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Two approaches to classification:

• Generative Approach

Uses a parametric family of models and obtains a classifier by
first estimating the class conditional density, then classifying
each new data point to the class with the highest probability.
It is a way to generate x from y. Ex: Naive Bayes

• Discriminative Approach

Depends only on the conditional density p(y|x). Discrimi-
native methods model the conditional without making any
assumptions about the imput x. Here x is always observed.
We don’t need to generate it. Ex: Logitic Regression



Gaussian Class-conditional densities

Let

P (x|Y = j) = N(µj,Σj)

P (Y = j) = πj

Recall

P (Y = j|x) =
P (x|Y = j)P (Y = j)∑C

k=1 P (x|Y = k)P (Y = k)

and the Gaussian pdf

p(x|µ,Σ) =
1

(2π)d/2|Σ|1/2
exp

[
−

1

2
(x− µ)′Σ−1(x− µ)

]



Remember, under 0-1 loss, Bayes decision rule will pick the class

j that maximizes the discriminant function, which we saw in

section 6.2

gj(x) = logP (x|Y = j) + logP (Y = j)

so it will pick gj if gj > gk



Expanding the previous equations and considering the following

scenarios:

• Σj = Σ, tied across all classes

• Σj is diagonal (The Naive Bayes assumption)

• Y is binary, Y ∈ {0,1}

• The general case



Case 1: Σj = Σ, Y ∈ {0,1}

P (Y = 1|x) = P (x|Y =1)P (Y =1)
P (x|Y =1)P (Y =1)+P (x|Y =0)P (Y =0)

=

1

(2π)d/2|Σ|1/2 exp
[
−1

2(x−µ1)
′Σ−1(x−µ1)

]
π1

1

(2π)d/2|Σ|1/2

(
exp

[
−1

2(x−µ1)′Σ−1(x−µ1)
]
π1+exp

[
−1

2(x−µ0)′Σ−1(x−µ0)
]
π0

)
= π1ea1

π1ea1+π0ea0

Where

aj = −
1

2
(x− µj)

′Σ−1(x− µj)



a0 − a1 = −1
2(x− µ0)

TΣ−1(x− µ0) + 1
2(x− µ1)

TΣ−1(x− µ1)

= −(µ1 − µ0)
TΣ−1x + 1

2(µ1 − µ0)
TΣ−1(µ1 + µ0)

By dividing the numerator and the denomenator by π1ea1, we

get:

P (Y = 1|x) = 1

1+exp
[
− log

π1
π0

+a0−a1

]
= 1

1+exp[−β′x−γ]

= σ(β′x + γ)



Where

β = Σ−1(µ1 − µ0)

γ = −1
2(µ1 − µ0)

T (µ1 + µ0) + log π1
π0

σ(z) = 1
1+e−z = ez

ez+1

σ(z) is called the logistic function or sigmoid function



The sigmoid has the following property:

p = σ(z) ⇐⇒ z = log
p

1− p

where log p
1−p is called a log-odds ratio.

It is also easy to show:

1− σ(z) = σ(−z)



Effect of β

consider the case where

σ(β′x)

Then

P (Y = 1|x, xj = 1)

P (Y = 1|x, xj = 0)
=

exp
(
β0 +

∑
i6=j βixi + βj

)
exp

(
β0 +

∑
i6=j βixi

) = e
β
j

βj controls the steepness with which the probability increases.



Decision Boundary

Points of equal posteriors all lie on the line between the two
means.

P (Y = 1|x) = P (Y = 0|x) = 0.5

To find the decision boundary, we need to solve for:

σ(z) = 0.5

z = log p
1−p

= log 0.5
0.5

= log1

= 0



If we consider the case where π1 = π0 = 0.5, we have:

z = β′x + γ = (µ1 − µ0)
′
(

x−
(µ1+, u0)

2

)
The boundary line is orthogonal to µ2 − µ1 and is equidistance

from the two means. If the priors are non-uniform the the deci-

sion boundary shifts:

• if π1 > π2, the boundary shifts right.

• if π1 < π2, the boudary shifts left.

Effect of Σ: If Σ is not spherical, the decision boundary is no

longer orthogonal to µ2 − µ1.


