposable

27



Score equivalence

 Def 18.3.11. Score() Is score equiv If
score(G)=score(G’) if G, G’ are l-equiv

« Thm 18.3.12. Likelihood and BIC scores are score
equiv.

 BDe score is only score equivalent if we set the
Dirichlet hyper-parameters as follows

¥y X
Ox,|pa, = 0 - P (T3, pa; ).

 Egif P’ Is a uniform prior network, then

def

Oije = p(Xi=k|Xz =) a,,=1 (K2 prior) is not score equiv
Hijk: ~ Dlr(aq;jk;) thetaY ~ Dir(l,l) 68J 2
1 .
Qir = a— thetaY|X=1 ~ D!r(1,1) £ d 4/
9T thetaY|X=0 ~ Dir(1,1)
28



Decomposable score

« When we make local changes to a graph, we want
to evaluate the score change in constant time

Definition 18.3.8: A structure score function score is decomposable if the seore of o strue-

5 L
fure G can be written ns

score(l Djzz FamScore( X | P:-Lf - D
e BIC score is decomposable
 We say a prior satisfies structural modularity if

P(G) o || P(Pax, = Pa% )
i

Definition 18.3.9: Let {P(0g | G): G € G} be a set of paremeter priovs that satisfy global
parameter independence.  The prior satisfics Parameter modulaxity i for each G,G" such
that Pa%, = Pa%, = U, then P(0x, 1 | G) = P(0x, 1 | G'). "

 Thm 18.3.10. Structural & parameter modularity =>
Bayesian score Iis decomposable
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