
CS540 Spring 2010: homework 7

1 High dimensional classification
The goal of this exercise to reproduce table 18.1 of [HTF09, p656]. (Recall that this book is available online for
free at http://www-stat.stanford.edu/˜tibs/ElemStatLearn/download.html.) This is a clas-
sification problem with N = 144 samples, D = 16, 603 features and C = 14 classes (types of cancer). The data is
available from http://www-stat.stanford.edu/˜tibs/ElemStatLearn/data.html. The methods
are all sparse classifiers of various kinds, and are listed below. Code for many of these already exists in pmtk, but you
may have to make some minor changes.

• Nearest shrunken centroids (this is naive Bayes where σ2
jc is tied across c and we use a sparsity-promoting

prior for µjc.) Use naiveBayesGaussFitShrunkenCentroids and naiveBayesGaussPredict.
Choose λ by CV.

• Standard naive Bayes with MLE and untied µjc and σ2
jc (naiveBayesGaussFit).

• Regularized linear discriminant analysis. This means using the following expression (p656 of Hastie) for the
tied class conditional covariance matrix

Σ̂(γ) = γΣ̂ + (1− γ)diag(Σ̂) (1)

where 0 ≤ γ ≤ 1 is chosen by CV and Σ̂ is the MLE. If γ = 0, this becomes diagonal LDA, which is
equivalent to nearest shrunken centroids with λ = 0. You’ll need to modify discrimAnalysisFit, but can
use discrimAnalysisPredict as is.

• Regularized quadratic discriminant analysis. This means using the following untied class conditional covariance
matrix (p112 of Hastie)

Σ̂k(α, γ) = αΣ̂k + (1− α)Σ̂(γ) (2)

You’ll need to modify discrimAnalysisFit, but can use discrimAnalysisPredict as is.

• SVM classifier. You’ll need to implement a one-versus-all method on top of the existing binary SVM code
(svmlightFitCV and svmlightPredict). You’ll also need to install SVMlight first, from http://
svmlight.joachims.org/.

• KNN classifier (knnClassify).

• `2 penalized multinomial logistic regression (logregFit with regType=’L2’).

• `1 penalized multinomial logistic regresion (logregFit with regType=’L1’).

For brevity, you can omit multinomial logistic regression with the elastic net (`1+`2) regularizer, and lasso regression
(which is not appropriate for classification problems).

1

2 Imputation for gene microarrays
A gene microarray dataset is an N × D matrix, where Xij is the expression level (relative to some baseline) of
gene i in experiment j. The experiments often correspond to measuring genes over time (so each row represents a
time series), or measuring genes under different environmental conditions. For example, the yeast cell cycle data
[ESBB98] measures 6221 genes over 80 time steps, and the yeast environmental stress data [GSK+00] measures 6361
genes over 156 conditions.
Most microarray data has missing values due to measurement problems. For example in the yeast cell cycle data,
about half of the rows are missing one or more values. It is common to impute the missing values before doing
further downstream analysis (such as clustering). Many methods have been proposed for this. In this exercise, we will
compare a few of them on the above two datasets.
We will follow the protocol of [OWG04]. The yeast cell cycle data is available from http://rana.lbl.gov/
EisenData.htm. Use the 3222 rows which have no missing values. The yeast stress data is available at http:
//genome-www.stanford.edu/yeast_stress/data.shtml. Use the 5068 rows that have no missing
values. In addition, use the 15 columns defined in footnote 2 of [OWG04]; this ensures the features are not too highly
correlated, in order to make the data more different to the cell cycle data. Note: various methods for reading in data in
Matlab are described at http://www.mathworks.com/support/tech-notes/1400/1403.html.
For each dataset, set a random fraction p of the entries to NaN (use p ∈ {0.001, 0.01, 0.1}) impute the missing entries,
and then measure the accuracy using the normalized root mean squared error

NRMSE
def=

1
|M|

∑
ij∈M(X̂ij −Xij)2

1
|M|

∑
ij∈M(Xij)2

(3)

whereM is the set of indices of the missing entries and X̂ij is the imputed entry. Repeat this 10 times and compute
the mean and standard error of the NRMSE.
Many of the methods below have a free parameter K which controls the complexity of the model used for imputation.
For each method, you should plot the mean NRMSE (with error bars) vs K. Think of a way to make the x-axis
comparable across methods, so you can superimpose all your plots on the same graph to make comparison easy. Also,
for each method, pick the best K by eye (if required). Then make a boxplot (one per dataset) comparing all the
methods evaluated at their best K.
The methods you should implement are as follows.

• The simplest method is to use row imputation, where we replace Xij (if it is missing) with xi,:, computed by
averaging over the columns (in row i) which are not missing. Also try column imputation, where we use x:,j .

• Another simple but popular approach is K-nearest neighbor imputation, first proposed in [TCS+01]. To
explain the idea, let us partition X into a set of rows which are fully observed, V , and the remaining rows, with
missing values. Consider a row with missing values, call it i. Suppose that the first M entries are missing, and
the remaining D −M are observed. We compute the Euclidean distance of this row to each row in V using the
last D −M columns; let dk be the distance to the k’th row in V , and let nbr(i,K) be the indices of the K rows
in V that are closest to row i. Then we fill in the missing entries using

X̂ij =

∑
k∈nbr(i,K)Xkj/dk∑

k∈nbr(i,K) 1/dk
(4)

This approach is an example of a more general class of methods called hot-deck imputation, which fills in
missing values on incomplete records using values from similar, but complete records of the same dataset.1

Write a function knnImputation that implements the above method. (Note that knnimpute already ex-
ists in Matlab’s bioinformatics toolbox. Also, there is an R package called impute (available at http:

1According to Wikipedia, “the term ’hot deck’ dates back to the storage of data on punch cards, and indicates that the information donors come
from the same dataset as the recipients; the stack of cards was ’hot’ because it was currently being processed. Cold-deck imputation, by contrast,
selects donors from another dataset.”

2

//cran.r-project.org/web/packages/impute/impute.pdf) that implements this functional-
ity. However, we need our own version for later modification.) Try using raw Euclidean distance, and Maha-
lanobis distance using a diagonal covariance matrix. Note that a naive implementation of KNN-impute takes
O(DN2) time, but you can use approximate nearest neighbor methods to reduce this to O(DN logN) time if
you wish.

• Use mixGaussMissingFitEm and mixGaussImpute from pmtk. (This method is described in [OWG04],
except they got many details wrong!). You may need to perform MAP estimation for numerical stability. This
takes O(DNKT) time, where T is the number of iterations needed by EM. This is better than O(DN logN)
but can still be quite slow. This method is similar in some ways to KNN imputation, since it fills in missing
entries by averaging over K prototypes, but these prototypes are inferred using all the data in a statistically
sound way.

• Modify the mixGaussMissingFitEm code so it uses mixtures of diagonal Gaussians.

3 Imputation of mixed data types
Consider the problem of imputing missing entries in a data matrix where some features are binary, some are categorical,
and some are real-valued. (We could also imagine including ordinal data, count data, positive real-valued data, etc.)
As a concrete example, consider the famous “adult” dataset from the UC Irvine repository, which was derived from the
US Census in 1994. There are N = 48, 842 records, and D = 14 attributes, of which 6 are continuous (all positive)
and 8 are categorical (of which 1 is binary). See Table 1 for details.
3620 records containing one or missing entries. We will use the rows which have no missing entries. In addition,
we will skip features 11 (capgain), 12 (caploss), and 14 (country), which are relatively constant across rows. Use the
function data = adultDataPreprocess() on the class web page to load the data (in adultCensus.zip).
Extract the first 1,000 rows and artificially create missing values by setting a random fraction p of the entries to NaN
(use p ∈ {0.001, 0.01, 0.1}). (Use setSeed(0) first.) Apply one of the methods below to impute and then meaure
accuracy as follows. For each row, define the loss as follows, where C is the set of continuous features and D is the set
of discrete features:

L(xi, x̂i) =
1
D

∑
j∈C

(xij − x̂ij)2 +
∑
j∈D

I(xij 6= x̂ij)

 (5)

Define L = 1
N

∑N
i=1 L(xi, x̂i) as the loss for an entire imputed matrix.

For each method below, and for each percentage missing, compute the loss over 10 random trials. Plot the mean loss
and its standard error vsK. To get a more detailed understanding of how well each method is doing, make scatter plots
of xij vs x̂ij for j ∈ C, and print the R2 value in the title (as in hw6). For the discrete features, compute confusion
matrices where Cj(c, c′) is the number of times the true feature j has value c but the predicted feature j is c′. A
perfect reconstruction would have all the entries on the diagonal. Thus a simple error measure computes the fraction
of off-diagonal entries

Ej =
1
N

∑
c6=c′

Cj(c, c′) (6)

Visualize the confusion matrices using hintonDiagram (or imagesc with colorbar). PrintEj in the title. Turn
in your code and plots.
Implement and evaluate the following methods

1. Modify the KNNimputation function so it handles mixed data, by using Hamming distance on the discrete
features.

2. A standard hack people use is to treat discrete data as if it was continuous. For ordinal data (as in the netflix
competition, where people rated movies on a scale of 1 to 5), this is reasonable. But for categorical data, it
does not make sense. However, you can convert the categorical features to binary using a 1-of-K encoding (see

3

Num Name Type Values
1 age Cts -
2 workclass Cat(8) Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-

gov, Without-pay, Never-worked
3 fnlwgt Cts -
4 education Cat(16) Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm,

Assoc-voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-
6th, Preschool

5 education-num Cts -
6 marital-status Cat(7) Married-civ-spouse, Divorced, Never-married, Separated, Widowed,

Married-spouse-absent, Married-AF-spouse
7 occupation Cat(14) Tech-support, Craft-repair, Other-service, Sales, Exec-managerial,

Prof-specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical,
Farming-fishing, Transport-moving, Priv-house-serv, Protective-serv,
Armed-Forces

8 relationship Cat(6) Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried
9 race Cat(5) White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black
10 sex Cat(2) Female, Male
11 capital-gain Cts -
12 capital-loss Cts -
13 hours-per-week Cts -
14 native-country Cat(41) United-States, Cambodia, England, Puerto-Rico, Canada, Germany,

Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China,
Cuba, Iran, Honduras, Philippines, Italy, Poland, Jamaica, Viet-
nam, Mexico, Portugal, Ireland, France, Dominican-Republic, Laos,
Ecuador, Taiwan, Haiti, Columbia, Hungary, Guatemala, Nicaragua,
Scotland, Thailand, Yugoslavia, El-Salvador, Trinadad&Tobago, Peru,
Hong, Holand-Netherlands

15 Income Cat(2) > 50K, <= 50K

Table 1: Description of the features in the “adult” dataset from the UC Irvine repository (http://archive.ics.uci.edu/
ml/datasets/Adult). The feature fnlwgt stands for final weight, and is related to the sampling design used to collect the
survey data. This was extracted by Barry Becker from the US 1994 Census database. The standard task is to predict the binary
income label, but we can also use this data for unsupervised learning.

4

dummyEncoding). You can then replace 0s with -1s and treat all the data as continuous. Use this transform
and apply your mixtures of Gaussians code. Try both full and diagonal covariances. Try K ∈ {1, 5, 10, 50}
mixture components. You will need to post-process your results to convert imputed continuous 1-of-K vectors
back to a discrete value.

3. A more suitable model is to use a mixture model where the class-conditional density is a product of different
scalar distributions, depending on the type of the feature, i.e.,

p(x|θ) =
K∑

k=1

πk

∏
j∈C
N (xj |µjk, σ

2
jk)

∏
j∈D

Discrete(xj |βjk)

 (7)

Implement a function called mixFactoredFitEmwhich fits the model to data, where some of the entries may
be missing (NaN). The interface should be as follows model = mixFactoredFitEm(X, K, types),
where K is the number of mixture components, and types is a string encoding the type of distribution to use
for each feature, e.g., ’DGD’ means use a Discrete for features 1 and 3 and a Gaussian for feature 2. Also,
implement a function called mixFactoredImpute which imputes missing entries of a data matrix. For
simplicity, use the posterior mean for continuous quantities and the posterior mode for discrete quantities. (This
ignores any uncertainty in our predictions, but keeps things simple.) The interface should be as follows Xhat
= mixFactoredImpute(model, X), where the NaNs in X get replaced by point predictions in Xhat.

References
[ESBB98] Michael B. Eisen, Paul T. Spellman, Patrick O. Brown, and David Botstein. Cluster analysis and display

of genome-wide expression patterns. Proc. of the National Academy of Science, USA, 1998.

[GSK+00] A. Gasch, P. Spellman, C. Kao, O. Carmel-Harel, M. Eisen, G. Storz, D. Botstein, and P. Brown. Genomic
expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cel, 11:4241–
4257, 2000.

[HTF09] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer, 2009. 2nd
edition.

[OWG04] M. Ouyang, W. Welsh, and P. Georgopolous. Gaussian mixture clustering and imputation of microarray
data. Bioinformatics, 20:917–923, 2004.

[TCS+01] O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshirani, D. Botstein, and R. Altman.
Missing value estimation methods for DNA microarrays. Bioinformatics, 17(6):520–525, 2001.

5

