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e Forward sampling (12.1)

* Importance sampling (12.2)
« MCMC (12.3)

e Collapsed particles (12.4)

e Deterministic search (12.5)



Monte Carlo integration

 The goal is to approximate E[f(X)] for some function
f eg f(X) = 1(X;=k), s0 E[f(X)] = p(X=k)

e Usually we take expectations wrt p(X|e), where e Is
the evidence

 |f we can draw samples X ~ p(X|e), we can
evaluate the expectation thus:

1 M
Ep(f] =~ i z flx[m]).

m=1



Error analysis

Let i = E[h{X)] be the exact expected value, and fs a Monte Carlo approximation based on 5 samples. One can
show a central-limit type theorem

- . |:|'2
(fs —p)=N(0, =) (16.6)
where @ = Var [l( X)]. The latter quantity can itself be estimated by MC:
1 5

2= =Y (f(0°) - fs)? 16.7
& 5 ;‘f (6°) - fs) (16.7)

Then we have . B
P {;L 196 _<f <u+ 1.136;} ~0.95 (16.8)

Ve VS

=0, . 0o . .
The term 4/ % 1s called the (numerical or empincal) standard error. Thus we see that the error in our MC estimate

goes down at a rate of 1/+/S.



Forward sampling

e To sample from the prior p(x) of a DGM Is easy:
just sample each node In topological order,
conditional on its parents

 To sample from the prior of a UGM is much harder
e Usually we want to sample from the posterior p(x|e)

 We can use forwards sampling and throw away all
samples that are inconsistent with e; this is called
rejection sampling (“logic sampling” in the context
of discrete DGMs) and iIs very inefficient






Unnormalized importance sampling

e Often sampling from P Is hard

e Suppose we sample from a proposal distribution Q
Instead. All we require Is that P(x)>0 => Q(x)>0

P(X] FPix)
E [ X = M) 1
c;‘-g:-i:;[f ’Iﬂjl'rX ] Z x)flx) O(x)
= Zfr;um
= Epx)lf(X)]
En(f) = Z fu[m];P"‘r[m]:' Unbiased estimator
P Qzlm])’



Variance

« Variance of estimator given by

¥ ]

a : PRy . , . : P , . , W
oh = Egux) [(F(X)w(X))*] = Egu [(f(X Jw(X))]
Eqixy [(fIX)w(X )] — (Epx [f(X)])7

e Let f(X)=1. Then variance is variance of P(X)/Q(X)

-

. POXONY (o [POOTY
koo | (gxs) ] - (#am|grx] )

-

. Variance will be large if Q(x) << P(x) f(x)



Normalized importance sampling

Often we only know P’(x) = a P(x) with unknown o
e Define

P(X)
QX))

wi X | =

Then

FL.I‘J ~
Eoixy|lw( X )| = r)— = Fle) =o.
Qx| | ZQL ) Q) >

&

Epxy[f(X)] = Z Plx)f(x)

FPlx)
= Z Q(a ‘fLJ‘J—J

J"I
O a)
- _y fleim|w(x|m|)
= l‘:r-?l;xJ[kaJwLXJ] Enif)= Zm. l.nf [ ] [ ]
E S _jwim[m])

Eg x) [fIX Jw( X )]
Egix)[w(X)]

= = ZQLrJffN




e Biased estimator
Sy fla[m]jw(x[m])

E;:Ll w(x[m|)

e Eg M=1. x[lj Q has wrong mean

Ep(f) =

_ﬂ,::‘[l] jur(a[1])

o([1]) = flax[1]).

e But bias -> 0 as 1/M since numerator and
denominator are both unbiased
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Variance

e Variance ->0 as 1/M

l'nrp[t'-p[f[X”] A ﬁl';u‘p[ﬂ.}(}][l + Varg[w{ X ]},

« Variance of optimal estimator is  varls(xi/m

* Ratio s 1
1+ Warg|w(a)|

« Effective sample size

M
Meg = 1+ Var[D]
M M
Var[D] = ) w(zm])® — () w(x[m])>.
m=1 m=1
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Likelihood weighting

e Let us apply importance sampling to a DGM where
the proposal is as follows: do forwards in the
mutilated DGM where observed nodes are clamped

to Z=z7
w(é) Ps(£)

« Prop 12.2.5. Weights are P

Algorithm 12.2 Likelihood Weighted Particle Generation

Procedure LV-sample |

B, Bayesian network over A
s =z Event in the network
1 Let Xy,...,Xq be a topological ordering of A
2 w — 1
} for :=1,..., 1
l u; — x{Pax,) Assignment to Pax, in @1, ... ,3i-1
b if X; & Z then
§ Sample x; from P(X; | u;)
7 else
B Ty — 2{X;) Assignment to X; in 2
d we— w- Pla; | uy) Multiply weight by probability of desired value
10 return (ry,...,: Ty ). W
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Using LW weights

« Recall that E[w(X)] = a = p(Z=2)
« Ratio likelihood weighting: run LW twice for each y

ﬁ"ﬂ[yﬁ} - 1.-““12;.&:1 w(m]
Ppr(e)  1/MM iim]

Pp(y |e) =
 Normalized likelihood weighting: run LW once, and
use samples to evaluate any query

Loy il Hyfm] = v} = p(y,2)/ p2)
S g w[m]

Pp(y | e) =
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Efficiency

« Although LW does not “throw away” samples that
are inconsistent with e, it down weights them

 |f the evidence Is at the leaves, the samples are
drawn from the prior and may be assigned low
weight

« Backward importance sampling (evidence
reversal): If X->Y=y, sample from Q(X) «x p(Y=y|X)

* |Importance sampling does not scale well to high
dimensions, because hard to make Q match P
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MCMC

 Markov Chain Monte Carlo constructs a Markov
chain whose stationary distribution is equal to the
posterior p(x|e).

» Metropolis Hastings: only need proposal Q(x’|x
and agility to evalgate X) = p(xl?e)poc p(x% 1¥)

e Gibbs: only need ability to sample full conditionals
p(xi|x(-1),e)
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Metropolis Hastings algorithm

 We propose q(X’|x) and evaluate a=mi(Xx’)/Tq(x)
e |If a>=1, we accept, otherwise we accept wp r

o Always accept uphill move, occasionally accept
downhill move

 If proposal is asymmetric, need Hastings correction

n(2)q(zle’) _ m(a')/q(a’]e)
m(z)g(z'|z)  w(x)/q(z]z’)
= min(l,a)

¥ =
A
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MH pseudocode

Initialize =°

fors=10,1,2,...do
Sample =’ ~ g(z'|x)
Compute acceptance probability

Compute » = min(1, «)
Set new sample to

with probability r
with probability 1 — »
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Why MH works

« MH generates a MC with this transition matrix

(' |z \r(x’|x) it o’ = r .
:ﬂim’lr]={ a( |z)r(zr) nE T (16.21)

glr|r) + 2 e ql@|z)(l — rix’|z))  otherwise

Theorem 16.2.1. If the transition marrix defined by the MH algorithm (given by Equarion 16.21) is ergodic and
irreducible, then w is its unigue [imiting distribution,

Proof. Consider two states = and ='. Either

m(x)g(x'|z) < w(x")g(z|x") (16.22)

or
miz)g(x'|x) = (2 )g(x|x") (16.23)
We will ignore ties (which occur with probability zero for continuous distributions). Without loss of generality, assume

that w(x)g(z'|z) = m(z")g(x|="). Hence

ol |z) = f:lia"llqlixll"ll

—_ 16.24
@) 76.24;
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Proof cont'd

Hence we have r(z'|z) = a{z’|z) and r(z|z') = 1.
Now to move from x to ' we must first propose @ and then accept it. Hence

w(z"yg(x|x") _ r(x')
mir)gla'|r) Tix)

pl'|z) = gle’ [o)r(e’|£) = gl |x) (a]r)

Hence
r(x)plz'|z) = w(z")q(z|x’)
The backwards probability 1s
plx|a’) = gla|2’)r{x|z') = g(x|r’)
since r{x|r') = 1. Inserting this into Equation 16.26 we get
r(x)p(z'|z) = m(z")p(z|x’)

s0 detatled balance holds. Hence. from Theorem 77, 7 1s the stationary distribution.

(16.25)

(16.26)

(16.27)

(16.28)
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Proposal distributions
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Proposal distributions
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Methods for choosing proposals

 |nitialize chain at a local mode (found with an
optimizer)
e Gaussian random walk, with covariance = Hesslan

e Mixture of base kernels, corresponding to different
heuristic algorithms

g |=] = i wy el |T)
* Adaptive MCMC: modify Gaussian covariance
online
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Gibbs sampling

Sample each node given all others, from its full

conditional
Loaf™ ~plag|eg, ..., 23)
2 1;“ plx |:r:E'1"'1 ..., r3)
3oaith e plag|eiil ot )
4 a§+1 i J"I‘_'.I Ed’lﬁa-l-l ..... 1§+]ij

e This is MH with the following proposal

g((x}, x—i)|(zi, x24)) = plzi|x_i)

e Acceptance rate is 100%

_ P(x,']';r x|x')  plagx_g)p(x_g)pla;|[x_;)

. . |
p(x)q(x'|x)  plafx_i)p(x_i)p(c]|x_;)
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bbs for bivariate Gaussian
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Gibbs for Ising

grtim 3 1 irnhal guics

(&) ity (ch

i

ecpr [ Jaey |l 1, 20 )
excp| Juws [de (41, we) + exp|— Juws el —1, )
ay(+1],
—_

plry = +Hlpx_p.¥.8) =

= 2T la :
’ . a(—1)"

26



BUGS

e Bayesian Updating using Gibbs Sampling

var
A, B, C, X, ¥, mu, tau, pl2.3], g;:

i r’_\-‘
«— >
o L

4

RN
LSS
—

P = ...
& r dbern(0.3)

B ~ dcat(plA.1:3])
Neth X ro dnorm{-1,0.28)
mu <- 3*X+B"2
tau <- 1/%M2
¥ ~ dnorm(mu,tau}

o

|~ l— o

b

P

legitig) <- 4%X + 2
C ~ dbern(g)
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Single vs block updates

* Gibbs does single site updating which can move
slowly, or even get stuck (eg XOR)

* Blocked Gibbs sampling samples multiple variables
at once

[TE |
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Accuracy

 Even though the samples are correlated, we have a
CLT-type result

(,LL o //)')_>N(O7 02)

]

o® = Var [f(X)] + QZ Cov[f(X, ). F(Xepe)]

f=0

e Autocorrelation function

Cov[f(X¢), f(Xeqe)]

a2

pll) =

29



e Mixing time Is tlme to reach stationary distribution

nitial Condil Irifal Glrd‘lml 7

e
'

E====i=:T= =T==E,====§, dzmi*’**i:::’ﬁ:===rt =T
]

T, & . ‘====i====ﬁ===7ﬁ * =I’
|Tmmi:-:'i'r:T=.‘.[,=T=‘rﬁ'='=§, pmmi====i===-ﬁhr‘T-T T:’
lllll T11els L1 T s T [1111 ”mmn te hTrT'rTTT T H”
"'“‘"""’mmmmmmm TUhtrrrperenrenananng

Samples drawn before convergence (during burnin
phase) should be discarded
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* Mixing time depends on eigengap, y=A;-A,
e Hard to compute

 Can develop bounds based on the conductance
(which is low if there are narrow bottlenecks in the

state space)
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Convergence

e 2issues
— Speeding up convergence
— Determining if convergence has happened

e Speedups: various tricks, see later
e Determining: various heuristics

32



Traceplots and ACF
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EPSR

e Start 3 chains from different states, run them for a
while, check If variance within a chain is
comparable to variance between chains

e Can be formalized using the Rhat statistic
(estimated potential scale reduction).

 If Rhat ~ 1.0 for a specific f(X), then it suggest that
the chain has converged.

« Can compute Rhat for multiple features f(X).
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Simulated annealing

Global optimization method

 Ralse surface to a temperature to smooth it out/ kill
off the non-peaks .. ="

—

Bmp 2000




Simulated annealing

o TI(X) = exp(-E(X)), E(x)=energy (+ve or —ve)

(' )1/ T

rrl';.iz':Jl-“T’
exp(—E(z'))}/T=
exp(—E(x))l/ T
exp((E(z) — E(x"))/T.)

e Cooling schedule

v =

T. =107
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Samples from SA

nee W0, b 1L BOE Hw 550, g 1 D64 e 1000, e 0.007
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Parallel tempering

 Run multiple chains at different temperatures
 Let them swap samples

 Lowest chain at temp=1 Is used to return samples
to user; other chains encourage global moves

e Good for multi-model posteriors
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Evolutionary Monte Carlo

« Combine ideas from genetic algorithms with MCMC

e Population Is the new state space; propose moves
that swap pieces of particles.
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GMs and MCMC

e MCMC can benefit from GMs
— To define Markov blanket for Gibbs
— To efficiently evaluate 1i(x’)/Tq(x) for MH

e GMs need MCMC for

— State estimation (Inference)
— Parameter estimation (Learnign)
— Model selection (structure learning)
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Collapsed samplers

e A collapsed sampler means analytically integrating
out some variables and sampling the rest

 Aka Rao-Blackwellization

« Later we will see an interesting example when we
consider RB for particle filtering

e Today, a simpler example, which will form the basis
of a homework exercise
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Hierarchical Bayesian modeling

e Model related cancer incidence rates

a b i rnl:-armpaupl e with cancer (runcated &t E||

10
pap of l]r[tru pated 3 I:EI:IIZII:l:l

p(X, n707a7 b) — Hp x’&|n’&7 |CL b) (CL, b)

1)

(2)
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Inference

* Gibbs sampling p(a,b,6,|D) - homework
« MH p(a,b|D) — sample a,b, integrate out theta

C{ P plaD) p[ﬂc)Hfp(rﬂm.ﬁijp[t?ﬂa.bjd&
i

f ) o Bla+ x;.b4+n; — x;)
6, n = p(e)]] B(a,b)
1 5
L | E[6:|D] = E [E[f|ex, D] |D] ~ o 2 E[f;|a’]

 Empirical Bayes (a’,b")=arg max p(a,b|D), then
E[thetaja’,b]
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MH for Missouri cancer problem

 We use mean m=a/(a+b) and K=a+b
e Beta prior on m, noninformative prior on K

mem—1{1 _ g jhm—1 l—[ BiKm+x, K(1—m)+mn; —u;)

m, WD) : — — — —
p(m, K|D) (14 K2 BiKm,K(1—m))

e Transform to unconstrained params

m

i = log . Ho=log K

1—m

 MH with diagonal Gaussian proposal
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Inference in discrete state spaces

For a cts state space, 11(X) is a pdf, so we represent
high probabillity values by repeating them many
times

For a discrete state space (eg model search, or
after integrating out cts), the posterior is a pmf, so
we can evaluate p(x|e) up to a normalization
constant. There is no need to repeat a discrete
state to represent its probability.

Hence It Is better to rapidly visit as many states as
nossible, and never revisit a state

Hence use stochastic/ deterministic, local/ global
search not MCMC
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Deterministic search

e There are many (exact or approx) methods from
the Al/ OR communities to find the top K values of
a discrete distribution

 We approximate P(Z=z) by counting how many
Instantiations are compatible with Z=z, weighted by
their probabillity

Z I{z[m] = E}Pl:_fli':'zl_:l.

it

 More precisely, we have bounds on p(Z=z)

LE) A
Z ]{z:li-;-zl = E}PI:.Eli-:'zl.:l < _r"l'E =x) < (1 — Z ]{Eli'i"ul = E}Plfliﬁll) .
=1 T
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Bounds on conditional probabilities

£ FPly.e) 7

£ FPle) =
i - P
s Ply|e) .
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