1392

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.27, NO.9, SEPTEMBER 2005

A Comparison of Algorithms for Inference and

Learning in Probabilistic Graphical Models

Brendan J. Frey, Senior Member, IEEE, and Nebojsa Jojic

Abstract—Research into methods for reasoning under uncertainty is currently one of the most exciting areas of artificial intelligence,
largely because it has recently become possible to record, store, and process large amounts of data. While impressive achievements
have been made in pattern classification problems such as handwritten character recognition, face detection, speaker identification, and
prediction of gene function, itis even more exciting that researchers are on the verge of introducing systems that can perform large-scale
combinatorial analyses of data, decomposing the data into interacting components. For example, computational methods for automatic
scene analysis are now emerging in the computer vision community. These methods decompose an input image into its constituent
objects, lighting conditions, motion patterns, etc. Two of the main challenges are finding effective representations and models in specific
applications and finding efficient algorithms for inference and learning in these models. In this paper, we advocate the use of graph-based
probability models and their associated inference and learning algorithms. We review exact techniques and various approximate,
computationally efficient techniques, including iterated conditional modes, the expectation maximization (EM) algorithm, Gibbs
sampling, the mean field method, variational techniques, structured variational techniques and the sum-product algorithm (“loopy” belief
propagation). We describe how each technique can be applied in a vision model of multiple, occluding objects and contrast the behaviors

and performances of the techniques using a unifying cost function, free energy.

Index Terms—Graphical models, Bayesian networks, probability models, probabilistic inference, reasoning, learning, Bayesian
methods, variational techniques, sum-product algorithm, loopy belief propagation, EM algorithm, mean field, Gibbs sampling, free

energy, Gibbs free energy, Bethe free energy.

1 INTRODUCTION

USING the eyeball of an ox, Rene Descartes demonstrated
in the 17th century that the backside of the eyeball
contains a two-dimensional projection of the three-dimen-
sional scene. Isolated during the plague, Isaac Newton
slipped a bodkin into his eyeball socket behind his eyeball,
poked the backside of his eyeball at different locations, and
saw small white and colored rings of varying intensity.
These discoveries helped to formalize the problem of vision:
What computational mechanism can interpret a three-
dimensional scene using two-dimensional light intensity
images as input? Historically, vision has played a key role
in the development of models and computational mechan-
isms for sensory processing and artificial intelligence.

By the mid-19th century, there were two main theories of
natural vision: the “nativist theory,” where vision is a
consequence of the lower nervous system and the optics of
the eye, and the “empiricist theory,” where vision is a
consequence of learned models created from physical and
visual experiences. Hermann von Helmholtz advocated the
empiricist theory and, in particular, that vision involves
psychological inferences in the higher nervous system, based

e B.J. Frey is with the Electrical and Computer Engineering Department,
University of Toronto, 10 King’s College Road, Toronto, ON M5S 3G4
Canada. E-mail: frey@psi.toronto.edu.

e N. Jojic is with the Machine Learning and Applied Statistics Group,
Microsoft Research, One Microsoft Way, Redmond, WA 98052-6399.
E-mail: jojic@microsoft.com.

Manuscript received 5 Feb. 2003; revised 27 Sept. 2004; accepted 22 Nowv.

2004; published online 14 July 2005.

Recommended for acceptance by |. Rehg.

For information on obtaining reprints of this article, please send e-mail to:

tpami@computer.org, and reference IEEECS Log Number 118245.

0162-8828/05/$20.00 © 2005 IEEE

on learned models gained from experience. He conjectured
that the brain learns a generative model of how scene
components are put together to explain the visual input and
that vision is inference in these models [7]. A computational
approach to probabilistic inference was pioneered by Thomas
Bayes and Pierre-Simon Laplace in the 18th century, but it
was not until the 20th century that these approaches could be
used to process large amounts of data using computers. The
availability of computer power motivated researchers to
tackle larger problems and develop more efficient algo-
rithms. In the past 15 years, we have seen a flurry of intense,
exciting, and productive research in complex, large-scale
probability models and algorithms for probabilistic inference
and learning.

This paper has two purposes: First, to advocate the use of
graph-based probability models for analyzing sensory input
and, second, to describe and compare the latest inference and
learning algorithms. Throughout the review paper, we use an
illustrative example of a model thatlearns to describe pictures
of scenes as a composition of images of foreground and
background objects, selected from a learned library. We
describe the latest advances in inference and learning
algorithms, using the above model as a case study, and
compare the behaviors and performances of the various
methods. This material is based on tutorials we have run at
several conferences, including CVPR00, ICASSP01, CVPRO3,
ISIT04, and CSBO05.

2 GRAPHICAL PROBABILITY MODELS AND
REASONING UNDER UNCERTAINTY

In practice, our inference algorithms must cope with
uncertainties in the data, uncertainties about which features

Published by the IEEE Computer Society

FREY AND JOJIC: A COMPARISON OF ALGORITHMS FOR INFERENCE AND LEARNING IN PROBABILISTIC GRAPHICAL MODELS

are most useful for processing the data, uncertainties in the
relationships between variables, and uncertainties in the
value of the action that is taken as a consequence of inference.
Probability theory offers a mathematically consistent way to
formulate inference algorithms when reasoning under
uncertainty.

There are two types of probability model. A discriminative
model predicts the distribution of the output given the input:
P(output|input). Examples include linear regression, where
the output is a linear function of the input, plus Gaussian
noise, and SVMs, where the binary class variable is Bernoulli
distributed with a probability given by the distance from the
input to the support vectors. A generative model accounts for
all of the data: P(data) or P(input, output). An example is the
factor analyzer, where the combined input/output vectoris a
linear function of a short, Gaussian hidden vector, plus
independent Gaussian noise. Generative models can be used
for discrimination by computing P(output|input) using
marginalization and Bayes rule. In the case of factor analysis,
it turns out that the output is a linear function of a low-
dimensional representation of the input, plus Gaussian noise.

Ng and Jordan [32] show that, within the context of
logistic regression, for a given problem complexity,
generative approaches work better than discriminative
approaches when the training data is limited. Discrimi-
native approaches work best when the data is extensively
preprocessed so that the amount of data relative to the
complexity of the task is increased. Such preprocessing
involves analyzing the unprocessed inputs that will be
encountered in situ. This task is performed by a user who
may or may not use automatic data analysis tools, and
involves building a model of the input, P(input), that is
either conceptual or operational. An operational model
can be used to perform preprocessing automatically. For
example, PCA can be used to reduce the dimensionality
of the input data in the hope that the low-dimensional
representation will work better for discrimination. Once
an operational model of the input is available, the
combination of the preprocessing model P(input) and
the discriminative model P(output|input) corresponds
to a particular decomposition of a generative model:
P(output, input) = P(output|input) P(input).

Generative models provide a more general way to
combine the preprocessing task and the discriminative task.
By jointly modeling the input and output, a generative model
can discover useful, compact representations and use these to
better model the data. For example, factor analysis jointly
finds alow-dimensional representation that models the input
and is good at predicting the output. In contrast, preproces-
sing the input using PCA ignores the output. Also, by
accounting for all of the data, a generative model can help
solve one problem (e.g., face detection) by solving another,
related problem (e.g., identifying a foreground obstruction
that can explain why only part of a face is visible).

Formally, a generative model is a probability model for
which the observed data is an event in the sample space. So,
sampling from the model generates a sample of possible
observed data. If the training data has high probability, the
model is “a good fit.” However, the goal is not to find the
model that is the best fit, but to find a model that fits the data

1393

wellandis consistent with prior knowledge. Graphical models
provide a way to specify prior knowledge and, in particular,
structural prior knowledge, e.g., in a video sequence, the
future is independent of the past, given the current state.

2.1 Example: A Model of Foregrounds,

Backgrounds, and Transparency

The use of probability models in vision applications is, of
course, extensive. Here, we introduce a model that is simple
enough to study in detail here, but also correctly accounts
for an important effect in vision: occlusion. Fig. 1 illustrates
the training data. The goal of the model is to separate the
five foreground objects and the seven background scenes in
these images. This is an important problem in vision that
has broad applicability. For example, by identifying which
pixels belong to the background, it is possible to improve
the performance of a foreground object classifier since
errors made by noise in the background will be avoided.

The occlusion model explains an input image, with pixel
intensities zi, . . ., 2k, as a composition of a foreground image
and a background image (cf., [1]) and each of these images is
selected fromalibrary of J possible images (a mixture model).
Although separate libraries can be used for the foreground
and background, for notational simplicity, we assume they
share a common image library. The generative process is
illustrated in Fig. 2a. To begin with, a foreground image is
randomly selected from the library by choosing the class
index f from the distribution, P(f). Then, depending on the
class of the foreground, a binary mask m = (my,...,mg),
m; € {0,1}is randomly chosen. m; = 1 indicates that pixel z;
isaforeground pixel, whereasm; = Oindicates thatpixel z;isa
background pixel. The distribution over mask RVs depends
on the foreground class, since the mask must “cut out” the
foreground object. However, given the foreground class, the
maskRVsare chosenindependently: P(m|f) = Hfi 1 P(myl f).
Next, the class of the background, b € {1,..., J},israndomly
chosen from P(b). Finally, the intensity of the pixels in the
image are selected independently, given the mask, the class
of the foreground, and the class of the background:
P(z|lm, f,b) = Hf‘zl P(zi|m;, f,b). The joint distribution is
given by the following product of distributions:

P(z,m, f,b) =

K K (1)
P(b)P(f) <Hp(mi|f)> (HP(ZJmmﬁ b)>~

In this equation, P(z;|m;, f,b) can be further factorized by
noticing that if m; = 0, the class is given by the RV b and
if m; =1 the class is given by the RV f. So, we can
write P(z|mi, f,b) = P(zi|f)™ P(z|b)'™™, where P(z]f)
and P(z]b) are the distributions over the ith pixel intensity
given by the foreground and background, respectively. These
distributions account for the dependence of the pixel
intensity on the mixture index, as well as independent
observation noise. The joint distribution can thus be written:

P(z,m, f,b) =

K K X
P(b)P(f) (H P(mt|f)> (H P(Zz‘|f)m‘> (H P(Z,;|b)1"”> .
=1 i=1 i=1
(2)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.27, NO.9, SEPTEMBER 2005

Fig. 1. Some of the 300 images used to train the model in Section 2.1. Each image was created by randomly selecting one of seven backgrounds
and one of five foreground objects from the Yale face database, combining them into a 2-layer image, and adding normal noise with standard
deviation of 2 percent of the dynamic range. Each foreground object always appears in the same location in the image, but different foreground
objects appear in different places so that each pixel in the background is seen in several training images.

In comparison with (1), this factorization reduces the
number of arguments in some of the terms.

For representational and computational efficiency, it is
often useful to specify a model using parametric distribu-
tions. Given a foreground or background class index k, we
assume z; is equal to p; plus zero-mean Gaussian noise with
variance 1)y;. This noise accounts for distortions that are not
explicitly modeled, such as sensor noise and fluctuations in
illumination. If a Gaussian model of these noise sources is too
inaccurate, extra hidden RVs can be added to better model the
noise, as described in Section 3. Note that in the above
parameterization, the foreground and background images
are selected from the same library." Denote the probability of
class k by 7, and let the probability that m; = 1, given that the
foreground class is f, be ary;. Since the probability that m; = 0
is 1 — ay;, we have P(m;|f) = o/ (1 — ag;)' ™. Using these
parametric forms, the joint distribution is

P(va7f7b):

K
T f (H Oé::;l(l - aﬁ)lfmz./\[(zi; i, wfi)mlN(zﬁﬂbh'(ﬁbi,)lml),

i=1
3)

where N (z; i, 1) is the normal density function on z with
mean p and variance 1. An equivalent form is

1. If it is desirable that the foreground and background images come
from separate libraries, the class RVs f and b can be constrained, e.g., so that
fedl,...,n},be{n+1,...,n+1}, in which case, the first n images in the
library are foreground images and the next ! images are background
images.

P(z,m, f,b) =

K
Ty (H o/f'?(l — aﬁ)lfmi./\/(zi; M

=1
+ (1 — my) s, mitpgi + (1 — mi)%i)) ,

where, here the mask RVs “screen” the mean and variance
of the Gaussians.

In the remainder of this review paper, the above
occlusion model is used as an example. One of the appeals
of generative models is in their modularity and the ease
with which they can be extended to cope with more
complex data. In Section 3, we describe extensions of the
occlusion model that enable it to account for motion, object
deformations, and object-specific changes in illumination.

2.2 Graphical Models

Graphical models describe the topology (in the sense of
dependencies) of the components of a complex probability
model, clarify assumptions about the representation, and
lead to algorithms that make use of the topology to achieve
exponential speed-ups. When constructing a complex prob-
ability model, we are faced with the following challenges:
ensuring that the model reflects our prior knowledge;
deriving efficient algorithms for inference and learning,
translating the model to a different form, and communicating
the model to other researchers and users. Graphical models
overcome these challenges in a wide variety of situations.
After commenting on each of these issues, we briefly review

FREY AND JOJIC: A COMPARISON OF ALGORITHMS FOR INFERENCE AND LEARNING IN PROBABILISTIC GRAPHICAL MODELS

ffm\}ma b f—>m b

T v
(b) (c)

e, M f—m—b

Fig. 2. (a) A generative process that explains an image as a composition
of the image of a foreground object with the image of the background,
using a transparency map or mask. The foreground and background are
each selected stochastically from a library and the generation of the
mask depends on the foreground that was selected. We refer to this
model as the occlusion model. (b) A BN for an occlusion model with
three pixels, where f is the index of the foreground image, b is the index
of the background image, m; is a binary mask RV that specifies whether
pixel z; is from the foreground image (m; = 1) or the background image
(m; = 0). (c) A simpler, but less explicit, BN is obtained by grouping the
mask RVs together and the pixels together. (d) An MRF for the occlusion
model. (e) An MRF corresponding to the BN in (c). (f) An FG for the
occlusion model. (g) A directed FG expressing all properties of the BN in
(c) and the MRF in (e).

three kinds of graphical model: Bayesian networks (BNs),
Markov random fields (MRFs), and factor graphs (FGs). Fora
more extensive treatment, see [4], [9], [23], [24], [33].

Prior knowledge usually includes strong beliefs about the
existence of hidden random variables (RVs) and the relation-
ships between RVs. This notion of “modularity” is a central
aspect of graphical models. In a graphical model, the
existence of a relationship is depicted by a path that connects
the two RVs. A related concept is the Markov blanket of an
RV z—the minimal set of RVs that when given, makes
x independent of all other RVs. Probabilistic inference in a
probability model can, in principle, be carried out by using
Bayes rule. However, for the complex models that accurately
describe many problems, direct application of Bayes rule
leads to an intractable number of computations. A graphical
model identifies the modules in the system and can be used to
derive algorithms that achieve exponential speedups. In a
complex probability model, computational inference and

1395

interpretation usually benefit from judicious groupings of
RVsand these clusters should take into account dependencies
between RVs. Other types of useful transformation include
splitting RVs, eliminating (integrating over) RVs, and con-
ditioning on RVs. By examining the graph, we can often easily
identify transformation steps that will lead to simpler models
or models that are better suited to our goals and in particular
our choice of inference algorithm. For example, we may be
able to transform a graphical model that contains cycles to a
tree and thus use an exact but efficient inference algorithm. By
examining a picture of the graph, a researcher or user can
quickly identify the dependency relationships between RVs
in the system and understand how the influence of an RV
flows through the system to change the distributions over
other RVs. Whereas block diagrams enable us to efficiently
communicate how computations and signals flow through a
system, graphical models enable us to efficiently commu-
nicate the dependencies between components in a modular
system.

2.3 Bayesian Network (BN) for the Occlusion Model

A Bayesian network (BN) [4], [24], [33] for RVs zy,...,zyisa
directed acyclic graph (no directed cycles) on the set of RVs,
along with one conditional probability function for each RV
givenits parents, P(z;|x 4,), where A; is the setof indices of z;’s
parents. Thejoint distribution is given by the %roduct of all the
conditional probability functions: P(x L P(zi|za,).

Fig. 2b shows the BN for the occlusmn model in (1), with
K = 3 pixels. By grouping the mask RVs together and the
pixels together, we obtain the BN shown in Fig. 2¢c. Here, =
is a real vector, z = (21,2, 23) and m is a binary vector,
m = (my1, mg, m3). Although this graph is simpler than the
graph in Fig. 2b, it is also less explicit about dependencies
among pixels and mask RVs.

The graph indicates conditional independencies, as
described in [33]. For example, the Markov blanket of m; is
{f,b,z1}. In a BN, observing a child induces a dependence
between its parents. Here, the BN indicates that f and b are
dependent given z and m, even though they are not
(observing m decouples f and b). This demonstrates that
BNs are not good at indicating conditional independence.
However, the BN indicates that f and b are marginally
independent, demonstrating that BNs are good at indicating
marginal independence.

2.4 Markov Random Field (MRF) for the Occlusion

Model
A Markov Random Field (MRF) [4], [24], [33] for RVs
Z1,...,2y is an undirected graph on the set of RVs, along

with one potential function for each maximal clique, g;(z¢,),
where C}, is the set of indices of the RVs in the kth maximal
clique. The joint distribution is given by the product of all
the potential functions divided by a normalizing constant,
Z, called the partition function: P(z) = L]i, g(xc,), where
Z= Zmlww(]—[k{il gr(zc,)). A clique is a fully connected
subgraph, and a maximal clique is a clique that cannot be
made larger while still being a clique. For brevity, we use
the term “clique” to refer to a maximal clique, e.g., the
potentials on maximal cliques are usually called cligue
potentials.

The above factorization of the joint distribution is similar to
the factorization for the BN, where each conditional prob-
ability function can be viewed as a clique potential. However,

1396

there is an important difference: In a BN, the conditional
probability functions are individually normalized with
regard to the child, so the product of conditional probabilities
is automatically normalized and Z = 1.

An MREF for the occlusion model in (2) is shown in Fig. 2d
and the version where the mask RVs are grouped and the
pixels are grouped is shown in Fig. 2e. Note that the MRF
includes an edge from m to b, indicating they are dependent,
even though they arenot. This demonstrates that MRFs are not
good at indicating marginal independence. However, the
MREF indicates f and b are independent given z and m,
demonstrating that MRFs are good at indicating conditional
independence.

2.5 Factor Graph (FG) for the Occlusion Model

Factor graphs (FGs) [9], [23] subsume BNs and MRFs. Any BN
or MRF can be easily converted to an FG, without loss of
information. Further, there exist models that have indepen-
dence relationships that cannot be expressed in a BN or an
MREF, but that can be expressed in an FG. FGs are more explicit
about the factorization of the distribution than BNs and
MRFs. Also, belief propagation takes on a simple form in FGs
so that inference in both BNs and MRFs can be simplified toa
single, unified inference algorithm.

A factor graph (FG) for RVs x1,...,zx and local functions
a1(zc,), - .., 9k (zc,) is a bipartite graph on the set of RVs and
a set of nodes corresponding to the functions, where each
function node gy, is connected to the RVs in its argument x¢, .
The joint distribution is given by the product of all the
functions: P(z) = LT[/, g(2c,). In fact, Z = 1if the FG is a
directed graph, as described below. Otherwise, Z ensures the
distribution is normalized. Note that the local functions may
be positive potentials, as in MRFs, or conditional probability
functions, as in BNs.

Fig. 2f shows an FG for the occlusion model in (1). As with
BNs and MRFs, we can group variables to obtain a simpler
FG. Also, we can indicate conditional distributions in an FG
using directed edges, in which case, Z = 1. Fig. 2g shows such
a directed FG for the model with variables grouped together.
This FG expresses all properties of the BN and MRF. As
described in [9], all independencies that can be expressed in
BNs and MRFs can be expressed in FGs. Here, the directed FG
indicates that f and b are independent (expressed by the BN
but not the MRF) and it indicates that f and b are independent
given z and m (expressed by the MRF but not the BN).
Another advantage of FGs is that, because they explicitly
identify functions, they provide a useful graph for message-
passing algorithms, such as belief propagation.

2.6 Converting between FGs, BNs, and MRFs

BNs and MRFs represent different independence proper-
ties, but FGs can represent all the properties that BNs and
MRFs can represent.

A BN can be converted to an FG by “pinning” the edges
arriving at each variable together and creating a function
node associated with the conditional distribution. Directed
edges are used to indicate the parent-child relationship, as
shown in Fig. 2g. A directed FG can be converted to a BN by
“unpinning” each function node. An MRF can be converted to
an FG by creating one function node for each maximal clique,
connecting the function node to the variables in the maximal

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.27, NO.9, SEPTEMBER 2005

clique, and setting the function to the clique potential. An FG
can be converted to an MRF by creating a maximal clique for
each function node and setting the clique potential to the
function.

Infact, if a BN is converted to a directed FG and back again,
the same BN is obtained. Similarly, if an MRF is converted to
an FG and back again, the same MREF is obtained. Conse-
quently, the rules for determining conditional independence
in BNs and MRFs map losslessly to FGs, i.e., FGs can express
all conditional independencies that BNs and MRFs can
express. The converse is not true: There are FGs that express
independencies that cannot be expressed in a BN or an MRF,
e.g., the FG in Fig. 2g. It is also the case that multiple FGs may
be converted to the same BN or MRF—a consequence of the
fact that FGs are more explicit about factorization.

Another way to interconvert between representations is
to expand the graph to include extra edges and extra
variables (cf., [37]).

3 BUILDING COMPLEX MODELS USING
MODULARITY

Graphical models provide a way to link simpler models
together in a principled fashion that respects the rules of
probability theory. Fig. 3 shows how the occlusion model can
be used as a module in a larger model that accounts for
changing object positions, deformations, object occlusion,
and changes in illumination. The figure shows a BN, where
the appearance and mask vector RVs are shown as images
and the brightness, deformation, and position RVs are shown
pictorially. After inference and learning, the video frame is
automatically decomposed into the parts shown in the BN.
Previous papers describe efficient techniques for inference
and learning in models that account for changes in object
locations and moving objects [11], changes in appearances of
moving objects and image patches using a subspace model
[10], common motion patterns of moving objects [21], layered
models of occluding objects in 3D scenes [19], and the
“epitome” of components in object appearance and shape
[20]. An inference and learning algorithm in a combined
model, like the one shown above, can be obtained by linking
together the modules and associated algorithms. Many other
interesting avenues within this framework are being ex-
plored or have yet to be explored. For example, Williams and
Titsias [36] describe a fast, greedy way to learn layered
models of occluding objects.

4 PARAMETERIZED MODELS AND THE
EXPONENTIAL FAMILY

So far, we have studied graphical models as representations
of structured probability models for data analysis. We now
turn to the general problem of how to learn these models from
training data. For the purpose of learning, it is often
convenient to express the conditional distributions or
potentials in a graphical model as parameterized functions.
Choosing the forms of the parameterized functions usually
restricts the model class, but can make computations easier.

FREY AND JOJIC: A COMPARISON OF ALGORITHMS FOR INFERENCE AND LEARNING IN PROBABILISTIC GRAPHICAL MODELS

1397

Learned means of appearance and mask images
A

Front layer

R
4- -

Bright

Deform Deform

T
g snsnnannnnnnn
@ smsnnannnnnnn

ﬁ??

Position Position

-_

Background layer

Deform

Bright

= Deform

@ nnnsnnsnnnnnsf

>®
i

s nanamnns

—-j

Position Position

< —

Hidden appearances, masks,
brightness variables, deformation
variables, and position variables
combine to explain the input

Fig. 3. Simple probability models can be combined in a principled way to build a more complex model that can be learned from training data. Here,
after the model parameters (some shown in the top row of pictures) are learned from the input video, the model explains a particular video frame as a
composition of four “cardboard cutouts,” each of which is decomposed into appearance, transparency (mask), position, brightness, and deformation

(which accounts for the gait of the walking person).

For example, Section 2.1 shows how we can parameterize the
conditional probability functions in the occlusion model.

4.1 Parameters as RVs

Usually, the model parameters are not known exactly, but we
have prior knowledge and experimental results that provide
evidence for plausible values of the model parameters.
Interpreting the parameters as RVs, we can include them in
the conditional distributions or potentials that specify the
graphical model, and encode our prior knowledge in the form
of a distribution over the parameters.

Including the parametersas RVsin the occlusionmodel, we
obtain the following conditional distributions: P(b|7) = m,
P(f|m) =7y, P(mil f, o, .. egi)=alp (1 = o)™, Pz f,
Pis s iy V1is - - - 00i) = N (233 pgis ¥5a), PP (23lbs i - - s i,
W1iy -y i) = N (25 iy, Y). We obtain a simpler model (but
one thatisless specificaboutindependencies) by grouping the
mask RVs, the pixels, the mask parameters, and the pixel
means and variances. The resulting conditional distributions
are P(bjr) =, P(flm)=ny, P(mf.0) =[1%; o (1-az) ",
P(Z|m7 fv b, Hy 1, My) Hz 1N(Z77 MMM) (Zlvlibuqbln)lim"

Since we are interpreting the parameters as RVs, we
must specify a distribution for them. Generally, the
distribution over parameters can be quite complex, but
simplifying assumptions can be made for the sake of
computational expediency, as describe in later sections. For
now, we assume that P(m, a, p, ¥, p) = P(m)P(a)P(p)P ().

The BN for this parameterized model is shown in Fig. 4a,
and the joint distribution over RVs and parameters is

P(z,m, f,b, 7, o, 1) =
P(b|m) P(f|m)P(m|f, a)P(z[m, f,b, p,) P(m) P(c) P(1) P(¥)).

4.2 Introducing Training Data

Training data can be used to infer plausible configurations of
the model parameters. Weimagine that there is a setting of the
parameters that produced the training data. However, since
we only see the training data, there will be many settings of
the parameters that are good matches to the training data, so
the best we can do is compute a distribution over the
parameters.

Denote the hidden RVs by h and the visible RVs by v. The
hidden RVs can be divided into the parameters, denoted by 6,
and one set of hidden RVs h(®), for each of the training cases,
t=1,...,7.50, h = (6, hV), 7). Similarly, there is one
set of visible RVs for each training cases, sov = (v, ... v™).
Assuming the training cases are independent and identically
drawn (i.i.d.), the distribution over all visible RVs and hidden
RVs (including parameters) is

P(h,v) =

P(0) is the parameter prior and [[_, P(h(),4v")|§) is the
likelihood. In the occlusion model described above, we have
0= (u,p,ma), KO = (95 m®), and v® = 2(). The BN
for T' ii.d. training cases is shown in Fig. 4b.

1398

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.27, NO.9, SEPTEMBER 2005

v
\ /H/
a1
= z(m)
n i
zZ(o)
+ ;
f m b

/ 1
u Z(Wy)
v

z

(e)

Fig. 4. (a) The parameter sets =, a, u, and 1) can be included in the BN as RVs. (b) For a training set with 7' i.i.d. cases, these parameters are shared
across all training cases. (c) If the training cases are time-series data (e.g., a video sequence), we may create one parameter set for each time
instance, but require the parameters to change slowly over time. (d) Generally, undirected graphical models must include a normalization function
1/Z(8), which makes inference of the parameters more difficult. Viewing the occlusion model as a member of the exponential family, we can draw an
undirected FG, which includes the function, 1/Z(6). (e) When the parameters specify conditional distributions, Z(6) factorizes into local terms,

leading to a representation that is equivalent to the one in (a).

When the training cases consist of time-series data (such as
a video sequence), the parameters often can be thought of as
RVs that change slowly over time. Fig. 4c shows the above
model, where there is a different set of parameters for each
training case, but where we assume the parameters are
coupled across time. Using () to denote the training case at
time t=1,...,T, the following distributions couple the
parameters across time: P(7"|z(=1)), P(a®|a*=V)), P(ul)|
pt=1), P(y® =Y. The uncertainty in these distributions
specifies how quickly the parameters can change over time.
Such a model can be viewed as the basis for online learning
algorithms. For simplicity, in this paper, we assume the model
parameters are fixed for the entire training set.

4.3 The Exponential Family

Members of the exponential family [2] have the following
parameterization: P(z|0) = (1/Z(6)) exp(>_, 0,Q(x)), where
0 = (61,6,...) is a parameter vector and ;(z) is the

ith sufficient statistic. The sufficient statistics of x contain all
information that is needed to determine the density of . Z(6)
is the partition function, which normalizes P(x|0): Z(0) =
> .exp(d; 0;9Q;(z)). For members of the exponential family,
there is a simple relationship between the distribution for one
training case and the distribution for an entire training set. Let
2 be the hidden and visible variables for the tth training case.
Then, P(z?]0) = exp(3; 0, (")) /2Z(0) and the likelihood
for the entire training set is P(z|0) =[], P(z|0) = exp
> 6‘7;(23:1 Qi(zM)))/Z(0)". The sufficient statistics for
the entire training set are given by summing the sufficient

statistics over training cases.
To put the occlusion model in exponential family form,

note that the sufficient statistics for a normal density on z;

and 27

are z; The reader can confirm that the joint

distribution can be written

FREY AND JOJIC: A COMPARISON OF ALGORITHMS FOR INFERENCE AND LEARNING IN PROBABILISTIC GRAPHICAL MODELS

J

P(z,m, f,b) = (1/Z2(0)) exp (Z(ln m){[b=Jl}

J=1

+

M'N

(Inm){[f = JI}

1

<.
I

+

Mr 1M 19 1M I 1
M~ M- 1M~ M- M- 1M~

(Inai){[m: = 1][f = 51}

+ (In(1 — aji)){lm; = O][f =]}
(1/2¢5){2 [mi = 1][f = 5]}

+) (s) Lzl = [= 4]}
(1/2¢50){=[mi = O][b =]}

|

N
Il

—
Il

—

(M]z/%z) {zilm: = 0][b = j]}),

J

where curly braces identify the sufficient statistics and
square braces indicate Iverson’s notation: [expr] = 1 if expr
is true, and [exzpr] = 0 if expr is false.

Modular structure in members of the exponential family
arises when each sufficient statistic 2; (z) depends on a subset
of RVs z¢, with indices C;. Then, P(z)= (1/Z(9))],
exp(0;Q;(zc,)), so we can express P(z) using a graphical
model, e.g., an FG. In the FG, there can be one function node
for each sufficient statistic €2; and one variable node for each
parameter 6;, but a more succinct FG is obtained by grouping
related sufficient statistics together and grouping their
corresponding parameters together. Fig. 4d shows an FG for
the exponential family representation of the occlusion model,
where wehavemade groups of 7s, as, us, and ¢s. Note that the
FG must include the normalizing function 1/Z(9).

Generally, computing Z(6) is intractable since we must
sum or integrate over x. However, if the exponential family
parameterization corresponds to a BN, the sufficient statistics
can be grouped so that each group defines a conditional
distribution in the BN. In this case, Z(¢) simplifies to a
product of local partition functions, where each local
partition function ensures that the corresponding conditional
distribution is normalized. In the above model, the normal-
ization constants associated with the conditional distribu-
tions for f, m, b, and z are uncoupled, so we can write
2(0) = Z(m)Z(a) Z() Z(1p), where, e.g., Z(¥) = [] \/2mj.
Fig. 4e shows the FGin this case, which has the same structure
as the BN in Fig. 4a.

4.4 Uniform and Conjugate Parameter Priors

Parameter priors encode the cost of specific Conﬁgurations of
the parameters. For simplicity, the umform prlor 1s often used,

where P(0) = const. Then, P(h,v) [T/, P(h),v"]0) and
the dependence of the parameters on the data is determmed
solely by the likelihood. In fact, a uniform prior is not uniform
under a different parameterization. Also, the uniform density
for the real numbers does not exist, so the uniform prior is
improper. However, these facts are often ignored for computa-
tional expediency. Importantly, the use of a uniform prior is
justified when the amount of training data is large relative to

1399

the maximum model complexity since then the prior will
have little effect on the model. One exception is zeros in the
prior, which can never be overcome by the likelihood, but
such hard constraints often can be inorporated in the learning
algorithm, e.g., using Lagrange multipliers.

Assuming a uniform prior for all parameters in the
occlusion model, the joint distribution over RVs and
parameters is

P(/’l'7 ,17[}7 Tr’ a? f(1)7 b(l)) f<T)7 b(T)’ Trl’(T)7 Z(l)’ AR Z(T))
0)

r K m® 17m5’) 0 m;
OCH ﬂ'f(z) T (0) H af(,f)i (]. — Ozf(x)i) N(ZL ;N’f(”i’ ’l/)f(t)i)
t=1 i=1
0 l—mlm
N(Zl 5 M) zﬁb(%) .
(4)

Note that when using uniform priors, parameter constraints
such as >/ 7 =1 must be taken into account during
inference and learning.

The conjugate prior offers the same computational advan-
tage as the uniform prior, but allows specification of stronger
prior knowledge and is also a proper prior. The idea is to
choose a prior that has the same form as the likelihood, so the
prior canbe thought of as the likelihood of fake, user-specified
data. The joint distribution over parameters and RVs is given
by the likelihood of both the real data and the fake data. For
members of the exponential family, the fake training data
takes the form of extra, user-specified terms added to each
sufficient statistic, e.g., extra counts added for Bernoulli RVs.

In the occlusion model, imagine that before seeing the
training data we observe \; fake examples from image class j.
The likelihood of the fake data for parameter 7; is 7, so the
conjugate prior for m,..., 7y is P(m,...,m5) H}le N if
Z}']:1 m; = 1 and 0 otherwise. This is the Dirichlet distribution
and P(my, ..., m;)is the Dirichlet prior. The conjugate prior for
the mean of a Gaussian distribution is a Gaussian distribution
because the RV and its mean appear symmetrically in the
Gaussian pdf. The conjugate prior for the inverse variance 3 of a
Gaussian distribution is a Gamma distribution. Imagine fake
data consisting of A examples, where the squared difference
between the RV and its mean is 6>. The likelihood for this fake
data is proportional to (3/2e~0/2)" = gV2e=0*/20 This is a
Gamma distribution in 3 with mean 1/6% +2/)&* and
variance 2(1/6% + 2/26%)/A6%. Setting the prior for 3 to be
proportional to this likelihood, we see that the conjugate prior
for the inverse variance is the Gamma distribution.

5 ALGORITHMS FOR INFERENCE AND LEARNING

Once a generative model describing the data has been
specified, data analysis consists of probabilistic inference. In
Fig 4b, for training images 2V, ..., 2("), vision consists of
inferring the set of mean images and variance maps, p, v,
the mixing proportions =, the set of binary mask probabil-
ities, a, and, for every training case, the class of the
foreground image, f, the class of the background image, b,
and the binary mask used to combine these images, m
Exact inference is often intractable, so we turn to
approximate algorithms that search for distributions that
are close to the correct posterior distribution. This is

1400

accomplished by minimizing pseudodistances on distribu-
tions, called “free energies.” (For an alternative view, see
[34].) It is interesting that, in the 1800s, Helmholtz was one
of the first researchers to propose that vision is inference in
a generative model and that nature seeks correct probability
distributions in physical systems by minimizing free
energy. Although there is no record that Helmholtz saw
that the brain might perform vision by minimizing a free
energy, we can’t help but wonder if he pondered this.

Viewing parameters as RVs, inference algorithms for RVs
and parameters alike make use of the conditional indepen-
dencies in the graphical model. It is possible to describe
graph-based propagation algorithms for updating distribu-
tions over parameters [15]. It is often important to treat
parameters and RVs differently during inference. Whereas
each RV plays a role in a single training case, the parameters
are shared across many training cases. So, the parameters are
impacted by more evidence than RVs and are often pinned
down more tightly by the data. This observation becomes
relevant when we study approximate inference techniques
that obtain point estimates of the parameters, such as the
expectation maximization algorithm [6].

We now turn to the general problem of inferring the values
of unobserved (hidden) RVs, given the values of the observed
(visible) RVs. Denote the hidden RVs by h and the visible RVs
by v and partition the hidden RVs into the parameters 6 and
one set of hidden RVs h®, for each training caset =1,...,7.
So, h = (6,hY, ... K1), Similarly, there is one set of visible
RVs for each training case, so v = (v, ... v(")). Assuming
the training cases are i.i.d., the distribution over all RVs is

P(h,v) = P(0) (ﬁP(h(”,v“)Q)). (5)
t=1

In the occlusion model, § = (11,1, 7,), B = (fO b1 m®),
and o) = (1),

Exact inference consists of computing estimates or making
decisions based on the posterior distribution over all hidden
RVs (including the parameters), P(h|v). From Bayes rule,

_ P
Sy P(hv)’

where the notation [, includes summing over discrete
hidden RVs. The denominator normalizes the distribution,
but if we need only a proportional function, P(h,v) suffices
since with regard to h, P(h|v) x P(h,v). In the case of a
graphical model, P(h,v) is equal to either the product of the
conditional distributions or the product of the potential
functions divided by the partition function.

5.1 Partition Functions Complicate Learning

For undirected graphical models and general members of
the exponential family, P(z,0) = P(ﬁ)ﬁnk gi(zc,) and
In P(z,0) =InP(9) —InZ(0) + >, In gr(zc,). When adjust-
ing a particular parameter, the sum of log-potentials nicely
isolates the influence to those potentials that depend on the
parameter, but the partition function makes all parameters
interdependent. Generally, as shown in Fig. 4d, Z(f)
induces dependencies between all parameters. Since
Z(0) = [.(I1) gr(xc,), exactly determining the influence of
a parameter change on the partition function is often
intractable. In fact, determining this influence can also be

P(hlv)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.27, NO.9, SEPTEMBER 2005

viewed as a problem of approximate inference since the
partition function is the complete marginalization of
I1; 9x(zc,). So, many of the techniques discussed in this
paper can be used to approximately determine the effect of
the partition function (e.g., Gibbs sampling [18]). There are
also learning techniques that are specifically aimed at
undirected graphical models, such as iterative proportional
fitting [4].

For directed models, the partition function factorizes into
local partition functions (cf., Fig. 4e), so the parameters can be
directly inferred using the techniques described in this paper.

5.2 Model Selection

Often, some aspects of the model structure are known, but
others are not. In the occlusion model, we may be confident
about the structure of the BN in Fig. 4b, but not the number of
classes, J. Unknown structure can be represented as a hidden
RV so that inference of this hidden RV corresponds to
Bayesian model selection [16], [25]. The BN in Fig. 4b can be
modified to include an RV, J, whose children are all of the f
and b variables and where J limits the range of the class
indices. Given a training set, the posterior over J reveals how
probable the different models are. When model structure is
represented in this way, proper priors should be specified for
all model parameters so that the probability density of the
extra parameters needed in more complex models is properly
accounted for. For an example of Bayesian learning of infinite
mixture models, see [29].

5.3 Numerical Issues

Many inference algorithms rely on the computation of
expressions of the form p = [];a}, where the number of
terms can be quite large. To avoid underflow, it is common to
work in the log-domain. Denoting the log-domain value of a
variable by “~,” we can compute p «— Y ;4;0;. If p is needed,
setp < exp(p). Keep in mind that, if p is large and negative, p
may be set to 0. This problem can be avoided when computing
anormalized set of p;s (e.g., probabilities). Suppose p; is the log-
domain value of the unnormalized version of p;. Since the p;s
are to be normalized, we can add a constant to the p;s to raise
them to a level where numerical underflow will not occur
when taking exponentials. Computing m < max; p; and then
setting p; < p; — m will ensure that max; p; = 0, so one of the
exp(p;)s will be 1. Next, compute the log-normalizing
constant, ¢—1In(>; exp(p;)). The previous step ensures that
the sum in this expression will produce a strictly positive
number, avoiding In0. Finally, the p;s are normalized,
Di < p;—¢, and, if needed, the p;s are computed, p; —exp(p;).
In some cases, notably when computing joint probabilities of
RVs and observations using the sum-product algorithm, we
need to compute the unnormalized sum s=), p;, where each
p; is so small that it is stored in its log-domain form, p;. The
above method can be used, but 1 must be added back in to
retain the unnormalized form. First, compute m «— max; p;
and then set § < m + In(}"; exp(p; — m)).

5.4 Exact Inference in the Occlusion Model

We consider two cases: exact inference when the model
parameters are known and exact inference when the model
parameters are unknown. When the model parameters are
known, the distribution over the hidden RVs is givenin (3). f
and b each take on J values and there are K binary mask RVs,

FREY AND JOJIC: A COMPARISON OF ALGORITHMS FOR INFERENCE AND LEARNING IN PROBABILISTIC GRAPHICAL MODELS

so the total number of configurations of f, b, and m is J?2%.
For moderate model sizes, even if we can compute the
posterior, we cannot store the posterior probability of every
configuration. However, from the BN in Fig. 2b, we see that
m; is independent of m;, j # 4, given f, b and z; (the Markov
blanket of m;). Thus, we represent the posterior distribution
as follows:

P(m, f,blz) = P(f,blz)P(m|f,b, 2)

K
= P(f,b]z) [[POmil£.b, 2).
=1

Here, the posterior can be stored using O(.J?) numbers® for
P(f,b|z) and, for each configuration of f and b, O(K) numbers
for the probabilities P(m;|f,b,2),i=1,..., K, giving a total
storage requirement of O(K J?) numbers. Using the fact that
P(milf,b,z)=P(mi|f,b, zi) o< P(zi,mi| f,b) =P(mi| f,b) P (=
|mi, f,b) = P(m;|f)P(z|m, f,b) and substituting the defini-
tions of the conditional distributions, we have

CvfiN(Zi; anwfi)
N (zis ppis V1) +(1 — o) N (25 pi, Yni)
Weneed only store P(m; = 1|f,b, z),since P(m; = 0| f,b, z) =
1—P(m; =1|f,b,2)). Foreachi =1,..., K and each config-
uration of f and b, this canbe computed and normalized using
a small number of multiply-adds. The total number of
multiply-adds needed to compute P(m; = 1|f,b, z) for all ¢
is O(K.J?).
P(f,b|z) can be computed as follows:

P(f,b]2) =Y P(m, f,blz) < > P(m, f,b,)

m

K
=mrr]] <Z (0/};'(1 — o) TN (s g)™
i=1

m;

N(Zi;/ibh@bbi)lmi))

K
=mrr]] <OéfiN(Zi§ tifis i) + (1= o)
i=1

N(Zi§ﬂbi7¢l)z‘))-

For each value of f and b, this can be computed using O(K)
multiply-adds. Once it is computed for all J? combinations
of f and b, the result is normalized to give P(f,b|z). The
total number of multiply-adds needed to compute P(f,b|z)
is O(KJ?). Combining this with the above technique, the
exact posterior over f, b, and m can be computed in O(KJ 2)
multiply-adds and stored in O(KJ?) numbers.

When the parameters are not known, we must infer the
distribution over them, as well as the RVs. Assuming a
uniform parameter prior, the posterior distribution over
parameters and hidden RVs in the occlusion model of Fig. 4b
is proportional to the joint distribution given in (4). This
posterior can be thought of as a very large mixture model.
There are J*7 257 discrete configurations of the class RVs and
the mask RVs and, for each configuration, there is a
distribution over the real-valued parameters. In each mixture

2. We use O(-) to indicate the number of scalar memory elements or
binary scalar operations, up to a constant.

1401

component, the class probabilities are Dirichlet-distributed
and the mask probabilities are Beta-distributed. (The Beta pdf
is the Dirichlet pdf when there is only one free parameter.)
The pixel means and variances are coupled in the posterior,
but, given the variances, the means are normally distributed
and, given the means, the inverse variances are Gamma-
distributed. If the training data is processed sequentially,
where one training case is absorbed at a time, the mixture
posterior can be updated as shown in [5].

The exact posterior is intractable because the number of
posterior mixture components is exponential in the number
of training cases and the posterior distribution over the pixel
means and variances are coupled. In the remainder of this
paper, we describe a variety of approximate inference
techniques and discuss advantages and disadvantages of
each approach.

5.5 Approximate Inference as Minimizing Free
Energies

Usually, the above techniques cannot be applied directly

to P(hlv) because this distribution cannot be computed

in a tractable manner. So, we must turn to various

approximations.

Many approximate inference techniques can be viewed as
minimizing a cost function called “free energy” [31], which
measures the accuracy of an approximate probability dis-
tribution. These include iterated conditional modes [3], the
expectation maximization (EM) algorithm [6], [31], varia-
tional techniques [22], [31] structured variational techniques
[22], Gibbs sampling [30], and the sum-product algorithm
(also known as loopy belief propagation) [23], [33].

The idea is to approximate the true posterior distribution
P(h|v) by a simpler distribution Q(h), which is then used for
making decisions, computing estimates, summarizing the
data, etc. Here, approximate inference consists of searching
for the distribution Q(h) that is closest to P(h|v). A natural
choice for a measure of similarity between the two
distributions is the relative entropy (also known as Kull-
back-Leibler divergence):

Q(h)
P(hlv)’

This is a divergence, not a distance, because it is not
symmetric: D(Q, P) # D(P, (). However, D(Q, P) is simi-
lar to a distance in that D(Q, P) > 0 and D(Q, P) = 0 if and
only if the approximating distribution exactly matches the
true posterior, Q(h) = P(h|v). The reason we use D(Q, P)
and not D(P, () is that the former computes the expectation
with regard to the simple distribution, (), whereas the latter
computes the expectatlon with regard to P, which is
generally very complex.’

Approximate inference techniques can be derived by
examining ways of searching for Q(h), to minimize
D(Q,P). In fact, directly computing D(Q,P) is usually
intractable because it depends on P(h|v). If we already have
a tractable form for P(h|v) to insert into the expression for
D(Q,P), we may not have a need for approximate
inference. Fortunately, D(Q, P) can be modified in a way

D(Q, P) =

Q(h)In
h

3. For example, if Q(h)=1T]; Q(h:i), then D(P Q P
P(hlv)=32, [, P(hilv) nQ(h;). Under the constramt 5, @
mum of D(P, Q) is given by Q(h;) =
an NP-hard problem, so minimizing D(P, Q) is also an NP-hard problem.

(h|v) In
hi) = 1, the mini-
P(h;i|v). However, Computing P(hilv)is

1402

that does not alter the structure of the search space of Q(h),
but makes computations tractable. If we subtract In P(v)
from D(Q, P), we obtain

F(Q,P)=D(Q,P) - 1HP()
/Q —/hQ(h) In P(v) (6)
(h)
hQ(h)lnP(h’v).

Notice that In P(v) does not depend on Q(h), so subtracting
In P(v) will not influence the search for Q(h). For BNs and
directed FGs, we do have a tractable expression for P(h,v),
namely, the product of conditional distributions.

If we interpret —In P(h,v) as the energy function of a
physical system and Q(h) as a distribution over the state of
the system, then F(Q,P) is equal to the average energy
minus the entropy. In statistical physics, this quantity is
called the free energy of the system (also known as Gibbs free
energy or Helmholtz free energy). Nature tends to minimize
free energies, which corresponds to finding the equilibrium
Boltzmann distribution of the physical system.

Another way to derive the free energy is by using Jensen’s
inequality to bound the log-probability of the visible RVs.
Jensen’s inequality states that a concave function of a convex
combination of points in a vector space is greater than or equal
to the convex combination of the concave function applied to
the points To bound the log-probability of the visible RVs,
In P(v) = In(f, P(h,v)), we use an arbitrary distribution Q(h)
(a set of convex welghts) to obtain a convex combination
inside the concave In() function:

P(h,v)
Q(h)

We see that the free energy is an upper bound on the negative
log-probability of the visible RVs: F'(Q), P) > —In P(v). This
can also be seen by noting that D(Q, P) > 01in (6).

Free energy for i.i.d. training cases. From (5), for a
training set of T iid. training cases with hidden RVs,

h=(0,RM, ... hTD), and Vlslble RVs v= (v, ... "), we
have P(h,v) = () H L P(R® v1)|9). The free energy is
F(Q, P) / Q(h)InQ(h / Q(0)In P(6

—Z/ h<‘ 1nP< |9)

The decomposition of F' into a sum of one term for each
training case simplifies learning.

Exact inference revisited. The idea of approximate
inference is to search for (k) in a space of models that are
simpler than the true posterior P(h|v). It is instructive to not
assume Q(h) is simplified and derive the minimizer of
F(Q, P). The only constraint we put on Q(h) is that it is
normalized: [, Q(h) = 1. To account for this constraint, we
form a Lagrangian from F'(Q, P) with Lagrange multiplier A
and optimize F(Q, P) with regard to Q(h): O(F(Q,P) + A
[, Q(h))/0Q(h) =InQ(h) +1 —In P(h,v) + A. Setting this

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.27, NO.9, SEPTEMBER 2005

derivative to 0 and solving for A, we find Q(h) =
P(h,v)/ [,, P(h,v) = P(h|v). So, minimizing the free energy
without any simplifying assumptions on Q(h) produces
exact inference. The minimum free energy is ming F(Q, P) =
J,, P(h|v) In(P(h|v)/P(h,v)) = —In P(v). The minimum free
energy is equal to the negative log-probability of the data.
This minimum is achieved when Q(h) = P(h|v).

Revisiting exact inference in the occlusion model. In the
occlusion model, if we allow the approximating distribution
Q(f,b, m) tobe unconstrained, we find that the minimum free
energy is obtained when Q(f,b,m) = P(f,b|2) [T, P(mi
f,b,z). Of course, nothing is gained computationally by using
this Q-distribution. In the following sections, we see how the
use of various approximate forms for Q(f,b,m) can lead to
tremendous speed-ups.

5.6 MAP Estimation as Minimizing Free Energy

Maximum a posteriori (MAP) estimation searches for
h = argmax;, P(h|v), which is the same as arg max, P(h,v).
For discrete hidden RVs, MAP estimation minimizes F'(Q, P)
using a Q-distribution of the form Q(h) = [h = h], where
[expr] = lif expris true and [expr] = 0if expris false. The free
energy in (6) snnphfles to F(Q,P)=>),[h=h]ln[h=

h]/P(h,v) = —In P(h,v), i.e., minimizing F(Q, P) is equiva-
lent to maximizing P(h, v).

For continuous hidden RVs, the Q-distribution for a point
estimate is a Dirac delta function centered at the estimate:
Q(h) 6(h — h). The free energy in (6) reduces to F(Q, P) =
f} (h—h) n§(h — h)/P(h,v) = —In P(h,v) — Hs, where H
isthe entropy of the Dirac delta. This entropy does not depend
on h, so minimizing F(Q, P) corresponds to searching for
values of h that maximize P(h,v).* Two popular methods that
use point inferences are iterated conditional modes and the
EM algorithm.

5.7 Iterated Conditional Modes (ICM)

The best-known example of ICM is k-means clustering,
where the hidden RVs are the cluster centers and the class
labels. Here, ICM iterates between assigning each training
case to the closest cluster center and setting each cluster
center equal to the average of the training cases assigned to
it. ICM is popular because it easy to implement. However,
ICM does not take into account uncertainties in hidden RVs
during inference, so it sometimes finds poor local minima.

ICM works by searching for a configuration of h that
maximizes P(h|v). The simplest version of ICM examines
each hidden RV h;, in turn, and sets the RV to its MAP value,
given all other RVs. Only the RVs that co-occur with h; in
conditional probability functions or potentials, i.e., the RVs in
the Markov blanket of h;, are relevant. Denote these RVs by
xa, and denote the product of all conditional distributions or
potentials that depend on h; by f(h;, za;). ICM proceeds as
follows:

Initialization. Pick values for all hidden RVs h (randomly
or cleverly).

ICM Step. Consider one of the hidden RVs, h;. Holding
all other RVs constant, set h; to its MAP value:

h; < argmax; P(h;|h \ hi,v) = argmax;, f(hi, 2r,).

4. In fact, Hs — —oo. To see this, define §(z) =1/e if 0 <z < e and 0
otherwise. Then, Hs = In ¢, which goes to —oo as € — 0. This infinite penalty
in F(Q, P) is a reflection of the fact that an infinite-precision point-estimate
of h does a very poor job of representing the uncertainty in 4 under P(h|v).

FREY AND JOJIC: A COMPARISON OF ALGORITHMS FOR INFERENCE AND LEARNING IN PROBABILISTIC GRAPHICAL MODELS

where h \ h; is the set of all hidden RVs other than h;.
Repeat for a fixed number of iterations or until
convergence.

If h; is discrete, this procedure is straightforward. If h; is
continuous and exact optimization of h; is not possible, its
current value can be used as the initial point for a search
algorithm, such as a Newton method or a gradient-based
method.

The free energy for ICM is the free energy described
above, for general point inferences.

ICM in the occlusion model. Even when the model
parameters in the occlusion model are known, the compu-
tational cost of exact inference can be rather high. When the
number of clusters J is large, examining all J? configura-
tions of the foreground class and the background class is
computationally burdensome. For ICM in the occlusion
model, the @)-distribution for the entire training set is

= <H 8(my, — ﬁk)) <H 8(i — ﬂki)) (H 8t — 12%))

1
([-#]) (Tt =)

Substituting this Q-distribution and the P-distribution in (4)
into the expression for the free energy in (7), we obtain the
following (assuming a uniform parameter prior):

F=- Z(lnw + In 7y,) - Z(Z mgt) I,
(1 o <r)> 1n(1 - dfw))
+ZZm§t> ((z§t> _) /28 oy + n(2mdy)/2)
Y[(L0
£ m;)<((
+ 111(27r1215(,)j)/2) —

H is the entropy of the é-functions and is constant during
optimization. F' measures the mismatch between the input
image and the image obtained by combining the foreground
and background using the mask.

To minimize the free energy with regard to all RVs and
parameters, we can iteratively solve for each RV or parameter
keeping the other RVs and parameters fixed. These updates
can be applied in any order, but since the model parameters
depend on values of all hidden RVs, we first optimize for all
hidden RVs and then optimize for model parameters.
Furthermore, since, for every observation, the class RVs
depend on all pixels, when updating the hidden RVs, we first
visit the mask values for all pixels and then the class RVs.

After all parameters and RVs are set to random values, the
updates areapplied recursively, as described in Fig. 5. Tokeep
notation simple, the “*” symbol is dropped and in the updates
for the variables m;, b, and f, the training case index () ig
dropped.

2 .
ﬂ;;w) /27/’5(0@

1403

5.8 Block ICM and Conjugate Gradients

One problem with the simple version of ICM described
above is its severe greediness. Suppose f(h;, zas,) has almost
the same value for two different values of h;. ICM will pick
one value for h;, discarding the fact that the other value of
h; is almost as good. This problem can be partly avoided by
optimizing subsets of h, instead of single elements of h. At
each step of this block ICM method, a tractable subgraph of
the graphical model is selected and all RVs in the subgraph
are updated to maximize P(h,v). Often, this can be done
efficiently using the max-product algorithm [23]. An
example of this method is training HMMSs using the Viterbi
algorithm to select the most probable state sequence. For
continuous hidden RVs, an alternative to block ICM is to
use a joint optimizer, such as a conjugate gradients.

5.9 The Expectation-Maximization Algorithm

The EM algorithm accounts for uncertainty in some RVs,
while performing ICM-like updates for the other RVs.
Typically, for parameters § and remaining RVs bV, ... a7,
EM obtains point estimates for § and computes the exact
posterior over the other RVs, given 6. The @-distribution is
Qh) =60—0)Q (hV,... hTD). Recall that for iid. data
P(h,v) = P(O)(TT~, P(h",v"|9)). Given 6, the RVs asso-
ciated with different training cases are independent, so we
have Q(h) = 6(6 — 0) [T, Q(h"). In exact EM, no restric-
tions are placed on the distributions, Q(h®").

Substituting P(h,v) and Q(h) into (7), we obtain the free
energy:

: Q(h")
F(Q,P)=—InP(d Z(/ (h<>) lnP(h“%v(“lé))

EM alternates between mmlmlzmg F(Q P) with regard to
the set of distributions Q(h" Qgh (7)) in the E step, and
minimizing F(Q, P) with regard to 8 in the M step.

When updating Q(h")), the only constraint is that
Juo Q(hY) =1. As described earlier, this constraint is
accounted for by using a Lagrange multiplier. Setting the
derivative of F(Q,P) to zero and solving for Q(hl")), we

obtain the solution, Q(h(")) = P(h|v("), §). Taking the deri-
o0 90

vative of F(Q), P) with regard to 6, we obtain
9F(@Q,P) - _ iln P()
T
0
- —InP 0
() gmrm)).

For M parameters, this is a set of M equations. These two
solutions give the EM algorithm:

Initialization. Choose values for the parameters 6

(randomly, or cleverly).
E Step. Minimize F'(Q, P) w.r.t.) using exact inference,

by setting
Q(hm) - P(h(f)h)(t),é)’

for each training case, given the parameters § and the
data v,

M Step. Minimize F(Q,P) with regard to the model
parameters 6 by solving

1404

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.27, NO.9, SEPTEMBER 2005

ICM
E Step (Variable Updates)

Fort=1,...,T:
[+ argmax; ('“'f I, (a}"ii(l — afi)l_miN(zi;ﬂfi,wfi)mi))

Fori=1,...,K:
apiN(zi5 gisby;) ifm; =1

(1 = ap)N (2i; i, Vbi)

b < argmax; ('“'b L, N(zi;ubm/)bi)l_m")

™; ¢ argmax { .
v & ™ ifm; =0

M Step (Parameter Updates)
Forf=1,...,J: mj ¢ g5 Taq ([F® = 4] + [p® = 4])

For:g =1y vy di Fordi= Ly o2

i SO =jim"
7 S F®=4]

ST [0 =) orb® =j1o{*)
T U O=jord®=)]

Hji

TSI =5 orb® =12 — i)

Vi T S O=j or b =j]

Gibbs Sampling EM
E Step

Fort=1,...,T:
m;
[¢ sample; (”f 1<, (afiN(zﬁlifiﬂr/’fi)) (1- afi)l_mi)

Fori=1,...,K:

apiN (zis s, ¥ 5i)
(1 — ap))N (235 i Voi)

b « sample, (7rb ITE, V(s Hbia"/)bi)l_mi)

if’l’ni:1 }

m; esamplem‘. { s =0
;=

M Step
Forj =1,...,J: mj ¢ 55 5,((F® = 4] + p® = j])
Forg =1y sun Ji FOrd=1us oy K3

()
=W =jmy
e i
@i RG]

o Dl =g orb® =gV
Hit & 5 O = ors® =5

Wi S W= ors® =41(z{ —psj)?
i T =j or b0 =]

Exact EM
E Step
Fort=1,...,T:
Qb, f) ez mpm s [, (afi-’\f(zi;ufi,wﬁ) +(1- afi)-’\f(zi:ubi,wbi))
Q) « X, R0, 1), Q) «+ 2,0, f)
Fori=1,...,K:
Q(m; =1|b, f) 1 apiN (253 55,9 £4)
Q(ms =0[b,) < c1 (1 — opi)N (235 poi> Yoi)
Fori=1,...,K:
Q(mi,b) < 3 ; Q(milb, fIRD, f), Q(mi, f) + 32, Q(mild, /)Q(b, f)
M Step
Forj=1,....J: mj « 5 24(QU = 5) + QbW =)
Forj=1,...,J: Fori=1,...,K:

= Qi) =11 =j)

LR S Te Oy

_— T (@m? =1, =j)+Q(m) =0,6() =j)) -V
4 2 (@mP =1, =j)+Q(m{ =0,6() =5))

i (Qm{) =1, =)+Q(m{" =06 =) ({ ~ ;1)

i —
Vs = (@ =1,1®) =) +Q(m) =0,6() =))
Variational EM
E Step
Fort=1,...,T:

Q(f) « ca 7y HlK:l((afiN(ziiIlfi,¢fi))Q(mi:1)

Forgi= ly... y Kz
Q(mi =1) 1 [Ty (sl (zis npi, ¥5s)))
Q(mi =0) «c1 ([T;(1 — az:))T, N (i3 115 0i) 9P)

1- ah-)Q(m’:O))

Q(b) < ca mp TT1 | N (235 s, 1) A5 =0)

M Step
Forj=1,...,J: mj ¢ 5 (3, QUF® = 4) + 1, Q6™ =j))
Forg = 1655 3d; POt 12115 005 K

=, @m{M =1Q(sW =)
IRE)

Qi

= (@miY =)@ P =j)+Q(m{Y =0)Q(6®) =)) 2{V
= (@I =1)QU W =j)+Q(m{ =0)Q(b() =§))

Hji

Se(@mP=neuW=i+am{" =0)@" =) (={") ;i)

P —
Vit v, (@mP =1 O =p+emP=0Qb® =)

Fig. 5a. Inference and learning algorithms for the occlusion model. lverson’s notation is used, where [expr] = 1 if expr is true, and [expr] = 0 if expr is

false. The constant ¢ is used to normalize distributions.

) - B R
5111]3(9); /hwQ(h(”)a—élnP(h(”,v(t)\e) —0. (8)

=1
This is the derivative of the expected log-probability of the
complete data. For M parameters, this is a system of

M equations. Often, the prior on the parameters is assumed

to be uniform, P(6) = const, in which case, the first term in
the above expression vanishes.

Repeat for a fixed number of iterations or until
convergence.

In Section 5.5, we showed that, when Q(h) = P(h|v),
F(Q, P) = —1In P(v).So, the EM algorithm alternates between

FREY AND JOJIC: A COMPARISON OF ALGORITHMS FOR INFERENCE AND LEARNING IN PROBABILISTIC GRAPHICAL MODELS

Structured Variational EM

E Step
Forit = 1, o gL

Q(f) ey Hf; (mﬂf@;wmﬁﬁ)
(ﬁ ITi_1 N (25 s> Ypi))

)Q(mi=1\f)
)Q(mi:(’\f)
Fori=1,...,K:

Q(mi = 1f) « ¢z apiN (ziipgis i)

Q(m; = 0f) = c2 (1 — ag;) [Ty N (25 i, i) 9®)

Q(mi, f) + Q(mi|NQ(S), Q(mi) « X, Q(m;, f)
Q(b) 3 mp [T, N (2i5 iy i) Ams=0)

M Step
Forj=1,....,J: mj + 3:(X, Q(/® =) + £, Q6 = j))
For:j =ilyuu s FOEE =Ly vyl
L, TemP=1,1M=j)
LA SN Tg O)
o Zu(Qen{ =150 =) +Q(m{V =0)Q(v") =)) =
Hat = (@m{Y =110 =5)+Q(m{ =0)Q () =3))
£ (Qmi" =1,1 =)+Q(m{" =0)Q (6" =) (=" ~ 1)
Yhi < O] D—; 0] s
= (@Y =1, =)+ Q@(m{") =0)Q(6(*) =j))
Sum-Product EM
E Step
Forit = L; « vu s
Fori=1,...,K: /\if(f) “—ci (oaﬁ./\f(zi;ufi,wﬁ)

+(1L = 05) Sy AEON (s 163, V1))
Q) « e me T M (1)
K pl(f) < s QUM ()
Fori=1,...,K:
A1) ¢ ca 3y of (NapiN(zis g vys)
X7 (0) « ca (X401 (1) —) (X P2OIN (235 135 i)
Q(my) < A" (m;)
K X0) o5 (S 0] (PegiN (zii gs,)
+(; ol (Ha - afi))N(Zz'Qﬂbhwbi))

Fori=1,...

Fore =15

Q(b) < co my [[; A2(D)

Fori=1,...,K: p2(b) + Q(b)/\e(b)
M Step
Forj=1,....0:m ¢ 55(3, QUF® = §) + X, QM = j))
Forj = ljue.opd: Fori=ly...,K:

= em{ = V=)
T QU W=4)

Qi <

5 (@ =neur W =j)+em’ =0)Qp® =) Y
= (@m{Y =1)Q(s® =j)+Q(m{ =0)Q((+) =j))

Hji

= (@Y =1)QU P =5)+Q(m{" =0)Q (6™ =4)) (z{*) — ;1)?

; —
Vii = (@ =1)Q(r) =j)+Q(mP) =0)Q (") =)

Fig. 5b. (continued).

obtaining a tightlower bound on In P(v) and then maximizing
this bound with regard to the model parameters. This means
that with each iteration the log-probability of the data, In P(v),

must increase or stay the same.

1405

EM in the occlusion model. As with ICM, we approx-
imate the distribution over the parameters using Q) =
5(0 —). As described above, in the E step, we set
Q(b, f,m) — P(b, f,m|z) for each training case, where, as
described in Section 5.4, P(b, f,m|z) is represented in the
form P(b, f|2) [L P(ml\b f,2). This distribution is used in
the M step to minimize the free energy 1 with regard to the
model parameters, 0= {ak,uk,wk,m}k - The resulting
updates are given in Fig. 5, where we have dropped the
training case index in the E step for brevity and the constant c
is computed to normalize the appropriate distribution.
Starting with random parameters, the E and M steps are
iterated until convergence or for a fixed number of
iterations.

5.10 Generalized EM

The above derivation of the EM algorithm makes obvious
several generalizations, all of which attempt to decrease
F(Q,P) [31]. If F(Q,P) is a complex function of the
parameters 6, it may not be possible to exactly solve for the
6 that minimizes F(Q, P) in the M step. Instead, § can be
modified so as to decrease F(Q, P), e.g., by taking a step
downbhill in the gradient of F(Q, P). Or, if 6 contains many
parameters, it may be that F(Q, P) can be optimized with
regard to one parameter while holding the others constant.
Although doing this does not solve the system of equations, it
does decrease F'(Q, P).

Another generalization of EM arises when the posterior
distribution over the hidden RVs is too complex to perform
the exact update Q(h(")) — P(h)|v™®, @) that minimizes
F(Q, P) in the E step. Instead, the distribution Q(h*)) from
the previous E step can be modified to decrease F(Q, P). In
fact, ICM is a special case of EM where, in the E step, F/(Q, P)
is decreased by finding the value of h " that minimizes

F(Q, P) subject to Q(h") = S(h® — ﬁ(ﬁ)'

5.11 Gibbs Sampling and Monte Carlo Methods

Gibbs sampling is similar to ICM, but to circumvent local
minima, Gibbs sampling stochastically selects the value of
h; at each step instead of picking the MAP value of h;:

Initialization. Pick values for all hidden RVs A (ran-
domly or cleverly).

Gibbs Sampling Step. Consider one of the hidden RVs,
hi. Holding all other RVs constant, sample h;:

Flhi zar) (Zf hisoa))

where x);, are the RVs in the Markov blanket of h; and
f(hi,zp) is the product of all conditional distributions or
potentials that depend on h;.

Repeat for a fixed number of iterations or until
convergence.

Algorithmically, this is a minor modification of ICM, but,
in many applications, it is able to escape poor local minima
(cf., [14], [18]). Also, the stochastically chosen values of h; can
be monitored to estimate the uncertainty in h; under the
posterior.

If n counts the number of sampling steps, then as n — oo
the nth configuration of the hidden RVsis guaranteed tobe an
unbiased sample from the exact posterior P(hlv). In fact,
although a single Gibbs sampler is not guaranteed to

1406

minimize the free energy, an infinite ensemble of Gibbs
samplers does minimize free energy, regardless of the initial
distribution of the ensemble. Let Q" (h) be the distribution
over h given by the ensemble of samplers at step n. Suppose
we obtain a new ensemble by sampling h; in each sampler.
Then, Q"' (h) = Q"(h\ hi)P(h;|h\ h;,v). Substituting Q"
and Q"*! into (6), we find that "' < F™.

Generally, ina Monte Carlomethod, the distribution over
is represented by a set of configurations k', ..., h%. Then, the
expected value of any function of the hidden RVs, f(h), is
approximated by E[f(h)]m%Zle f(h*). For example, if h
contains binary (0/1) RVs and h!,... h® are drawn from
P(h|v), then, by selecting f(h) = h;, the above equation gives
an estimate of P(h; = 1|v). There are many approaches to
sampling, but the two general classes of samplers are exact
samplers and Markov chain Monte Carlo (MCMC) samplers
(cf., [30]). Whereas exact samplers produce a configuration
with probability equal to the probability under the model,
MCMC samplers produce a sequence of configurations such
that, in the limit, the configuration is a sample from the model.
If amodel P(h, v) is described by a BN, then an exact sample of
h and v can be obtained by successively sampling each RV
given its parents, starting with parentless RVs and finishing
with childless RVs. Gibbs sampling is an example of an
MCMC technique.

MCMC techniques and Gibbs sampling in particular are
guaranteed to produce samples from the probability model
only after the memory of the initial configuration has
vanished and the sampler has reached equilibrium. For this
reason, the sampler is often allowed to “burn in” before
samples are used to compute Monte Carlo estimates. This
corresponds to discarding the samples obtained early on.

Gibbs sampling for EM in the occlusion model. Here,
we describe a learning algorithm that uses ICM-updates for
the model parameters, but uses stochastic updates for the
RVs. This technique can be viewed as a generalized EM
algorithm, where the E-Step is approximated by a Gibbs
sampler. Replacing the MAP RV updates in ICM with
sampling, we obtain the algorithm in Fig. 5. The notation
sample, indicates the expression on the right should be
normalized with regard to b and then b should be sampled.

5.12 Variational Techniques and the Mean Field
Method

A problem with ICM and Gibbs sampling is that, when
updating a particular RV, they do not account for uncertainty
in the neighboring RVs. Clearly, a neighbor that is untrust-
worthy should count less when updating an RV. If exact EM
can be applied, then at least the exact posterior distribution is
used for a subset of the RVs. However, exact EM is often not
possible because the exact posterior is intractable. Also, exact
EM does not account for uncertainty in the parameters.

Variational techniques assume that Q(h) comes from a
restricted family of distributions that can be efficiently
searched over. Inference proceeds by minimizing F(Q, P)
with regard to Q(h), but the restriction on Q (k) implies that a
tight bound, F' = —In P(v), is not in general achievable. In
practice, the family of distributions is usually chosen so that a
closed form expression for F(Q,P) can be obtained and
optimized.

The “starting point” when deriving variational techni-
ques is the product form (also known as fully factorized, or

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.27, NO.9, SEPTEMBER 2005

mean-field) @-distribution. If h consists of L hidden RVs

h = (hi,...,hr), the product form @ distribution is
L
Q(h) =[]), 9)
i=1

where there is one variational parameter or one set of
variational parameters that specifies the marginal Q(h;) for
each hidden RV h;.

The advantage of the product form approximation is
most readily seen when P(h,v) is described by a BN.
Suppose the kth conditional probability function or poten-
tial is a function of RVs h¢, and vp, and denote it by
gi(he,,vp,). So, P(h,v) =11, gr(hc,,vp,). Substituting this
and (9) into (6), we obtain the mean field free energy:

F(Q,P) = Z(| Q(h)In Q(h»)

i

B Z (/ <H Q(h”)> lngk(hCA-vak.)> .
k he, i€Cy,

The high-dimensional integral over all hidden RVs simpli-
fies into a sum over the conditional probability functions of
low-dimensional integrals over small collections of hidden
RVs. The first term is the sum of the negative entropies of
the @Q-distributions for individual hidden RVs. For many
scalar RVs (e.g., Bernoulli, Gaussian, etc.), the entropy can
be written in closed form quite easily.

The second term is the sum of the expected log-
conditional distributions or pontentials, where, for each
term, the expectation is taken with respect to the product of
the Q-distributions for the hidden RVs. For appropriate forms
of the conditional distributions, this term can also be written
in closed form. For example, suppose P(hilhs) = exp
(—In(270%) /2 — (hy — ahy)?/20%) (ie., hy is Gaussian with
mean ahy) and Q(h) and Q(hs) are Gaussian with means ¢y,
and ¢»; and variances ¢;2 and ¢2. The entropy terms for h;
and hy are — In(2mweg1) /2 and — In(2meges) /2. The other term
is the expected value of a quadratic form under a Gaussian,
which is straightforward to compute. The result is —In
(277'0'2)/2 — ((2511 — a¢21)2/202 — ¢12/20’2 — 02¢22/202. These
expressions are easily-computed functions of the variational
parameters. Their derivatives (needed for minimizing
F(Q, P)) can also be computed quite easily.

In general, variational inference consists of searching for
the value of the variational parameter ¢ that minimizes
F(Q, P). For convex problems, this optimization is easy.
Usually, F(Q, P) is not convex in) and iterative optimiza-
tion is required:

Initialization. Pick values for the variational parameters,
¢ (randomly or cleverly).

Optimization Step. Decrease F(Q, P) by adjusting the
parameter vector ¢ or a subset of ¢.

Repeat for a fixed number of iterations or until
convergence.

This variational technique accounts for uncertainty in both
the hidden RVs and the hidden model parameters. If the
amount of training data is small, a variational approximation
to the parameters can be used to represent uncertainty in the
model due to the sparse training data.

FREY AND JOJIC: A COMPARISON OF ALGORITHMS FOR INFERENCE AND LEARNING IN PROBABILISTIC GRAPHICAL MODELS

Often, variational techniques are used to approximate the
distribution over the hidden RVs in the E step of the
EM algorithm, but point estimates are used for the model
parameters. In such Uarzatzonal EM algorzthms, the
Q-distribution is Q(h) = (6 — §) 11, B ¢")). Note that
there is one set of variational parameters for each training
case. In this case, we have the following generalized EM steps:

Initialization. Pick values for the variational parameters
¢W,...,¢™ and the model parameters § (randomly or
cleverly).

Generalized E Step. Starting from the variational para-
meters from the previous iteration, modify oW, ... oD soas
to decrease F'.

Generalized M Step. Starting from the model para-
meters from the previous iteration, modify 6 so as to
decrease F.

Repeat for a fixed number of iterations or until
convergence.

Variational inference for EM in the occlusion model. The
fully factorized Q-distribution over thehidden RVsforasingle
data sample in the occlusion model is Q(m, f,b) =
QM)Q(f) TIE, Q(m;). Substituting this Q-distribution into
the free energy for a single observed data sample in the
occlusion model, we obtain

F:ZQ(b)l %}I))"'ZQ(f)l Q(f)
b b 7
+ZZQ<f><Q<m Q(w;if:l)
T ;
ﬂ)
1—ap,
+ ZZQ(f)Q(mZ =1) ((27 — i) n ln2mpﬁ>
i T

2 2
sz) ln 2y

remeo(gan(t5rt)
The first two terms keep Q(b) and Q(f) close to their priors 7
and 7y. The third term keeps Q(m;) close to the mask priors af;
for foreground classes that have high posterior probability
Q(f)- The last two terms favor mask values and foreground /
background classes that minimize the variance-normalized
squared differences between the predicted pixel values and
the observed pixel values.

Setting the derivatives of F' to zero, we obtain the updates
for the Q-distributions in the E step. Once the variational
parameters are computed for all observed images, the total
freeenergy F' = 3, F(*) is optimized with regard to the model
parameters to obtain the variational M step. The resulting
updates are given in Fig. 5. Each E step update can be
computed in O(KJ) time, which is a K-fold speed-up over
exact inference used for exact EM. This speed-up is obtained
because the variational method assumes that f and b are
independent in the posterior. Also, note that, if the
Q-distribitions place all mass on one configuration, the E step
updates reduce to the ICM updates The M step updates are
similar to the updates for exact EM, except that the exact
posterior distributions are replaced by their factorized
surrogates.

=1)In

+Q(m; =0)In

1407
ff/?mms b f m, m, mg b
Nk
z, 2z, 14
(a) (b)
e ——
f%m1 m, ms—b féﬁma b

Fig. 6. Starting with the BN of the original occlusion model (a) variational
techniques ranging from the fully factorized approximation to exact
inference can be derived. (b) The BN for the factorized (mean field)
Q-distribution. z is observed, so it is not included in the graphical model
for the Q-distribution. (c) The BN for a Q-distribution that can represent
the exact posterior. (d) The BN for a Q-distribution that can represent
the dependence of the mask RVs on the foreground class. Accounting
for more dependencies improves the bound on the data likelihood, but
the choice of which dependencies are retained has a large impact on the
improvement in the bound.

The above updates can be iterated in a variety of ways.
For example, each iteration may consist of repeatedly
updating the variational distributions until convergence
and then updating the parameters. Or, each iteration may
consist of updating each variational distribution once and
then updating the parameters. There are many possibilities
and the update order that is best at avoiding local minima
depends on the problem.

5.13 Structured Variational Techniques

The product-form (mean-field) approximation does not
account for dependencies between hidden RVs. For example,
if the posterior has two distinct modes, the variational
technique for the product-form approximation will find only
one mode. With a different initialization, the technique may
find another mode, but the exact form of the dependence is
not revealed. In structured variational techniques [22], the
Q-distribution is itself specified by a graphical model such
that F(Q, P) can still be optimized. Fig. 6a shows the original
BN for the occlusion model and Fig. 6b shows the BN for the
fully factorized (mean field) Q-distribution described above.
Recall that the exact posterlor can be written P(m, f,b|z) =
Q(m, £,b) = Q(f,0) TIX, Q(my|f, b). Fig. 6c shows the BN for
this @Q-distribution. Generally, increasing the number of
dependencies in the @-distribution leads to more exact
inference algorithms, but also increases the computational
demands of variational inference. In the occlusion model,
whereas mean field inference takes K .J time, exact inference
takes KJ? time. However, additional dependencies can
sometimes be accounted for at no extra computational cost.
Asdescribed below, it turns out that the -distribution shown
in Fig. 6d leads to an inference algorithm with the same
complexity as the mean field method (KJ time), but can
account for dependencies of the mask RVs on the foreground
class.

Structured variational inference for EM in the occlusion
model. The Q-distribution corresponding to the BN in Fig. 6d
is Q(m, f.6)=Qb)Q) [T, Qmil /). Defining ;; = Qm: —

1/f), we have Q(m, f,b) = QO)Q(f) T, af (1 — qp)' ™.
Substituting this @-distribution into the free energy for the
occlusion model, we obtain

1408
F ZZQ(b) ln%f)_k ZQ(f) ln%}f)
’ 7
+>.2. QW (Q(mi —1/f) mQ(miai?lW
i f ;

1—0’,1',;

— (Zi_llfi)Q In 271 ¢
""Z;Q(f)Q(mi—lf)(=20 21)
+ Z((Z QUN)Qm: = 0] f)>

i !
(Zi - /1/1)7',)2 In 27T¢bi
;Q(b)(2 2))

Setting the derivatives of F' to zero, we obtain the updates
given in Fig. 5. With some care, these updates can be
computed in O(KJ) time, which is a K-fold speed-up over
exact inference. Although the dependencies of f and m;,
i =1,..., K onbarenot accounted for, the dependence of m;
on f is accounted for by the ¢y;s. The parameter updates in
the M step have a similar form as for exact EM, except that
the exact posterior is replaced by the above, structured
Q-distribution.

4 Oy = 0]y Q0 = 0f)>

5.14 The Sum-Product Algorithm and (Loopy) Belief
Propagation

The sum-product algorithm (also known as belief propaga-
tion, probability propagation) performs inference by passing
messages along the edges of the graphical model (see [23] for
an extensive review). The message arriving at an RV is a
probability distribution (or a function thatis proportional toa
probability distribution) that represents the inference for the
RV as given by the part of the graph that the message came
from. Pearl [33] showed that the algorithm is exact if the graph
is a tree. When the graph contains cycles, the sum-product
algorithm (also known as “loopy belief propagation”) is not
exactand can diverge and oscillate. However, ithasbeen used
in vision algorithms [8]. Surprisingly, we have also found that
its oscillatory behavior can be used to jump between modes of
the posterior. Also, it has produced state-of-the-art results on
several difficult problems, including error-correcting decod-
ing [13], medical diagnosis [28], random satisfiability [26], and
phase-unwrapping in two dimensions [12].

To see how the sum-product algorithm works, consider
computing P(a) in the model P(a,b,c,d) = P(a|b)P(b|c)
P(c|d)P(d). One approach is to compute P(a,b,c,d) for all
values of g, b, ¢, and d and then compute P(a) =3, > .>",
P(a,b,c,d). For binary RVs, this takes (3+1)(2-2-2-2)
operations. Alternatively, we can move the sums inside the
products: P(a) = 3, P(ap){Y, PB|)[Y, P(dld) P()]). 1f
the terms are computed from the innermost term out, this
takes (3)(2 + 2 + 2) operations, giving an exponential speed-
up in the number of RVs. The computation of each term in
braces corresponds to the computation of a message in the
sum-product algorithm.

In a graphical model, the joint distribution can be written
P(h,v) =[1; 9x(h¢,,vp,), where h¢, and vp, are the hidden
and visible RVs in the kth local function (or conditional
distribution). The sum-product algorithm approximates
P(hlv) by Q(h), where Q(h) is specified by marginals Q(h;)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.27, NO.9, SEPTEMBER 2005

and clique marginals Q(hc,). These are computed by
combining messages that are computed iteratively in the
FG. Denote the message sent from variable h; to function g; by
wir(h;) and denote the message sent from function g, to
variable h; by py;(h;). Note that the message passed on an
edge is a function of the neighboring variable. A user-
specified message-passing schedule is used to determine which
messages should be updated at each iteration. The sum-
product algorithm proceeds as follows:

Initialization. Set all messages to be uniform.

Message Update Step. Update the messages specified in
the message-passing schedule. The message sent from
variable h; to function g is updated as follows:

IT #iy),

n:jeCy n#k

pji(hj) — ¢ (10)

where ¢ is computed so as to normalize the message. The
message sent from function g, to variable h; is updated as
follows:

Mkj(hj) —cC Z <gk(h0; ’ UDk)

h’Ck \Jj

H Mz’k(hi)>a (11)

i€y i#]

where Cj \ j is the set of indices Cj, with j removed.
Fusion. A single-variable marginal or clique marginal
can be computed at any time as follows:

Q(hj) —c H tinj(hj), (12)
n:jeC,
Q(hck) —cC gk'(hCHUDA) H tutk(ht) (13)

ieCk

Repeat for a fixed number of iterations or until
convergence.

If the graph is a tree, once messages have flowed from
every node to every other node, the estimates of the posterior
marginals are exact. So, if the graph has E edges, exact
inference is accomplished by propagating 2E messages
according to the following message-passing schedule. Select
one node as the root and arrange the nodes in layers beneath
the root. Propagate messages from the leaves to the root
(E messages) and then propagate messages from the root to
the leaves (another £ messages). This procedure ensures that
messages flow from every node to every other node. Note
that, if the graph is a tree, if normalizations are not performed
during message-passing, the fusion equations compute the
joint probability of the hidden variable(s) and the observed
variables: [[, e, tnj(hj) = P(hj,v).

If the graph contains cycles, messages can be passed in
an iterative fashion for a fixed number of iterations until
convergence is detected or until divergence is detected.
Also, various schedules for updating the messages can be
used and the quality of the results may depend on the
schedule. It is proven in [35] that, when the “max-product”
algorithm converges, all configurations that differ by
perturbing the RVs in subgraphs that contain at most one
cycle will have lower posterior probabilities.

If the graphical model is a BN, so that Z = 1, the sum-
product algorithm can be used for inference in a general-
ized EM algorithm as follows:

FREY AND JOJIC: A COMPARISON OF ALGORITHMS FOR INFERENCE AND LEARNING IN PROBABILISTIC GRAPHICAL MODELS

Fig. 7.
gi(fv bv ml) =

(a) The FG for the occlusion model with K pixels after the observations (z,.

1409

P(f) | T T | P(b)
f ;ji(f) m; hki’(b)
A ll T}Lrln(m)
pfi(f\)A pilb)
g; (fbo,m;)

(b)

.,zk) are absorbed into function nodes,

P(zi|m;, f,b)P(m;|f). (b) The sum-product algorithm (belief propagation) passes messages along each edge of the graph. This

graph fragment shows the different types of messages propagated in the occlusion model.

Initialization. Pick values for the model parameters 6
(randomly or cleverly) and set all messages to be uniform.

Generalized E Step. For each training case v, apply one
or more iterations of the sum-product algorlthm Then, fuse
messages as described above to compute Q() for every
child and its parents.

Generalized M Step. Modify the parameters ¢ so as to
maximize

ZZZQ Ck lngk h(ék UDA 6)

h“

Repeat for a fixed number of iterations or until
convergence.

The sum-product algorithm for EM in the occlusion
model. For an occlusion model with K pixels, exact inference
takes O(K J?) time. In contrast, loopy belief propagation takes
O(KJ) time, assuming the number of iterations needed for
convergence is constant. Generally, the computational gain
from using loopy belief propagation is exponential in the
number of RVs that combine to explain the data.

The graphical model has cycles, so, before applying the
sum-product algorithm, we modify it to reduce the number
of cycles, as shown in in Fig. 7a, where the observed pixels
21,...,zk are not shown for visual clarity. For each pixel i,
there is one local function g; that combines the conditional
distributions for each mask RV and its corresponding pixel:

gi(fa b, mi) = P(Zz'|m7:,f7 b)P(mi|f) =N
N (255 i Uni)

Fig. 7b shows how we have labeled the messages along the
edges of the FG. During message passing, some messages
will always be the same. In particular, a message leaving a
singly connected function node will always be equal to the
function. So, the messages leaving the nodes corresponding
to P(f) and P(b) are equal to P(f) and P(b), as shown in
Fig. 7b. Also, a message leaving a singly-connected variable
node will always be equal to the constant 1. So, the
messages leaving the mask RVs, m;, are 1. Initially, all other
messages are set to the value 1.

Before updating messages in the graph, we must specify in
what order the messages should be updated. This choice will
influence how quickly the algorithm converges and, for
graphs with cycles, can influence whether or not it converges
atall. Messages can be passed until convergence or for a fixed
amount of time. Here, we define one iteration to consist of
passing messages from the gs to b, from b to the gs, from the gs
to f, from f to the gs, and from the gs to the ms. Each iteration

mi

(Zz'§ Hfis ¢fi)

m; _m; 1-m;
o (1 —ap) ™.

ensures that each RV propagates its influence to every other
RV. Since the graph has cycles, this procedure should be
repeated.

The message updates are derived from the general rules
described above. From (11), it is straightforward to show
that the message sent from g¢; to f should be updated
as follows: X (f) —= >3, m, PL(B) - 1+ g;(f,b,m;). Note that,
since the resultmg message 1s a function of f alone, b and m;
must be summed over. Substituting g;(f, b, m;) from above
and assummg that p?(b) is normalized, this update can be
simplified: A/ (f) < oA (zi: s s0) + (1 —) 3, oL (OIN
(243 Ly Vi)- The last step in computing this message is to

normalize it: X/ (f) — X (f)/(X; M (f)).
According to (10), the message sent from f to g; is given by

the product of the other incoming messages pl(f) < mr [
/\f(f) and it is then normalized: p; I(f)— pl()/ (s pi '(f).

The message sent from g; to b is given by X(b) — >,
Zm, pl(f)-1-gi(f,b,m;), which simplifies to A(b) — (Z;
pL(FasiN (zis pgin 7)) + (5 oL (F) (1 = i) N (25 iy i)
Note that the terms in large parentheses don’t depend on b,
so they need to be computed only once when updating this
message. Again, before proceeding, the message is normal-
ized: Aj(b) — A (b)/ (32, N(1))-

The message sent from b to g; is given by p1() —
[1,2 A (b) and then normalized: p(b) — pl(b)/(3_, P} (D).

Finally, the message sent from g, to m; is updated as
follows: A/ (m;) — 32, 52, ol (f) - pL(b) - gi(f, b, m;). For m; =
1 and m; =0, this update simplifies to \['(1) < >_, pL(
N (255 iy i) and A7(0) — (S, o/ (£)(1 — O‘ft))(zb pi(b)
N (25 i 1/)1,[)). Normalization is performed by setting
X1 (my) = N (m) /O (0) + X (1)).

At any point during message-passing, the fusion rule in
(12) can be used to estimate posterior marginals of variables.
Theestimates of P(f|z), P(b|z) and P(m;|z)are Q(f) «— ([T,
NV (S TLN (), Q) — (m TL X))/ (™ TTL A
(b)), and Q(m;) «— A"(m;). It is common to compute these
during each iteration. In fact, computing the posterior
marginals is often useful as an intermediate step for more
efficiently computing other messages. For example, direct
implementation of the above updates for p/ (f) requires order
JK? time. However, if Q(f) is computed first (which takes
order JK time), then p{ (f) can be updated in order JK time
using p{ (f) < Q(f)/)\f (f), followed by normalization.

Fig. 5 shows the generalized EM algorithm where the
E step uses the sum-product algorithm. Whereas algorithms
presented earlier have one update for each variable (whether
in terms of its value or its distribution), the sum-product

1410

algorithm has one update for each edge in the graph. Note
that, when updating Q(b) and Q(f), whereas variational
methods adjust the effect of each likelihood term by raising it
to a power, the sum-product algorithm adds an offset that
depends on how well the other hidden variables account for
the data. In the M step, we have used a factorized
approximation to Q(m;, f) and Q(m;, b). In fact, these clique
marginals can be computed using (13) to obtain a more exact
M step.

The sum-product algorithm as a variational method. The
sum-product algorithm can be thought of as a variational
technique. Recall that, in contrast to product-form variational
techniques, structured variational techniques account for
more of the direct dependencies (edges) in the original
graphical model by finding Q-distributions over disjoint
substructures (subgraphs). However, one problem with
structured variational techniques is that dependencies in-
duced by the edges that connect the subgraphs are accounted
for quite weakly through the variational parameters in the
Q-distributions for the subgraphs. In contrast, the sum-
product algorithm uses a set of subgraphs that cover all edges
in the original graph and accounts for every direct depen-
dence approximately, using one or more Q-distributions.

To derive the sum-product algorithm as a variational
method, we follow [37]. As described earlier, the sum-product
algorithm approximates P(h|v) by Q(h), where Q(h) is
specified by marginals Q(h;) and clique marginals Q(hc,).
Notice that these sets of marginals cover all edges in the
graphical model. Substituting the expression for P(h,v) into
(6), the free energy is F'=5", Q(h) nQ(h)-Y,5, Qlhe,)
In gi(h¢,, vp,). The second term is a local expectation ‘that can
usually be computed or approximated efficiently. However,
since we don’t have a factorized expression for Q(h), the first
term is generally intractable. We can approximate Q(h) inside
the logarithm using the Bethe approximation: Q(h) ~
(I Q(hey)) /(T Q(h;))" "), where d, is the degree of h;, i.e.,
the number of terms Q(h¢,) that h; appears in. The denomi-
nator is meant to account for the overlap between the clique
marginals. For trees, the Bethe approximation is exact
(cf., [24]).

Substituting the Bethe approximation for the term
InQ(h), we obtain the Bethe free energy Fpemne, Which
approximates the true free energy, Fgemne =~ F:

Fpethe = ZZQ hCA th(hCL) - Z(d - 1)

k he,
D Q) Q(h) = > Q(he,) n gi(hey, vp,).

h,‘ k h(Ok

This approximation becomes exact if the graph is a tree. If
the graph is not a tree, we can still try to minimize Fietne
with regard to Q(h¢,) and Q(h;), but, during optimization,
the marginals may not be consistent with any probability
distribution on h. The statistical physics community has
developed more complex, but more accurate approxima-
tions, such as the Kikuchi approximation, which can be
used to derive inference algorithms [37].

The minimization of Fgeine must account for the margin-
alization constraints, Vk : th Qlhe,) =1, Vi:)3, Q(hi)
=1, and Vk,Vi € Cj; : Zh((hq) Q(h;), where Cj, \ i is
the set of indices C) with ¢ removed. The last constraint
ensures that the single-variable marginals and the clique

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.27, NO.9, SEPTEMBER 2005

marginals agree. Denote the Lagrange multipliers for these
constraints by vy, v;, and ~;;(h;), where the last multiplier
depends on the value h; since there is one constraint for each
value of h;. Setting the derivatives of Fretne subject to these
constraints to 0, we obtain Q(h;)" " [jec, ehi) and
Q(he,) < ge(he, vp,) [Tiec, €™).

The sum-product algorithm can be viewed as an algorithm
that recursively computes the Lagrange multipliers, v;;(h;),
so as to satisfy the above two equations and the margin-
alization constraint everywhere in the network. In the
standard form of the sum-product algorithm, we define
wik(hi) = e) 1o be a “message” sent from variable h; to
function g;. Using this notation, the equations and the
marginalization constramt give the following system of
equations: Q)" " o [Ticq, (), Q(he,) o gklhey, vpy)
[ice, pa(he), and 35, Q(hc) = Q(hy).

One way of solvmg the system is to find a set of update
equations whose f1xed points satisfy the system. To do this,
introduce “messages” that are sent from functions to vari-
ables: ,;(h;) is a message sent from function g, to variable h;.
A fixed point of the sum-product updates in (10) to (13)
satisfies the system of equations. From (10), we have

) -1

H wik(hy) = H H fnj(h (H (R
k:aeCy, kie€Cy, nijeCpn n#k n:jeChy
Combiningthiswith(12),weobtain[.., #k(h;) = Q(h) 7,
which satisfies the first equation in the system. The second
equation is satisfied trivially by sum-product update (13). To
see how the third equation is satisfied, first sum over hgyp;in
(13)and thenuse (11) to obtain Zh(Q(he,) o i (hy) i (hy)-
Then, substitute w;.(h;) from (10) and use (12) to obtain

D e , Qhe,) o [1..jec, #nj(hj) o< Q(hy), which satisfies the
third equation.

5.15 Annealing

In all of the above techniques, when searching for Q(h),
local minima of F' can be a problem. One way to try to avoid
local mlruma is to introduce an inverse temperature B

= [, Q(h)InQ(h)/P(h,v)". When 3=0, P(h,v)’ is
umform and inference is easy. When =1, P(h, v)’ =
P(h,v) and F(B) = F, the free energy we want to minimize.
By searching over () while annealing the system—adjusting
B from 0 to 1—the search may avoid local minima. In
practice, the use of annealing raises the difficult question of
how to adjust § during inference.

6 COMPARISON OF ALGORITHMS

Each of the above techniques iteratively updates an
approximation to the exact posterior distribution while
searching for a minimum of the free energy. It is useful to
study how the behaviors of the algorithms differ. In Table 1,
we give the update equations for the mask variables in the
occlusion model. These updates have been written in a
slightly different form than presented in Fig. 5, to make
comparisons between different methods easier.

Whereas exact inference computes the distribution over m;
for every configuration of the neighboring variables b and f,
ICM and Gibbs sampling select a new value of m; based on the
single current configuration of b and f. Whereas updating all

FREY AND JOJIC: A COMPARISON OF ALGORITHMS FOR INFERENCE AND LEARNING IN PROBABILISTIC GRAPHICAL MODELS

1411

A Comparison of the Updates for the Mask Va-lr—QEII;E f10r Various Algorithms Discussed in This Paper

Method Update for mask variables Complexity

Exact inference (used in EM) 8&::3,}:18 (122?;/)(;;(51[;&/;11) J K

Iterative conditional modes m; < {1’ if (l_f%% > 1 K

0, otherwise

Gibbs sampling m ¢ sample,,, { NG Amot b K

Iican el =R (Hf(‘P‘;f(io)‘g(/x;zﬁl:f/i}?;iijj:Z’j;i)Q(b)) L&
Structured variational ggz::ém = (1_%‘:{%’ %éiﬁ:ﬁ{,ﬁm)mm JK
Sum-product algorithm gg;‘j]g & (fz)(jfx);izvb(zg(‘;)INT?;); e JK

mask variables takes J?K time for exact inference, it takes

K time for ICM and Gibbs sampling.
The update for the distribution Q(m;) over m; in the

mean field (fully factorized) variational method can be
compared to the update for exact inference. The updates are
similar, but an important difference is that each term that
depends on f or b is replaced by its geometric average with
regard to the current distribution Q(f) or Q(b). Each such
geometric average takes J time and there are K mask

variables, so updating all mask variables takes JK time.
In the structured variational method, the dependence of

m; on f is taken into account. The update for the distribution
Q(m;| f) is similar to the update in the mean field method, but
the geometric averages for terms that depend on f are not
taken (since one ()-distribution is computed for each value of
f). The term that depends on b does not depend on f, so its
geometric average with regard to b can be computed once for
all f. The resulting updates for all mask variables take
JK time, which is the same as for the mean field method. This
example shows that, sometimes, accounting for more
dependencies does not significantly increase the time-
complexity of a variational method.

Comparing the update for Q(m;) in the sum-product
algorithm with the corresponding update in the fully
factorized variational method, we see that the geometric
averages are replaced with arithmetic averages. This is an
important difference between the two methods. While the
geometricaverage favors values of m; thathave high weightin
all terms, the arithmetic average favors values of m, that have
high weightin atleast one term. In this sense, the sum-product
algorithm is more “inclusive” of possible configurations of
hidden variables than fully factorized variational methods.
Another difference between these two methods is that, while
the variational method takes averages with regard to the same
distribution for all pixels, Q(f) or Q(b), the sum-product
algorithm uses pixel-specific distributions, p/(f) or p!(b).

7 EXPERIMENTAL RESULTS

We explored the following algorithms for learning the
parameters of the occlusion model using the data illustrated
in Fig. 1: ICM, exact EM, Gibbs sampling; variational EM with
a fully factorized posterior, structured variational EM, and
the sum-product algorithm for EM. The MATLAB scripts we
used are available on our Web sites.

We found that the structured variational method
performed almost identically to the fully factorized varia-
tional method, so we do not report results on the structured
variational method. Generally, there usually are structured
variational approximations that produce bounds that are
significantly better than mean field, but are much more
computationally efficient than exact inference.

Each technique can be tweaked in a variety of ways to
improve performance. However, our goal is to provide the
reader with a “peek under the hood” of each inference
engine and convey a qualitative sense of the similarities and
differences between the techniques, so we strove to make
the initial conditions, variable/parameter update schedules,
etc., as similar as possible. For details of training conditions,
see the MATLAB scripts posted on our Web sites.

The learning algorithms are at best guaranteed to converge
to a local minimum of the free energy, which is an upper
bound on the negative log-likelihood of the data. A common
local minimum is a set of images in which some of the true
classes in the data are repeated while the others are merged
into blurry images. To help avoid this type of local minimum,
we provided the model with 14 clusters—two more than the
total number of different foregrounds and backgrounds. (If
too many clusters are used, the model tends to overfit and
learn specific combinations of foreground and background.)

Each learning algorithm was run five times with different
random initializations and the run with the highest log-
likelihood was kept. For complex models, computing the log-
likelihood is intractable and the free energy was used instead.
The pixels in the class means were initialized to independent
values drawn from the uniform density in [0,1), the pixel

1412

Class| Vf Vi Vp
1 0.04 0.06
2 0 0.07
3 1020 0.07
4 0 0.07
5 | 0.19 0.07
6 | 0.17 0.09
7 | 0.19 0.10
8 0 0.03
9 0 0.09
10 | 0.21 0.02
11 0 0.10
12 0 0.04
13 0 0.07
14 0 0.12

Exact EM

Variational EM

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.27, NO.9, SEPTEMBER 2005

g =

¥

Hl.ﬂi‘!%iﬂ!%! Q

Belief propagation

Fig. 8. Comparison of the learned parameters of the model in Section 2.1 using various learning methods. For each method, we show the mask
probabilities «y, pixel means py, and pixel variances v, for each class k as images, where black indicates a variance of 0. For exact EM and
variational EM, we also show the total posterior probability that each class is used in modeling the foreground (v/) and background (1*):
u,{ =13, Q(fY =k), v} = L3, (b = k). These indicate when a class accounts for too much or too little data. Note that there is no reason for the

same class index for two techniques to correspond to the same object.

variances were set to 1, and the mask probability for each
pixel was set to 0.5. All classes were allowed to be used in both
foreground and background images. To avoid numerical
problems, the model variances and the prior and posterior
probabilities on discrete RVs f, b, m; were notallowed to drop
below 107°.

-

F
I
2 b _
AN
FL'#';‘
Belief T,
propagation Gibbs
1 i
_4 L L 1
10° 10° 10°
flops/pixel

Fig. 9. Free energy versus number of floating-point operations used
during training for ICM, exact EM, and EM using Gibbs sampling,
variational inference, and the sum-product algorithm in the E step.

Fig. 8 shows the parameters after convergence of the
learning algorithms and Fig. 9 shows the free energy as a
function of the number of computations needed during
learning. Most techniques managed to find all classes of
appearance, but the computational requirements varied by
two orders of magnitude. However, the greediest technique,
ICM, failed to find all classes. The ability to disambiguate
foreground and background classes is indicated by the
estimated mask probabilities o (see, also, the example in
Fig. 11), as well as the total posterior probability of a class
being used as a background (+*), and foreground (v/).

Exact EM for the most part correctly infers which of the
classes are used as foreground or background. The only
error it made is evident in the first two learned classes,
which are sometimes swapped to model the combination of
the background and foreground layers, shown in the last
example from the training set in Fig. 1. This particular
combination (12 images in the data set) is modeled with
class 2 in the background and class 1 in the foreground. This
is a consequence of using 14 classes, rather than the required
12 classes. Without class 2, which is a repeated version of
class 6, class 6 would be correctly used as a foreground class
for these examples. The other redundancy is class 13, which
ends up with a probability close to zero, indicating it is not
used by the model.

The variational technique does not properly disambiguate
foreground from background classes, as is evident from the
total posterior probabilities of using a class in each layer v/
and v’. For the classes that exact EM always inferred as
background classes, the variational technique learned masks
probabilities that allow cutting holes in various places in

FREY AND JOJIC: A COMPARISON OF ALGORITHMS FOR INFERENCE AND LEARNING IN PROBABILISTIC GRAPHICAL MODELS

g / Point estimate

Variational

Negative
log-likelihood

Iteration

(a)

Free energy

Negative
-2 log-likelihood

10 30
Iteration

(c)

1413

Point estimate

Variational
free energy

log-likelihood ™

Iteration

(b)

Free energy

Negative
log-likelihood

Iteration

(d)

Fig. 10. How good are the free energy approximations to the negative log-likelihood? In (a), we compare the mean-field variational free energy, the
point estimate free energy, and the negative log-likelihood during variational EM. In (b), we compare the same three quantities during exact EM. To
further illustrate the advantage of modeling uncertainty in the posterior, in (c), we show the point-estimate free energy and the negative log-likelihood
during ICM learning. In (d), we compare the same two quantities during Gibbs sampling EM.

order to place the classes in the foreground and show the faces
behind them. The mask probabilities for these classes show
outlines of faces and have values that are between zero and
one, indicating that the corresponding pixels are not con-
sistently used when the class is picked to be in the foreground.
Such mask values reduce the overall likelihood of the data
and increase the variational free energy because the mask
likelihood P(m;|f) = o/ (1 — as)' ™™ has the highest value
when «y; is either 0 or 1 and m; has the same value.
Consequently, the variational free energy is always some-
what above the negative likelihood of the data for any given
parameters (see Fig. 10a). Similar behavior is evident in the
results of other approximate learning techniques that effec-
tively decouple the posterior over the foreground and
background classes, such as loopy belief propagation (last
column of Fig. 8) and the structured variational technique.
Note that small differences in free energy may or may not
indicate a difference in the visual quality of the solution.
One concern thatis sometimesraised about minimizing the
free energy is that the approximate Q-distribution used for the
hidden RVs may not be well-suited to the model, causing the
free energy to be a poor bound on the negative log-likelihood.

However, as pointed out in [17], since the free energy is
F(Q,P)=D(Q,P)—1nP(v) (see (6)), if two models fit the
data equally well (In P(v) is the same), minimizing the free
energy will select the model that makes the approximate
Q-distribution more exact (select P to minimize D(Q, P)).
We see this effect experimentally in Fig. 10. In Fig. 10a, we
show the free energy for the variational mean-field method
during 30 iterations of learning. In this case, a single iteration
corresponds to the shortest sequence of steps that update all
variational parameters (Q(b), Q(f),Q(m;) for each training
case) and all model parameters. In the same plot, we show the
truenegativelog-likelihood after each iteration. We also show
the point estimate of the free energy, which is evaluated at the
modes of the variational posterior. Since the parameters are
updated using the variational technique, the variational
bound is the only one of the curves that theoretically has to be
monotonic. While the negative of the log-likelihood is
consistently better than the other estimates, the bound does
appear to be relatively tight most of the time. Note that, early
on in learning, the point estimate gives a poor bound, but,
after learning is essentially finished, the point estimate gives a
good bound. The fact that ICM performs poorly for learning,

1414

k=1 k=2 k—3 k=4

k 5 k—6 k—7 k—8

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.27, NO.9, SEPTEMBER 2005

Two data samples

(= M
k9 k10 k-1l k=12 k=13 k-4 = |

3 AN

T R I
! mﬁ-ﬂ-ﬁ%ﬁjﬁ----h- =_

2

A% L
2 'lﬂﬂ-ﬂ_ﬂ!ﬂ- ==

. _maﬁE Jﬂi E X ii'fh. %

iﬂ 8 ﬂ[ﬁu

; l!ﬂﬁ!_-ﬂﬂ- e

30

2EM

s 1= _i_lﬁ'?ll

j o 2N
--L‘I--m-“ﬂ-

I

Model parameters after each iteration (mask prior o, , mean appearance . and variance for each class k)

(a)

Posterior for
two data samples

(b)

Fig. 11. An illustration of learning using loopy belief propagation (the sum-product algorithm). For each iteration, we show: (a) model parameters,
including mask priors, mean, and variance parameters for each class, and (b) inferred distribution over the mask and the most likely foreground and
background class for two of the 300 training cases. Although the algorithm (Section 5.14) converges quickly, it cannot escape a local minimum
caused by an overly greedy decision made in the very first iteration in which the foreground object is placed into the background layer for the first
illustrated training case. In this local minimum, some “background classes” (e.g., k = 12) are used as foregrounds (see the mask). An additional two
iterations of exact EM (Section 5.9), which uses the exact posterior Q(f,b)Q(m|f,b), allows the inference process to flip the foreground and
background where needed and escape the local minimum (see the mask of class k = 12 after EM).

but performs well for inference after learning using a better
technique indicates the importance of accounting for un-
certainty early in the learning process.

As shown in Fig. 10b, if the same energies are plotted for
the parameters after each iteration of exact EM, the curves
converge by the fifth iteration. Here, the mean-field
variational free energy is computed using the factorized
posterior Q(f)Q(b) [[; Q(m;) fitted by minimizing the
KL distance to the exact posterior P(f,b,m|z), while the
point estimate is computed by further discarding every-
thing but the peaks in the variational posterior. When the
posterior is still broad early in the learning process, the
variational posterior leads to a tighter bound on the
negative log-likelihood than the point estimate. However,

the point estimate catches up quickly as EM converges and
the true posterior itself becomes peaked.

If the parameters are updated using ICM (which uses
point estimates), as shown in Fig. 10c, poor local minima are
found and both the free energy and the true negative log-
likelihood are significantly worse than the same quantities
found using exact EM and variational EM. Also, even after
convergence, the point estimate free energy is not a tight
bound on the negative log-likelihood.

These plots are meant to illustrate that, while fairly severe
approximations of the posterior can provide a tight bound
near the local optimum of the log-likelihood, it is the behavior
of the learning algorithm in the early iterations that
determines how close an approximate technique will get to

FREY AND JOJIC: A COMPARISON OF ALGORITHMS FOR INFERENCE AND LEARNING IN PROBABILISTIC GRAPHICAL MODELS

a local optimum of the the true log-likelihood. In the early
iterations, to give the model a chance to get to a good local
optimum, the model parameters are typically initialized to
model broad distributions, allowing the learning techniques
to more broadly explore the space of possibilities through
relatively flat posteriors (e.g., in our case, we initialize the
variances to be equal to one, corresponding to a standard
deviation of 100 percent of the dynamic range of the image). If
the approximate posterior makes greedy decisions early in
the learning process, it is often difficult to correct the errors in
later iterations. ICM, while very fast, is the most greedy of all
the techniques. Even if variances are initialized to large
values, ICM makes poor, greedy decisions for the configura-
tion of the hidden RVs early on in learning and does not
recover from these mistakes.

Importantly, even computationally simple ways of ac-
counting for uncertainty can improve performance signifi-
cantly, in comparison with ICM. In Fig. 10d, we show the
point estimate free energy and the negative log-likelihood
when the ICM technique is modified to take some uncertainty
into accountby performing a Gibbs sampling step for each RV
instead of picking the most probable value.” This method
does not increase the computational cost per iteration
compared to ICM, but it obtains much better values of both
energies. Sampling sometimes makes the free energy worse
during the learning, but allows the algorithm to account for
uncertainty early on, when the true posterior distributions for
RVs are broad. While this single-step Gibbs sampling
technique obtains better energies than ICM, it does not
achieve the lower energies obtained by exact EM and
variational EM.

The effect of approximate probabilistic inference on the
visual quality of the parameters is illustrated in Fig. 11, where
we show how the model parameters change during several
iterations of EM where the E step is performed using the sum-
product algorithm. On the far right of the figure, we illustrate
the inference over hidden RVs (foreground class f, back-
ground class b, and the mask m) for two training cases. After
the first iteration, while finding good guesses for the classes
that took part in the formation process, the foreground and
background are incorrectly inverted in the posterior for the
first training case and this situation persists even after
convergence. Interestingly, by applying an additional two
iterations of exact EM after 30 iterations of sum-product EM,
the model leaves the local minimum. This is evident not only
in the first training case, butalso in the rest of the training data,
as evidenced by the erasure of holes in the estimated mask
probabilities for the background classes. The same improve-
ment can be observed for the variational technique. In fact,
adding a small number of exact EM iterations to improve the
results of variational learning can be seen as part of the same
framework of optimizing the variational free energy, except
that not only the parameters of the variational posterior, but
also its form can be varied to increase the bound at each step.

When the nature of the local minima to which a learning
technique is susceptible is well understood, it is often possible
to change either the model or the form of the approximation to
the posterior to avoid these minima without too much extra
computation. In the occlusion model, the problem is the
background-foreground inversion, which can be avoided by
simply testing the inversion hypothesis and switching the

5. Note that, because this technique does not use an ensemble of samples,
it is not guaranteed to minimize free energy at each step.

1415

inferred background and foreground classes to check if this
lowers the free energy, rather than exploring all possible
combinations of classes in the exact posterior. An elegant way
of doing this within the variational framework is to add an
additional “switch” RV to the model, which, in the generative
process, can switch the two classes. Then, the mean field
posterior would have a component that models the un-
certainty about foreground-background inversion. While this
would render the variational learning two times slower, it
would still be much faster than the exact EM.

8 FUTURE DIRECTIONS

In our view, the most interesting and potentially high-impact
areas of current research include introducing effective
representations and models of data; inventing new inference
and learning algorithms that can efficiently infer combinator-
ial explanations of data; developing real-time, or near-real-
time, modular software systems that enable researchers and
developers to evaluate the effectiveness of combinations of
inference and learning algorithms for solving real-world
tasks; advancing techniques for combining information from
multiple sources, e.g., camera images, spectral features,
microphones, text, tactile information, etc.; developing
inference algorithms for active tasks, that effectively account
for uncertainties in the sensory inputs and the model of the
environment when making decisions about investigating the
environment. In our view, a core requirement in all of these
directions of research is that uncertainty should be properly
accounted for, both in the representations of problems and in
adapting to new data. Large-scale, hierarchical probability
models and efficient inference and learning algorithms will
play a large role in the successful implementation of these
systems.

REFERENCES

[1] E.H. Adelson and P. Anandan, “Ordinal Characteristics of
Transparency,” Proc. AAAI Workshop Qualitative Vision, 1990.

[2] O.E. Barndorff-Nielson, Information and Exponential Families.
Chichester: Wiley, 1978.

[3] J. Besag, “ On the Statistical Analysis of Dirty Pictures,”]. Royal
Statistical Soc. B, vol. 48, pp. 259-302, 1986.

[4] R.G. Cowell, A.P. Dawid, S.L. Lauritzen, and D.]. Spiegelhalter,
Probabilistic Networks and Expert Systems. New York: Springer, 1999.

[5] R.G. Cowell, AP. Dawid, and P. Sebastiani, “A Comparison of
Sequential Learning Methods for Incomplete Data,” |. Bayesian
Statistics, vol. 5, pp. 581-588, 1996.

[6] A.P. Dempster, N.M. Laird, and D.B. Rubin, “Maximum Like-
lihood from Incomplete Data via the EM Algorithm,” Proc. Royal
Statistical Soc., vol. 39, pp. 1-38, 1977.

[71 Hermann von Helmholtz, D. Cahan, ed. Los Angeles: Univ. of Calif.
Press, 1993.

[8] W. Freeman and E. Pasztor, “Learning Low-Level Vision,” Proc.
Int’l Conf. Computer Vision, pp. 1182-1189, 1999.

[9] B.J. Frey, “Extending Factor Graphs so as to Unify Directed and
Undirected Graphical Models,” Proc. 19th Conf. Uncertainty in
Artificial Intelligence, 2003.

[10] B.J. Frey and N. Jojic, “Transformed Component Analysis: Joint
Estimation of Spatial Transformations and Image Components,”
Proc. IEEE Int’l Conf. Computer Vision, Sept. 1999.

[11] B.J.Frey and N. Jojic, “Transformation-Invariant Clustering Using
the EM Algorithm,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 25, no. 1, pp. 1-17, Jan. 2003.

[12] B.J. Frey, R. Koetter, and N. Petrovic, “Very Loopy Belief
Propagation for Unwrapping Phase Images,” Advances in Neural
Information Processing Systems 14, T.G. Dietterich, S. Becker, and
Z. Ghahramani, eds. MIT Press, 2002.

1416

(13]

[14]

[15]

[1o]

(17

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[20]

(27]

(28]

[29]
(30]

(31]

(32]

(33]

(34]

(35]

[36]

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.27, NO.9, SEPTEMBER 2005

B.J. Frey and D.J.C. MacKay, “A Revolution: Belief Propagation in
Graphs with Cycles,” Advances in Neural Information Processing
Systems 1997, MLI. Jordan, ML.I. Kearns, and S.A. Solla, eds., vol. 10,
pp- 479-485. MIT Press, 1998.

S. Geman and D. Geman, “Stochastic Relaxation, Gibbs Distribu-
tion and the Bayesian Restoration of Images,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 6, pp. 721-741, 1984.

Z. Ghahramani and M. Beal, “Propagation algorithms for
Variational Bayesian Learning,” Advances in Neural Information
Processing Systems 13, T. Leen, T. Dietterich, and V. Tresp, eds.
MIT Press, 2001.

D. Heckerman, “A Tutorial on Learning with Bayesian Net-
works,” Learning in Graphical Models, ML.1. Jordan, ed. Norwell,
Mass.: Kluwer Academic, 1998.

G.E. Hinton, P. Dayan, B.J. Frey, and R.M. Neal, “The Wake-Sleep
Algorithm for Unsupervised Neural Networks,” Science, vol. 268,
pp- 1158-1161, 1995.

G.E. Hinton and T.J. Sejnowski, “Learning and Relearning in
Boltzmann Machines,” Parallel Distributed Processing: Explorations
in the Microstructure of Cognition, D.E. Rumelhart and J.L. McClel-
land, eds., vol. I, pp. 282-317, 1986.

N. Jojic and B.J. Frey, “Learning Flexible Sprites in Video Layers,”
Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2001.

N. Jojic, B.J. Frey, and A. Kannan, “Epitomic Analysis of
Appearance and Shape,” Proc. IEEE Int’l Conf. Computer Vision,
Sept. 2003.

N. Jojic, N. Petrovic, B.J. Frey, and T.S. Huang, “Transformed
Hidden Markov Models: Estimating Mixture Models of Images
and Inferring Spatial Transformations in Video Sequences,” Proc.
IEEE Conf. Computer Vision and Pattern Recognition, June 2000.
M.L Jordan, Z. Ghahramani, T.S. Jaakkola, and L.K. Saul, “An
Introduction to Variational Methods for Graphical Models,”
Learning in Graphical Models, M.I. Jordan, ed. Norwell, Mass.:
Kluwer Academic, 1998.

F.R. Kschischang, B.J. Frey, and H.-A. Loeliger, “Factor Graphs
and the Sum-Product Algorithm,” IEEE Trans. Information Theory,
special issue on codes on graphs and iterative algorithms, vol. 47,
no. 2, pp. 498-519, Feb. 2001.

S.L. Lauritzen, Graphical Models. New York: Oxford Univ. Press,
1996.

D.J.C. MacKay, “Bayesian Neural Networks and Density Net-
works,” Nuclear Instruments and Methods in Physics Research,
vol. 354, pp. 73-80, 1995.

M. Mézard, G. Parisi, and R. Zecchina, “Analytic and Algorithmic
Solution of Random Satisfiability Problems,” Science, vol. 297,
pp. 812-815, 2002.

T.P. Minka, “Expectation Propagation for Approximate Bayesian
Inference,” Proc. 17th Conf. Uncertainty in Artificial Intelligence, 2001.
K.P. Murphy, Y. Weiss, and M.L. Jordan, “Loopy Belief Propaga-
tion for Approximate Inference: An Empirical Study,” Proc. 15th
Conf. Uncertainty in Artificial Intelligence, 1999.

R.M. Neal, “Bayesian Mixture Modeling by Monte Carlo Simula-
tion,” Technical Report CRG-TR-91-2, Univ. of Toronto, 1991.
R.M. Neal, “Probabilistic Inference Using Markov Chain Monte
Carlo Methods,” technical report, Univ. of Toronto, 1993.

RM. Neal and G.E. Hinton, “A View of the EM Algorithm that
Justifies Incremental, Sparse, and Other Variants,” Learning in
Graphical Models, ML.I. Jordan, ed., pp. 355-368. Norwell, Mass.:
Kluwer Academic, 1998.

AY. Ng and M.I. Jordan, “A Comparison of Logistic Regression
and Naive Bayes,” Advances in Neural Information Processing
Systems 14, T.G. Dietterich, S. Becker, and Z. Ghahramani, eds.
Cambridge, Mass.: MIT Press, 2002.

J. Pearl, Probabilistic Reasoning in Intelligent Systems. San Mateo,
Calif.: Morgan Kaufmann, 1988.

M.J. Wainwright and M.L Jordan, “Graphical Models, Variational
Inference and Exponential Families,” Technical Report 649, Dept.
of Statistics, Univ. of California, Berkeley, 2003.

Y. Weiss and W. Freeman, “On the Optimaility of Solutions of the
Max-Product Belief Propagation Algorithm in Arbitrary Graphs,”
IEEE Trans. Information Theory, special issue on codes on graphs
and iterative algorithms, vol. 47, no. 2, pp. 736-744, Feb. 2001.
C.W. Williams and M.K. Titsias, “Learning about Multiple Objects
in Images: Factorial Learning without Factorial Search,” Advances
in Neural Information Processing Systems 15, S. Becker, S. Thrun, and
K. Obermayer, eds. Cambridge, Mass.: MIT Press, 2003.

[37] J. Yedidia, W.T. Freeman, and Y. Weiss, “Understanding Belief
Propagation and Its Generalizations,” Proc. Int’l Joint Conf.
Artificial Intelligence, 2001.

Brendan J. Frey’s university education included
engineering, physics, and computer science,
culminating with a doctorate from Geoffrey
Hinton’s Neural Networks Research Group at
the University of Toronto. From 1997 to 1999, he
was a Beckman Fellow at the University of
lllinois at Urbana-Champaign, where he con-
tinues to be an adjunct faculty member in
electrical and computer engineering. From
1998 to 2001, he was a faculty member in
computer science at the University of Waterloo. Currently, he is the head
of the Probabilistic and Statistical Inference Group in the Department of
Electrical and Computer Engineering at the University of Toronto and
consults for Microsoft Research, Redmond, Washington. He has
received several awards, given more than 40 invited talks, and
published more than 100 papers on probabilistic inference and machine
learning for computer vision, computational biology, and information
processing. In the past, he cochaired the Workshop on Artificial
Intelligence and Statistics and the Canadian Workshop on Information
Theory and acted as co-editor-in-chief of a special issue of the IEEE
Transactions on Information Theory, titled Codes on Graphs and
lterative Algorithms. He was also an associate editor of the |[EEE
Transactions on Pattern Analysis and Machine Intelligence. He is a
senior member of the IEEE.

Nebojsa Jojic received the PhD degree from
the University of lllinois at Urbana-Champaign in
2001, where he received a Microsoft Fellowship
in 1999 and a Robert T. Chien excellence in
research award in 2000. He has been a
researcher at Microsoft Research in Redmond,
Washington, since 2000. Dr. Jojic also spent a
semester at the University of lllinois at Chicago
and consulted for the Hong Kong University of
Science and Technology. He has published
more than 40 papers in the areas of computer vision, machine learning,
signal processing, computer graphics, and computational biology.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

