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Two approaches to classification:

e Generative Approach

Uses a parametric family of models and obtains a classifier by
first estimating the class conditional density, then classifying
each new data point to the class with the highest probability.
It is a way to generate x from y. EX: Naive Bayes

e Discriminative Approach

Depends only on the conditional density p(y|z). Discrimi-
native methods model the conditional without making any
assumptions about the imput X. Here X is always observed.
We don’'t need to generate it. Ex: Logitic Regression



Gaussian Class-conditional densities

Let
PX[Y =j) = N(uj, %)

P(Y =j) = T
Recall

PX|Y = j)P(Y =)
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P(Y = jx) =

and the Gaussian pdf
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Remember, under 0-1 loss, Bayes decision rule will pick the class
7 that maximizes the discriminant function, which we saw in
section 6.2

g,(z) = 10g P(X|Y = j) 4 log P(Y = j)

so it will pick g; if g; > g



Expanding the previous equations and considering the following
scenarios:

° Zj — > |, tied across all classes

o D

; is diagonal (The Naive Bayes assumption)

e Y is binary, Y € {0,1}

e [ he general case



Case 1: *;=5%,Y €{0,1}
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ag — a1 —3(x — o) TZ (X — o) + A (x — p)TZ7H(X — p1)

= —(p1—po)T=Ix+ 21 — po) =71 (p1 + o)

By dividing the numerator and the denomenator by mwi1e“l, we
get:

P(Y =1|x) = 1
14-exp [— Iog %—I—ag—al}

1
1+exp[—B'x—7]

= o(B'X+7)




Where
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o(z) is called the logistic function or sigmoid function



T he sigmoid has the following property:

p=o0(z) < z=log——

1-p
where Iog% is called a log-odds ratio.

It is also easy to show:

1—0(2) =0(—2)



Effect of

consider the case where
a(6'%)
Then
P(Y =1|x,z;=1) b (Bo+ Tiz;Bimi+8;) 4
P(Y = 1|x,z; = 0) exp (ﬁo + Yixs @-azi) B

Q.

B; controls the steepness with which the probability increases.



Decision Boundary

Points of equal posteriors all lie on the line between the two
means.

P(Y = 1|x) = P(Y = 0|x) = 0.5

To find the decision boundary, we need to solve for:

o(z) = 0.5
z = IOglLip
= 10953
= logl

= O



If we consider the case where m1 = mg = 0.5, we have:

B (Ml-l-,uo))

2
The boundary line is orthogonal to uo> — 1 and is equidistance
from the two means. If the priors are non-uniform the the deci-
sion boundary shifts:

z=0'x+~v = (u1 — po)’ (iv

o if m1 > m>, the boundary shifts right.
e if 11 < mp, the boudary shifts left.

Effect of >: If > is not spherical, the decision boundary is no
longer orthogonal to us — uy.




