
Stat 406 Spring 2008 Homework 3

1 Deriving the offset term
Let

J(w, w0) = (y − Xw − w01n)T (y − Xw − w01n) (1)

By solving ∂
∂w0

J(w, w0) = 0, show that

ŵ0 = y − xTw (2)

wherey = 1

n

∑n

i=1
yi andx = 1

n

∑n

i=1
xi.

2 Least squares using SVD

Let w be a solution ofXw = y. LetX = UDVT be the SVD ofX. Prove thatw = VD−1UTy.

3 Multivariate linear regression
Multivariate linear regression is just like “regular” linear regression, except the output is a vector. Hence we replace
the weight vector with a weight matrix:

yi = WT xi + εi (3)

wherexi is a column vector ofp inputs (covariates),yi is a column vector ofq outputs (responses), andW is ap× q

matrix. We assume the noise is uncorrelated,εi ∼ N (0, Iq).

1. Consider the objective minimizes

J(W) =
1

n

n
∑

i=1

||ei||
2 (4)

whereei = yi − WT xi is the vector of residuals on training casei. Show that the minimal least squares
estimator is given by

Ŵ = (XTX)−1XTY (5)

whereY is a matrix whose columns arey
1

to yn, andX is a matrix whose rows arexT
1

to xT
n . Hint: show that

the objective decomposes intoq independent univariate least squares problems. You may state the univariate
result without proof.

2. If the inputxi is transformed through a set of basis functions,φ(xi), we can write

Ŵ = (ΦTΦ)−1ΦTY (6)

where

Φ =







φ(x1)
T

...
φ(xn)T






(7)

is the modified design matrix. Consider the following example. x ∈ {0, 1} andφ(0) = (1, 0)T andφ(1) =
(0, 1)T (thus we encode the binary input as a 2-dimensional column vector). The response is also a 2-dimensional
column vector (sop = q = 2). The dataset is
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Figure 1: MSE vs (a) training set size, (b) polynomial degree, (c) sizeof ridge penalty. Solid Red = training, dotted black = test.

x y
0 (−1,−1)T

0 (−1,−2)T

0 (−2,−1)T

1 (1, 1)T

1 (1, 2)T

1 (2, 1)T

ComputeŴ from the above data.

4 Linear, polynomial and ridge regression on Boston housing data (Matlab)
We will use linear regression to predict house prices, usingthe famousBoston housing dataset, described athttp:
//www.cs.toronto.edu/ ˜ delve/data/boston/bostonDetail.html . There are 506 records. We will
use first 13 features as inputs,x, and the 14th feature, median house price, as the outputy. All features are continuous,
except feature 4, which is binary. However, we will treat this like any other continuous variable.

1. Load thehousing.data file. We will use the first 300 cases for training and the remaining 206 cases for
testing. However, the records seem to be sorted in some kind of order. To eliminate this, we will shuffle the data
before splitting into a training/ test set. So we can all compare results, let use the following convention:

Listing 1: :
data = load(’housing.data’);
x = data(:, 1:13);
y = data(:,14);
[n,d] = size(x);
seed = 2; rand(’state’,seed); randn(’state’, seed);
perm = randperm(n); % remove any possible ordering fx
x = x(perm,:); y = y(perm);
Ntrain = 300;
Xtrain = x(1:Ntrain,:); ytrain = y(1:Ntrain);
Xtest = x(Ntrain+1:end,:); ytest = y(Ntrain+1:end);

2. Now extract the firstn records of the training data, forn ∈ {25, 50, 75, 100, 150, 200, 300}. For each such
training subset, standardize it, and fit a linear regressionmodel using least squares. (Remember to include
an offset term.) Then standardize the whole test set in the same way. Compute the mean squared error on
the training subset and on the whole test set. Plot MSE versustraining set size. You should get a plot like
Figure 1(a). Turn in your plot and code. Explain why the test error decreases asn increases, and why the train
errorincreases asn increases. Why do the curves eventually meet?

As a debugging aid, here are the regression weights I get whenI train on the first 25 cases (the first term is the
offset,w0):
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26.11 -0.58 3.02 -0.38 -0.39 1.19 4.72 ...
-4.30 -4.82 0.63 -3.25 -0.21 -0.27 -1.16

3. We will now replace the original features with an expandedset of features based on higher order terms. (We
will ignore interaction terms.) For example, a quadratic expansion gives







x11 x12 · · · x1,d

...
xn,1 xn,2 · · · xn,d






→







x11 x12 · · · x1,d x2

11
x2

12
· · · x2

1,d

...
xn1 xn2 · · · xn,d x2

n1
x2

n2
· · · x2

n,d






(8)

The provided functiondegexpand(X,deg) will replace each row of X with all powers up to degree deg. Use
this function to train (by least squares) models with degrees 1 to 6. Use all the the training data. Plot the MSE on
the training and test sets vs degree. You should get a plot like Figure 1(b). Turn in your plot and code. Explain
why the test error decreases and then increases with degree,and why the train error decreases with degree.

4. Now we will use ridge regression to regularize the degree 6polynomial. Fit models using ridge regression with
the following values forλ:

lambdas = [0 logspace(-10,10,10)];

Use all the training data. Plot the MSE on the training and test sets vslog
10

(λ). You should get a plot like
Figure 1(c). Turn in your plot and code. Explain why the test error goes down and then up with increasingλ,
and why the train error goes up with increasingλ.
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