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Outline

• Overview of structure learning

• Constraint based approach (18.2)
• Scoring functions (18.3)
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Overview of structure learning

• Goals: density estimation and knowledge discovery

• Can only learn graph up to Markov equivalence
• 2 main approaches: 

• Find PDAG which is an I-map of the empirical 
distribution, using conditional independence test 
(eg \chi^2) at the 5% level in lieu of oracle

• Find MAP DAG by defining a scoring and search 
through DAG space

• Can also do Bayes model averaging over DAGs to 
get posterior of features of interest eg predictive 
density, edge/path  marginals, etc
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Assumptions behind constraint based

• Each node has a fan-in of at most d
• We have a CI oracle X ⊥ Y | Z that gives correct 

results for conditioning sets up to size 2d+2

• P* is faithful to G*
• Def 3.3.4. A distribution P is faithful to G if, 

whenever X ⊥ Y | Z in I(P), we have dsep_G(X;Y|Z) 

i.e., there are no “non-graphical” independencies 
buried in the parameters
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Deriving graphs from distributions

• Sec 3.4, from Lecture 2
• So far, we have discussed how to derive 

distributions from graphs.
• But how do we get the DAG?
• Assume we have access to the true distribution P, 

and can answer questions of the form

• For finite data samples, we can approximate this 
oracle with a CI test – the frequentist approach to 
graph structure learning (see ch 18)

• What DAG can be used to represent P?

P |=X ⊥ Y |Z
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Minimal I-map

• The complete DAG is an I-map for any distribution 
(since it encodes no CI relations)

• Def 3.4.1. A graph K is a minimal I-map for a set of 
independencies I if it is an I-map for I, and if the 
removal of even a single edge from K renders it not 
an I-map.

• To derive a minimal I-map, we pick an arbitrary 
node ordering, and then find some minimal subset 
U  to be Xi’s parents, where

• (K2 algorithm replace this CI test with a Bayesian 
scoring metric: sec 18.4.2).

Xi ⊥ {X1, . . . , Xi−1} \ U |U
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Constructing I-map given ordering
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Effect of node ordering

• “Bad” node orderings can result in dense, 
unintuitive graphs.

• Eg L,S,G,I,D. Add L. Add S: must add L as parent, 
since               .  Add G: must add L,S as parents.P � |=L ⊥ S
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Dealing with node ordering

• Search over orders

• Work with PDAGs
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Perfect maps

• Minimal I-maps can have superfluous edges.

• Def 3.4.2. Graph K is a perfect map for a set of 
independencies I if I(K)=I. K is a perfect map for P if 
I(K)=I(P).

• Not all distributions can be perfectly represented by 
a DAG.

• Eg let Z = xor(X,Y) and use some independent prior 
on X, Y. Minimal I-map is X -> Z <- Y. However, X 
⊥ Z in I(P), but not in I(G).

• Eg. A ⊥ C | {B,D} and B ⊥ D | {A,C}, A dep | B,C, 

etc
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Finding perfect maps

• If P has a perfect map, we can find it in polynomial 
time, using an oracle for the CI tests.

• We can only identify the graph up to I-equivalence, 
so we return the PDAG that represents the 
corresponding equivalence class.

• The method  has 3 steps (see sec 3.4.3)
– Identify undirected skeleton
– Identify immoralities
– Compute eclass (compelled edges)

• This algorithm has been used to claim one can infer 
causal models from observational data, but this 
claim is controversial

Algorithm due to Verma & Pearl 1991, Spirtes, Glymour, Scheines 1993, Meek 1995
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Identifying the undirected skeleton

• Initially connect all node pairs
• Remove an edge if we find a U st Xi ⊥ Xj | U

• Hence we can restrict our search for witnesses U to 
the sets 
and
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Identifying the undirected skeleton
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Complexity
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Identifying immoralities
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Compute PDAG

• Skeleton plus immoralities defines equiv class

• But we might want to orient as many edges as 
possible, not just those in immoralities
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Overall PC algorithm

n=#nodes, d=fanin, complexity = O(n^{d+2})
One error in a CI test can propagate through whole structure – not robust
Can choose thresholds to control the FDR
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Recent developments

Kalisch, M. and Bühlmann, P. (2007). Estimating high-dimensional directed acyclic 
graphs with the PC-algorithm. Journal of Machine Learning Research 8, 613-636. 
[Proves uniform consistency in the Gaussian case]

Kalisch, M. and Bühlmann, P. (2008). Robustification of the PC-algorithm for 
directed acyclic graphs. Journal of Computational and Graphical Statistics 17, 773-
789.  
[Uses robust estimate of covariance matrix]

Maathuis, M.H., Kalisch, M. and Bühlmann, P. (2008). Estimating high-dimensional 
intervention effects from observational data. To appear in the Annals of Statistics. 
[Causal DAGs]

Bühlmann, P., Kalisch, M. and Maathuis, M.H. (2009). Variable selection for high-
dimensional models: partially faithful distributions and the PC-simple algorithm. 
[Lasso-type methods]
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Score functions

• We can treat model selection as an optimization 
problem: arg max score(G,D)

• ML score:

• Obviously this will prefer the fully connected graph
• But if we limit the fan-in (eg restrict attention to 

simple trees), this can be useful
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ML score and Mutual information

• Consider G0: X, Y and G1: X->Y
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Bayesian score

Defined as log marginal likelihood plus log prior
Log p(G) is constant whereas log p(D|G) grows linearly with nsamples
Log p(D|G) offers automatic complexity control – Bayesian Occam’s razor
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Expected log pred lik vs avg log marg lik
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Computation of marginal likelihood

• For a Dirichlet-multinomial we have

• For a DAG X->Y we have

• For CPTs with dirichlet priors:BDe score
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Asymptotic approximations to Bayesian score

• We have

MDL = BIC

Thm 18.3.6. BIC, MDL and Bayesian score are consistent (so score(G)=score(G*)
iff G is I-equivlent to G*)
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Structure priors

• P(G) only matters in small sample setting

• Penalized number of edges

• Penalize deviation from fixed prior structure
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Decomposable score

• When we make local changes to a graph, we want 
to evaluate the score change in constant time

• BIC score is decomposable

• Thm 18.3.10.  parameter modularity => BDe score 
is decomposable

• Defn: Structural modularity if p(G) decomposes
• Thm 18.3.10. param & struct modularity => 

Bayesian score decomposable
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Score equivalence

• Def 18.3.11. Score() is score equiv if 
score(G)=score(G’) if G, G’ are I-equiv

• Thm 18.3.12. Likelihood and BIC scores are score 
equiv.

• BDe score is only score equivalent if we set the 
Dirichlet hyper-parameters as follows

• Eg if P’ is a uniform prior network, then
θijk

def
= p(Xi = k|Xπi = j)

θijk ∼ Dir(αijk)

αijk = α
1

qiri

αιϕκ=1 (K2 prior) is not score equiv

thetaY ~ Dir(1,1)
thetaY|X=1 ~ Dir(1,1)
thetaY|X=0 ~ Dir(1,1)
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Decomposable score

• When we make local changes to a graph, we want 
to evaluate the score change in constant time

• BIC score is decomposable
• We say a prior satisfies structural modularity if

• Thm 18.3.10. Structural & parameter modularity => 
Bayesian score is decomposable


