
Stat521A Spring 2009: homework 4

1 Ising models are equivalent to Poisson log-linear models
(Source: [HTF09] ex. 17.12)
Consider an Ising model on d nodes

p(x|θ) = exp[
∑
<j,k>

θjkxjxk − Φ(θ)] (1)

where the sum is over all edges < j, k >, xj ∈ {0, 1} and Φ is the log partition function

Φ(θ) = log
∑
x

exp[
∑
<j,k>

θjkxjxk] (2)

We assume there is a special node X0 which is clamped to 1, and is connected to all the other nodes with weights θ0i.
The log-likelihood is given by

`(θ) =
n∑
i=1

[S(xi,θ)− Φ(θ)] (3)

S(xi,θ) def=
∑
<j,k>

θjkxijxik (4)

The gradient is given by

∂`(θ)
∂θjk

=
n∑
i=1

xijxik − n
∂Φ(θ)
∂θjk

(5)

∂Φ(θ)
∂θjk

=
1∑

x′ eS(x′)
[
∑
x
eS(x) ∂

∂θjk
S(x)] (6)

=
∑
x
p(x|θ)xjxk = Eθ[XjXk] (7)

Hence at the MLE, we have that the empirical moments match the model moments, as is standard for an exponential
family model:

Ê[XjXk] = Eθ[XjXk] (8)

where we have defined

Ê[XjXk] =
1
n

n∑
i=1

xijxik (9)

One can fit this model using gradient methods (where computing the gradient takes O(nd2 + 2d) time). Alternatively,
we can treat this model as a generalized linear model, and use IRLS, as we show below.

1. Explain why the constant node X0 = 0 must be included. (Consider a model with just two variables.)
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2. Consider a Poisson regression model with d binary covariates, xij ∈ {0, 1}, and response variable yi ∈
{0, 1, . . . , 2d − 1}, with distribution

P (Y = y|X = x) =
e−µ(x)µ(x)y

y!
(10)

We assume a log-linear model with first-order interactions for the mean:

logµ(x) = θ00 +
∑
<j,k>

xjxkθjk (11)

where xi0 = 1 as before. Consider the log likelihood

`(θ) =
∑
i

log p(yi|xi,θ) (12)

Show that the gradient equation of ` wrt θ00 computes the log partition functon (Equation 2).

3. Show that the gradient equation of ` wrt the other θ terms yields the moment matching equation in Equation 8.

4. Explain how we can fit an Ising model by fitting a Poisson regression model (using, say, IRLS or Newton’s
method). Give an example. What is the computational complexity of this procedure? Hint: the book [Agr02]
may be helpful.

5. The Poisson regression model is a conditional model p(Y |x,θ), whereas the Ising model is an unconditional
multinomial model, p(x|θ) = Mu(x|1,θ). Explain how to convert the former to the latter. (Hint: a Poisson
conditioned on the count N =

∑
i yi is a Multinomial.)

2 EM for family-based genetic association II
This exercise is an extension of the question in HW3. Consider a set of Nf families, each of which has a mother,
father and Nc children. We measure the alleles at Ng gene/SNP locations; these have values {AA,Aa, aa}. Let
Ggfc ∈ {0, 1, 2} represent the number of copies of the minor allele (a) for child c in family f for gene g. Similarly,
Ggfm is the maternal allele and Ggfp is the paternal allele. Let i ∈ {m, f, 1, . . . , Nc} index a generic family member.
We do not observe the Ggfi directly, but instead observe a noisy copy, Ogfi ∈ {0, 1, 2}. In addition, we observe a
covariate (assumed scalar for simplicity), Xfi ∈ R, representing environmental factors, and a response/ phenotype
(assumed continuous for simplicity), Yfi ∈ R. The goal is to infer if the genes or environment “cause” the response,
and if it is the genes, which ones. We assume a linear regression model of the form

Yfi ∼ N (Yfi|
Ng∑
g=1

βgG
g
fi + βNg+1Xfi + βNg+2, 1/λ) (13)

Thus if gene g is causal, its coefficient should be large (positive or negative), and it will have an additive effect on the
response. The more copies of the minor allele at locus g, the greater the effect on the response. If multiple genes are
involved, the effects should be larger (unless their coefficients are of opposite signs! We ignore that issue here).
Some synthetic data is shown in Figure 1. We assume Nf = 50 familes, each of which has Nc = 2 children. There
are Ng = 2 genes. The environmental factor X is random. The coefficient vector is β = [−49.4, 0.6, 0.5, 1.7], so
gene 1 has a negative effect on the response, gene 2 is irrelevant, the environment is irrelevant, and the offset term
is negligible. Consequently we see that the response Y reflects the pattern of alleles in gene 1: when G1

fi = 2, the
response is large and negative, and when G1

fi = 0, the response is near zero.
In the test data, you observe X , Y , and O, and you have to infer β. From this, you can estimate which genes are
involved (if any), and how strong their effect is. The simplest approach is to compute a MAP estimate of β using EM,
treating G as the missing data. (Ideally we would want some measure of uncertainty in our conclusions, too, e.g., a
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Figure 1: Family-based genetic association, dataset 1. We see that the response Y mirrors gene 1, but ignores gene 2 and the
environment X (top right). Note that, even though ν = 0, O is still not exactly equal to G, since AA (2) can get flipped to aa (0)
and vice versa. However, in this noise free case, Aa is observed perfectly (so the patches of green in G and O are the same).
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(a)

(b)

Figure 2: (a) Graphical model for family-based genetic association. (b) Visualization of how the data was generated. Each row of
the G matrix is a single family, and has a correlation structure as shown in (a).
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posterior credible interval. We will leave that to future exercises.) In general, we may be missing some of the entries
for X , Y and O (corresponding to unmeasured people). This is a trivial extension which we will not worry about.
The data was generated from the model shown in Figure 2 (although the parameters ν, β and λ were set by hand rather
than sampled). You can make use of this fact when performing inference. First, the root nodes, Ggfp and Ggfm, have
the following CPD:

AA Aa aa
(1− ρ)2 2ρ(1− ρ) ρ2

We used ρ = 0.5; you may assume this constant is known. (It can be estimated from the population frequencies of
each allele type for each gene.) The child nodes, Ggfc, have the following CPD, which encodes Mendel’s laws:

F M p(C = AA) p(C = Aa) p(C = aa)
AA AA 1 0 0
AA Aa 0.5 0.5 0
Aa AA 0.5 0.5 0
AA aa 0 1 0
aa AA 0 1 0
Aa Aa 0.25 0.5 0.25
Aa aa 0 0.5 0.5
aa Aa 0 0.5 0.5
aa aa 0 0 1

The observed genotypes have the following noise model:

G p(O = AA) p(O = Aa) p(O = aa)
AA 1−ν2

2 ν2
1−ν2

2
Aa ν1 1− 2ν1 ν1
aa 1−ν2

2 ν2
1−ν2

2
We varied ν depending on the dataset. You should estimate these values. You can use an informative beta prior, which
encodes the belief that ν is unlikely to exceed 0.1.
Finally, we sampled Y according to Equation 13. We set λ = 1 but varied β according to the data set. You should
estimate these values. Use a conjugate prior of the form

p(β, λ) = Ga(λ|aλ, bλ)N (β|µ,Σ/λ) (14)

Use the vague hyper-parameters such as aλ = bλ = 0.01, µ = 0, and Σ = 100I.

1. Derive an EM algorithm for MAP estimation in this model. This is essentially the same as HW3, except now we
have priors, the likelihood model for O is slightly different, and the regression model for Y is slightly different.

2. Implement your algorithm. You may find the file familyTreeGeneDataMystery, in pmtk/examples,
helpful. (Download the latest version of PMTK (1.4.0) first.) It specifies then generative model, without reveal-
ing the parameter values. When performing inference in the DGM (for the E step), since there are only 4 hidden
nodes per family, you can use any inference method you want, including brute force enumeration (which ex-
plicitly builds the joint containing 24 entries) or variable elimination. (See inheritedDiseaseVarElim in
pmkt/examples/dgmDistExamples for an example of how to do inference in PMTK in a tree with dis-
crete hidden nodes and continuous observed child nodes.) For larger families, one should use belief propagation
(see future exercise).

3. Load the files familyTreeDataX.mat, for X = 1, . . . , 5, from pmtk/data. Each one should contain
variables of the following form:

X: [50x1 double]
Y: [50x4 double]
O: [50x4x2 double]
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We have Nf = 50 families, each with Nc = 2 children, and Ng = 2 genes. The values of O are in {1, 2, 3}
(not {0, 1, 2} as above), and represent AA,Aa, and aa. The matrix is indexed as follows: O(f, i, g), for family
f = 1 : Nf , person i = 1 : Nc + 2, and gene g = 1 : Ng . These datasets were generated with different
parameter values. Fit a separate model (using EM) to each dataset and state your MAP estimate of β. Make a
plot similar to Figure 1, where for the unobserved G variables you plot the mode of the marginal p(Ggfi|D, θ̂).

4. Try fitting different models to each dataset, in which different subsets of β are forced to zero. Use a model
selection criterion such as BIC to pick the best. Which genes (if any) cause the response in each dataset?

5. Try ignoring the family structure between the Gs and see if your conclusions change.

6. Pretend that O are noise-free versions of G. (You will have to “soften” the CPD for p(Ggfc|G
g
fp, G

g
fm) to

prevent a probability of zero being assigned to non-mendelian data.) Rerun your experiments and see if your
conclusions change. In this case, there is no missing data, so you do not need EM. In fact, you can compute the
exact posterior over the parameters, and use the marginal likelihood for each model, instead of using BIC (this
requires using the p(D) formula for Bayesian linear regression). See if this makes any difference. Try making
the dataset smaller (say, 10 families); one expects the Bayesian score to be better than BIC for small sample
sizes.
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