Stat 521A

Lecture 1
Introduction; directed graphical models




o Administrivia

e Overview

* Local markov property, factorization (3.2)
e Global markov property (3.3)

* Deriving graphs from distributions (3.4)



* Class web page
www.cs.ubc.ca/~murphyk/Teaching/Stat521A-spring08

 Join groups.google.com/group/stat521a-spring09
e Office hours: Fri 10-11 am

« Final project due Fri Apr 24th

 Weekly homeworks

e Grading
— Final project: 60%
— Weekly Assignments: 40%



 |f you want to ‘sit in’ on the class, please register for
It as ‘pass/fail’; you will automatically pass as long
as you show up for (most of ) the class (no other
requirements!)

 If you take it for real credit, you will likely learn
more...



Homeworks

Weekly homeworks, out on Tue, due back on Tue

e Collaboration policy:

— You can collaborate on homeworks if you write the name
of your collaborators on what you hand in; however, you
must understand everything you write, and be able to do
It on your own

» Sickness policy:

— If you cannot do an assignment, you must come see me
INn person,; a doctor's note (or equivalent) will be required.



Workload

e This class will be quite time consuming.
o Attending lectures: 3h.

 Weekly homeworks: about 3h.
 Weekly reading: about 10h.

e Total: 16h/week.




* You should know
— Basic applied math (calculus, linear algebra)

— Basic probability/ statistics e.g. what is a covariance
maitrix, linear/logistic regression, PCA, etc

— Basic data structures and algorithms (e.g., trees, lists,
sorting, dynamic programming, etc)

— Prior exposure to machine learning (eg CS540) and/or
multivariate statistics is strongly recommended



Textbooks

* “Probabilistic graphical models: principles and
techniques”, Daphne Koller and Nir Friedman (MIT
Press 2009, in press).

 We will endeavour to cover the first 900 (of 1100)
pages!

« Copies available at Copiesmart copy center in the
village (next to McDonalds) from Thursday

| may hand out some chapters from Michael
Jordan’s draft book, “Probabillistic graphical
models”

e | am writing my own book “Machine learning: a
probabilistic approach”; | may hand out some
chapters from this during the semester.



Matlab

e Matlab is a mathematical scripting language widely
used for machine learning (and engineering and
numerical computation in general).

 Everyone should have access to Matlab via their
CS or Stats account.

e You can buy a student version for $170 from the
UBC bookstore. Please make sure it has the Stats

toolbox.

 Matt Dunham has written an excellent Matlab
tutorial which is on the class web site — please
study It carefully!



PMTK

* Probabilistic Modeling Toolkit is a Matlab package |
am currently developing to go along with my book.

* |t uses the latest object oriented features of Matlab
2008a and will not run on older versions.

 |tis designed to replace my earlier ‘Bayes net
toolbox’.

« PMTK will form the basis of some of the
homeworks, and may also be useful for projects.
(Currently support for GMs is very limited.)

o http://www.cs.ubc.ca/~murphyk/pmtk/
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Learning objectives

By the end of this class, you should be able to

— Understand basic principles and techniques of
probabilistic graphical models

— Create suitable models for any given problem

— Derive the algorithm (equations, data structures etc)
needed to apply the model to data

— Implement the algorithm in reasonably efficient Matlab

— Demonstrate your skills by doing a reasonably
challenging project
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Ask questions early and often!

I will use Google before atking dumie questions. 1 will vie Google lefore
asking dumb quertions. 1 will use Gooale before asking dumls Zuestions.
I will use Google before asking dumie questions. 1 will use Soogle before
asking dumls quertions. 1 will use Google kefore asking dumle guestions.
wwwLmrlsurninl before atking dumbs questions. 1 w4l uie Google before
asking dumle quertions. T will use Google keforr asking dumb questions.
I will uie Google before atking dumia questzns 1 will vie Googleganre
asking dumb quertions. 1 will vse Google wefore asthing dumle qu '
1 will use Google before asking duml questions. 1 will vse Gooe;

asking dumb quertions. T will uir Zoogle before asking dumb o'y
I will use Google before atkirg dumie questions, 1 will vie Googn

asking dumle quertions. 1 will vse Gooale before atking dumbs -2

—
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o Administrivia
—e Qverview
* Local markov property, factorization (3.2)
e Global markov property (3.3)
* Deriving graphs from distributions (3.4)

13



Supervised learning

e Predict output given inputs, ie compute p(h|v)
« Regression: h InR
e Classification: hin {1,...,C}
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Structured output learning

 Model joint density of p(h,v) (or maybe p(h|v))
e Then infer p(h|v) - state estimation

« MAP estimation (posterior mode)

h* = arg max, ..., arg rrillaxp(h\v, 0)
1 n

e Posterior marglnals
Z Zp h|v,0)
* Also need to estlmate parameters and structure

Swrvied Univperviged
, — T

9 0 O Labels Diseases Genotype Low-dim rep

V i 4 ¢ Pixels Symptoms Phenotype Features
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Density estimation

 Model joint density of all variables

« No distinction between inputs and outputs: different
subsets of variables can be observed at different

times (eg for missing data imputation)
e Can run model in any ‘direction’
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Inference

e Prior that sprinkler is on

1 1 1
p(Szl)zy:y:y:p(C:c,S:1,R:r,W:w):O.S

c=0 r=0 w=0
e Posterior that sprinkler is on given that grass is wet
p(S=1W =1) = PE=LW=1) 4

p(W =1)
e Posterior that sprinkler is on given that grass is wet

and it Is raining

p(S=1W=1,R=1) =

Explaining away
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Bag of words model

» bag-of-words representation of text documents

o Xi=1 iff word 1 occurs in document
« Define a joint distribution over bit vectors, p(x1,...,xn)

Lrai ing ssl

1 2 3 4 5 3] 7
Words = {john, mary, phone, mancy, send, meeting, unk}

by

Ty =
- v '
T Ea L e
i I™=-3r
= I
it A gt e
=y -'Ti-';:"'fl o' e A "r L .
3 = IOSLPE MR ool S ) - 1 o
o Tmed Tag ¥ WY il | e, B =
iy E oy P gl o
T b i

e

“John sent morey to Mary after the mesting about monay”
| Stop word removal

LR
i ;é%ﬁ“
“iohin senl money mary aller meeling aboul money® A R e
Tokenization e G AR :
1 7 4 i K & 7 4 LAk
l Word counting
1,1,0,2,0,13]
l Thresholding (binarization) :
[1,1,0, 1,0, 1,1] 3¢
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Inference

e Given word Xi occurs, which other words are likely
to co-occur?

 What Is the probability of any particular bit vector?
e Sample (generate) documents from joint p(x)
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Bayesian classifiers

e Define joint p(y,X) = p(X|y) p(y) on document class
label and bit vectors

e Can infer class label using Bayes rule

: Class-conditional density Class prior
Class posterior
/ -~

/
"oy — Py =c)ply =)
Py =€) = S~ ey = dyply = &)

/

Normalization constant

 If y is hidden, we can use this to cluster documents.
* |n both cases, we need to define p(x|y=c)
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Naive Bayes assumption

e The simplest approach is to assume each feature is
conditionally independent given the class/cluster Y

Xi 1 Xj Y =c¢
e |n this case, we can write

p(xly =c) = Hpaj]y—c

 The number of parameters IS reduced from
O(C K9) to O(C K), assuming C classes and K-ary
features

22



Conditional independence

* In general, making Cl assumptions is one of the
most useful tools In representing joint probability
distributions in terms of low-dimensional quantities,
which are easier to estimate from data

 Graphical models are a way to represent ClI
assumptions using graphs

 The graphs provide an intuitive representation, and
enable the derivation of efficient algorithms
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Graphical models

 There are many kinds of graphical models

* Directed Acyclic graphs — “Bayesian networks”

* Undirected graphs — “Markov networks”

* Directed cyclic graphs — “dependency networks”

« Partially directed acyclic graphs (PDAGS) — “chalin
graphs’

« Factor graphs

 Mixed ancestral graphs

e Etc

 Today we will focus on DAG models
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o Administrivia
e Overview
—e | ocal markov property, factorization (3.2)
e Global markov property (3.3)
* Deriving graphs from distributions (3.4)
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CI properties of DAGs

 Defn 3.2.1. A BN structure G is a DAG whose
nodes represent rvs X,,...,X,. Let Pa(X) be the
parents of X, and Nd(X;) be the non-descendants
of Xi. Then G encodes the following local Markov

assumptions:
I,(G) = {X; L Nd(X;)|Pa(X;)}

Loif floulty Intelligence G 1 S|D7 I
W1 I 1D
e SA
o A\ /

\_43 0

Student network
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Another Example

A :'!_r-:."_!"uﬁ.*fl-" X, ey "

T A i ;

e .__.'- . . L

AR o N

i o e

A= i oy
L f oy

Red (X8) L pink | bue
27



 Def 3.2.2. Let I(P) be the set of independence
assertions of the form X L Y | Zthat hold in P

P=X 1Y|Z
 Def 3.2.3. We say G is an I-map for set | if I(G) C |

(hence the graph does not make any false
Independence assumptions)
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I-maps: examples

« Examples 3.2.4, 3.2.5

PiX.Y]

X ¥ | XY X ¥
CEETEN I LTS DA
=t 4| 0o 2 y1| 03
=1 y®| 012 =1 U 0.8
2t ' | DAS R TE 0.1
. T X Y :
o 0.08 0.32 0.4
' \(0.12 0.43> - (o.es) (0:208)
(¢.{) = PLX) PLY) ’
: Pk X LS

P KLY

Imaps=X->Y, X<-Y
Imaps = X Y, X->Y, X <-Y P
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I-map to factorization

e Def 3.2.5. A distribution P factorizes over a DAG G
If It can be written In the form

p(X1,- ., Xn) = | [ p(Xi|Pa(X))
e Thm 3.2.7. If G is an IFmap for P, then P factorizes
according to G.
* Proof: by the chain rule, we can always write
p(X1,..., Xpn) = Hp(Xi|X1:7;—1)
1=1
By the local markov assumption, we can drop all
the ancestors except the parents. QED.
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Student network

i Ficu ity Intelligence

m

Grade SAT

|

Letter

p(I,D,G, S, L) = -
p(D)p(DM)p(G|T, D)p sru_’f Ap(LI1, D 6, 5)
= p(p(D)p(G|I, D)p(S|1)p(L|S)
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Naive Bayes classifier
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Bayes net = DAG + CPD

A DAG defines a family of distributions, namely all
those that factorize in the specified way.

e Def 3.2.6. A Bayes net is a DAG G together with a
set of local Conditional Probabillity Distributions
P(X_1|Pa(X _1)).

i . g r K
0& 104 o7 o
[ |f..|.|.|'|l Irllt.-'|_|-|:r|n|!
| | @ m
CPTS . . "d*| oa i & (v | e e SAT
Each row is a different 7 dlaos| om| o7 l
multinomial distribution, vd"| 09| om| ooz Fl ¥
One per parent combination ia | on| oa| oz T

Pidt, d®, g% a' 1%) = PYPHCP | dP P | 20 o8

= 0.3-06-0.08-0.E- 0.4 = 0.OMBE0E, ¥| oAl o
|om| om
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Water sprinkler BN

P(C=F) P(C=T)

0.5 0.5

C ‘ P(S=F) P(S=T) C | P(R=F) P(R=T)
F 0.5 0.5 / F 0.8 0.2
T 0.9 0.1

% S ISR

S R|P(W=F) P(W=T)

F F 1.0 0.0
T F 0.1 0.9
F T 0.1 0.9

T T 0.01 0.99

p(C, 5, R, W) = p(C)p(S|C)p(R|C)p(WI[S, R)



Joint distribution for sprinkler network

p(C, S, R, W) = p(C)p(S|C)p(R|C)p(W]S, R)

| P(S=F) P(S=T)

C
F
T

0.5
0.9

0.5
0.1

P(C=F) P(C=T)

0.5 0.5

i

S R|P(W=F) P(W=T)

F F

T F

F T

T T

1.0 0.0
0.1 0.9
0.1 0.9

0.01 0.99

e | P(R=F) P(R=T)

F

T

0.8

0.2

0.2

0.8

P PP P PRPPPPOOO0OO0OO0OOOCODON
P P PP, OO 0000 kR, FRP PR EFP,POOOODMNm
P P OORPRPFPOOFRPLRRPLPOORFRP,REPL,LROORH
P OPrRrPORPRORFRPROFRPLRORPLROPFP, O OT=
©000000000000000
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 CPDs can be any conditional distribution
p(X_i|Pa(X_ 1))

 |f Xi has no parents, this is an unconditional
distribution

 For discrete variables, it iIs common to use tables
(conditional multinomials)

 However, CPTs have O(K/Pal) parameters; we will
consider more parsimonious representations (such
as logistic regression) — see ch 5

 For continuous variables, it IS common to use linear
regression to define CPDs (see ch 7)
p(Xz|PCL(XZ) — U, 07,) — N(X73|11T0i, O',Lz)
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Representing parameters as nodes

>(\ Xz, Xol
roT T
d)‘ Dy, Dy

We will return to this representation when we discuss parameter estimation

DAGs are widely used for Hierarchical Bayesian models 37



Genetic inheritance

 G(x) = genotype (allele) of person x at given locus,
say {A,B,0O} x {A,B,0O}

 B(X) = phenotype (blood group) in {A,B,O}
* P(B(c)|G(c)) = penetrance model

* P(G(c)|G(p),G(m)) = transmission model

* P(G(c)) = priors for founder nodes

38



Factorization to I-map

e Thm 3.2.9. If P factorizes over G, then G is an I-
map for P.

° PI’OOf (by example) Loif fleulty Intelligence

m
 We need to show all the Grade SAT
local Markov properties J
hold In P eg. RTP

p(S|1,D,G, L) = p(5[I)

e By factorization and elementary probabillity,
p(S,1,D,G, L)
p(I,D,G, L)
p(I)p(D)p(G|L, D)p(L|G)p(S|I)
p(1)p(D)p(G|I, D)p(L|G)

p(S|I,D,G, L)

= p(S]1),



o Administrivia

e Overview

* Local markov property, factorization (3.2)
—e Global markov property (3.3)

* Deriving graphs from distributions (3.4)
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Global Markov properties

 The DAG defines local markov properties
I,(G) = {X; L Nd(X;)|Pa(X;)}
 We would like to be able to determine global
markov properties, I.e., statements of the form
I(G)={X L1YI|Z: f(X,Y,Z,G)}

for some function f.
 There are several equivalent ways to define f:
 Bayes ball
o d-separation
* Ancestral separation (ch 4)

41



e Consider the chain
X >T7T>3

p(z,y, 2) = p(x)p(y|z)p(2|y)
 If we condition and y, x and z are independent

p(z)p(y|x)p(z|y)

_ plz,y)p(2ly)
| o p(y)
/N = p(z|y)p(z|y)

42



Common cause

e Consider the “tent”

-

N

X \’3;
p(z,y,z) = p(y)p(z|y)p(2|y)

e Conditioning on Y makes X and Z independent

_ p(z,y,2)
p(:z:,z\y) o p(y)
/:@r _ p(y)p(;j(‘zip(z‘y) _ p(m‘y)p(z‘y)
/TN

X X 43



V-structure (common effect)

Consider the v-structure

p(z,y,z) = p(z)p(z)p(yl|z, 2)
X and Z are unconditionally independent

= p(x,y,2) Zp p(ylz, z) = p(z)p(2)

v
but are conditionally dependent

p(z)p(2)p(y|z, 2)
o) # f(z)g(2)

p(x,z|y) —

44



Explaining away

e Consider the v-structure

¥ o |
XX Ox\ \///o XM/ Eox AT
N7 &/

e Let X, Z € {0,1} be iid coin tosses.

e LetY =X+ Z.
* |f we observe Y, X and Z are coupled.
X 1 %
@, 0 )
o | |
l , /
| L

45



Explaining away

e LetY =1 iff burglar alarm goes off,
o X=1 iff burglar breaks in
e /=1 Iff earthquake occurred

X T
\vb/

v
l

« X and Z compete to explain Y, and hence become
dependent

o Intuitively, p(X=1|Y=1) > p(X=1]Y=1,Z=1)

46



Bayes Ball Algorithm

« X, L Xz | Xc If we cannot get a ball from any node

In A to any node in B when we shade the variables
In C. Balls can get blocked as follows.

X >E) >y X (D> %

—> f— >
| :
\ d
\
NP
X P A
X X 2
=Y/ W\ Y

% ® .



Boundary conditions (source X = destn Z)

N
O V-structure
X 5@ X — @ First X->Y then Y <- Z

—| Tent
X — T X 1@_.@ First X <- Y'then Y -> Z

48
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Markov blankets for DAGs

e The Markov blanket of a node Is the set that

renders it independent of the rest of the graph.
MB(X)=minima setUs.t. X L X\ {X}\U|U

e This Is the parents, children and co-parents.

(X5, X 3)
> (X, X 5)
P(Xi, Urin, Yi:ms Z1:m, R)
Yo (@, Uty Yiimy Z1.m, R)
p(XilUrn) (L1, p(Y;| X3, Z5)|P(Utiny Z1:m, R)
> o P(Xi = 2|Un)[[1; p(Y;1Xs = =z, Z;)|P(Ut:n, Z1:m, R)
p(Xi|Urn)[I1; p(Y;]Xi, Z;)]
Do P(Xi = z|Unn)[]; p(Y;|Xs = =, Z;)]

p(Xil X)) =

p(XilX_i) «x p(X;|Pa(X;)) || p(Y;|Pa(Y;)
Y, ech(X,)

Useful for Gibbs sampling 51



Another example

i

| ! T
iz gk Eeo
II.'- -_{.':rll_:--‘f.r.!' 7 ¥ -li.1 3 F'l-

LI HI- -_l- = I

r 4 II._ i i

!.II' _.I"I':.': .'_'l_"l:'-_::_—" F e i

I -I -I- ™ i

Red node (X8) indep of rest (black) given MB (blue parents, green children,
pink co-parents)
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Active trails

 Whenever influence can flow from to Y via Z, we say that
the trail X <-> Y <-> Z is active.

e Causal trail: X -> Z -> Y. Active iff Z not obs.
e Evidential trail: X <- Z <- Y. Active iff Z not obs
e« Common cause: X <-Z ->Y. Active iff Z not obs

e Common effect; X -> Z <- Y. Active iff either Z or one of its
descendants is observed.

e Def 3.3.1. Let G be a BN structure, and X1 <-> ... <-> Xn be
a trail in G. Let E be a subset of nodes. The trail is active
given E if

 Whenever we have a v-structure X, ; -> X <- X,,4, then X; or
one of its desc is in E

 No other node along the trail is in E
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e D-> G <-1->S not active for E={}

e D->G<-1->Sis active for E={L}

e D-> G <-1->S not active for E={L,l}
« Non-monotonic

i Ficulty Intelligence

m

Grade SAT

|

Letter

54



 Def 3.3.2, We say X and Y are d-separated given
Z, denoted d-sep_ G(X;Y|2), Iif there is no active
trail between any node in X to any node in Y, given
Z. The set of such independencies is denoted

I(G) = {X LY|Z:dseps(X;Y|Z)}
e Thm 3.3.3. (Soundness of ds%p). If P factorizes
according to G, then I(G) C I(P).

e False thm (completeness of dsep). For an[g P that
factorizes accordingto G, if X LY | Zin I(P), then

desps(X;Y|Z) (i.e., P is faithful to G)
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Faithfulness

e Def 3.3.4. A distribution P is faithful to G if, whenever X L Y

| Zin I(P), we have dsep_ G(X;Y|2Z) i.e., there are no “non-
graphical” independencies buried in the parameters

e A simple unfaithful distribution, with Imap A->B:

'] J..' ']

W

TT04 0.6
L1044 06

- =

Such distributions are “rare”

« Thm 3.3.7. For almost all distributions P that factorize over
G (ie except for a set of measure zero in the space of CPD
parameterizations), we have that I(P)=I(G)
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Markov equivalence

A DAG defines a set of distributions. Different DAGs may
encode the same set and hence are indistinguishable given
observational data.

e Def 3.3.10. DAGs G1 and G2 are I-equivalent if I(G1)=I(G2).
The set of all DAGs can be partitioned into I-equivalence
classes.

 Def 3.4.11. Each can be represented by a class PDAG: only
has a directed edge if every membper shares that edge.
o eced e igen meny

X
y 7 o ! !
e Y ‘;’ ; - f
L 0 ! i I
t Y
t 2 ¢ fpA & ¢ ?ox G
Xl} X1t
X LT Y XY 57



Identifying I-equivalence

Def 3.3.11. The skeleton of a DAG is an undirected
graph obtained by dropping the arrows.

Thm 3.3.12. If G1 and G2 have the same skeleton
and the same v-structures, they are I-equivalent.

However, there are structures that are I-equiv but
do not have same v-structures (eg fully connected
DAG).

Def 3.3.13. A v-structure X->Z<-Y is an immorality if
there Is no edge between X and Y (unmarried
parents who have a child)

Thm 3.3.14. G1 and G2 have the same skeleton
and set of iImmoralities iff they are |-equiv.
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Markov properties of DAGS

e DF: F factorizes over G
« DG: I(G) C I(P)

. DL: I,(G) C I(P)

- —> 06 = DL
Dr '1'1_-_;‘ tri/i

ov‘/\/’\“ )

1.2 1

Based on Jordan ch 4 60



o Administrivia
e Overview
* Local markov property, factorization (3.2)
e Global markov property (3.3)
—e Deriving graphs from distributions (3.4)
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Deriving graphs from distributions

So far, we have discussed how to derive
distributions from graphs.

But how do we get the DAG?

Assume we have access to the true distribution P,
and can answer guestions of the form

PEX 1Y|Z

For finite data samples, we can approximate this
oracle with a Cl test — the frequentist approach to
graph structure learning (see ch 18)

What DAG can be used to represent P?
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Minimal I-map

 The complete DAG is an |-map for any distribution
(since it encodes no ClI relations)

e Def 3.4.1. A graph K is a minimal I-map for a set of
Independencies | if it iIs an |-map for |, and if the
removal of even a single edge from K renders it not
an I-map.

e To derive a minimal I-map, we pick an arbitrary
node ordering, and then find some minimal subset
U to be X/s parents, where

Xi L{Xy,..., Xs 1} \UU

e (K2 algorithm replace this CI test with a Bayesian
scoring metric: sec 18.4.2).
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Effect of node ordering

« “Bad” node orderings can result in dense,
unintuitive graphs.

e EgL,S5,G,I,D. Add L. Add S: must add L as parent,
since P /&=L 1 SAdd G: must add L,S as parents.

b T 1 ok

SR Nl \\7@\
T

M o= 0
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Perfect maps

 Minimal I-maps can have superfluous edges.

o Def 3.4.2. Graph K is a perfect map for a set of
Independencies | if I(K)=I. K is a perfect map for P if
1(K)=I(P).

* Not all distributions can be perfectly represented by
a DAG.

 Eglet Z=xor(X,Y) and use some independent prior

on X, Y. Minimal |- maP Is X -> Z <-Y. However, X
1 ZinI(P), but not in I(G)

« EgALC|{B,D}and B L D|{A,C}

A A
f’;x K‘\. / \
b B b g ) LB

"-.E- %
Reofs e el
e @t -



Finding perfect maps

e |If P has a perfect map, we can find it in polynomial
time, using an oracle for the Cl tests.

 We can only identify the graph up to I-equivalence,
so we return the PDAG that represents the
corresponding equivalence class.

 The method” has 3 steps (see sec 3.4.3)
— ldentify undirected skeleton
— ldentify immoralities
— Compute eclass (compelled edges)

e This algorithm has been used to claim one can infer
causal models from observational data, but this
claim Is controversial

Algorithm due to Verma & Pearl 1991, Spirtes, Glymour, Scheines 1993, Meek 1995 66



