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CS540 Machine learning
L9 Bayesian statistics 
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Last time

• Naïve Bayes

• Beta-Bernoulli
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Outline

• Bayesian concept learning
• Beta-Bernoulli model (review)

• Dirichlet-multinomial model
• Credible intervals
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Bayesian concept learning

Based on Josh Tenenbaum’s PhD 
thesis (MIT BCS 1999)



5

“Concept learning” (binary 
classification) from positive and 

negative examples
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Concept learning from positive only 
examples

How far out should
the rectangle go?
No negative examples
to act as an upper bound.
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Human learning vs
machine learning/ statistics

• Most ML methods for learning "concepts" 
such as "dog" require a large number of 
positive and negative examples

• But people can learn from small numbers of 
positive only examples (look at the doggy!) 

• This is called "one shot learning"
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Everyday inductive leaps

How can we learn so much about . . . 
– Meanings of words
– Properties of natural kinds
– Future outcomes of a dynamic process
– Hidden causal properties of an object
– Causes of a person’s action (beliefs, goals)
– Causal laws governing a domain

. . . from such limited data?
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The Challenge

• How do we generalize successfully from very 
limited data?
– Just one or a few examples
– Often only positive examples

• Philosophy: 
– Induction called a “problem”, a “riddle”, a “paradox”, a 

“scandal”, or a “myth”. 

• Machine learning and statistics:
– Focus on generalization from many examples, both 

positive and negative. 
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The solution: Bayesian inference

• Bayes’ rule:

• Various compelling (theoretical and experimental) 
arguments that one should represent one’s beliefs 
using probability and update them using Bayes rule
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Bayesian inference: key ingredients

• Hypothesis space H
• Prior p(h)
• Likelihood p(D|h)
• Algorithm for computing posterior p(h|D)

∑
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The number game

• Learning task:
– Observe one or more examples (numbers)
– Judge whether other numbers are “yes” or “no”.
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The number game

Examples of
“yes” numbers Hypotheses

60

multiples of 10
even numbers

60  80  10  30

multiples of 10
even numbers
? ? ?

60  63  56  59 numbers “near” 60
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60

60  80  10  30

60  52  57  55

Diffuse similarity

Rule: 
“multiples of 10”

Focused similarity:
numbers near 50-60

Human performance
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Some phenomena to explain:
– People can generalize from just positive examples. 
– Generalization can appear either graded (uncertain) 

or all-or-none (confident).

60

60  80  10  30

60  52  57  55

Diffuse similarity

Rule: 
“multiples of 10”

Focused similarity:
numbers near 50-60

Human performance
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• H: Hypothesis space of possible concepts:
• X = {x1, . . . , xn}:  n examples of a concept C. 
• Evaluate hypotheses given data using Bayes’ rule:

– p(h) [“prior”]: domain knowledge, pre-existing biases 
– p(X|h) [“likelihood”]: statistical information in examples.

– p(h|X) [“posterior”]: degree of belief that h is the true extension of C.
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Hypothesis space

• Mathematical properties (~50): 
– odd, even, square, cube, prime, …
– multiples of small integers
– powers of small integers
– same first (or last) digit

• Magnitude intervals (~5000): 
– all intervals of integers with endpoints between 1 

and 100

• Hypothesis can be defined by its extension

h = {x : h(x) = 1, x = 1, 2, . . . , 100}
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Likelihood p(X|h)

• Size principle: Smaller hypotheses receive greater likelihood, 
and exponentially more so as n increases.

• Follows from assumption of randomly sampled examples
(strong sampling).

• Captures the intuition of a representative sample. 
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Example of likelihood

• X={20,40,60}

• H1 = multiples of 10 = {10,20,…,100}
• H2 = even numbers = {2,4,…,100}

• H3 = odd numbers = {1,3,…,99}
• P(X|H1) = 1/10 * 1/10 * 1/10

• p(X|H2) = 1/50 * 1/50 * 1/50
• P(X|H3)   = 0
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2    4    6    8   10  
12  14  16  18  20  
22  24  26  28  30  
32  34  36  38  40   
42  44  46  48  50  
52  54  56  58  60  
62  64  66  68  70  
72  74  76  78  80  
82  84  86  88  90  
92  94  96  98 100 

Illustrating the size principle

h1 h2

Size principle
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2    4    6    8   10  
12  14  16  18  20  
22  24  26  28  30  
32  34  36  38  40   
42  44  46  48  50  
52  54  56  58  60  
62  64  66  68  70  
72  74  76  78  80  
82  84  86  88  90  
92  94  96  98 100 

Illustrating the size principle

h1 h2

Data slightly more of a coincidence under h1

Size principle
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2    4    6    8   10  
12  14  16  18  20  
22  24  26  28  30  
32  34  36  38  40   
42  44  46  48  50  
52  54  56  58  60  
62  64  66  68  70  
72  74  76  78  80  
82  84  86  88  90  
92  94  96  98 100 

Illustrating the size principle

h1 h2

Data much more of a coincidence under h1

Size principle
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Prior p(h)

• X={60,80,10,30}
• Why prefer “multiples of 10” over “even numbers”?

– Size principle (likelihood)

• Why prefer “multiples of 10” over
“multiples of 10 except 50 and 20”?
– Prior 

• Cannot learn efficiently if we have a uniform prior 
over all 2100 logically possible hypotheses
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Need for prior (inductive bias)

• Consider all 222 = 16 possible
binary functions on 2 binary inputs

• If we observe (x1=0, x2=1, y=0), this removes 
h5, h6, h7, h8, h13, h14, h15, h16

• Still leaves exponentially many hypotheses!
• Cannot learn efficiently without assumptions 

(no free lunch theorem)
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Hierarchical prior
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Computing the posterior

• In this talk, we will not worry about computational 
issues (we will perform brute force enumeration or 
derive analytical expressions).
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Prior Likelihoods Posteriors
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Generalizing to new objects

Given p(h|X), how do we compute    the probability 
that C applies to some new stimulus y? 

∈ XCyp )|(

Posterior predictive distribution
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Posterior predictive distribution

Compute the probability that C applies to some new 
object y by averaging the predictions of all 
hypotheses h, weighted by p(h|X)
(Bayesian model averaging):
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Examples: 
16
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Examples: 
16
8
2
64
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Examples: 
16
23
19
20
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+ Examples Human generalization

60

60  80  10  30

60  52  57  55

Bayesian Model 

16

16  8  2  64

16  23  19  20
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Rules and exemplars in the
number game

• Hyp. space is a mixture of sparse 
(mathematical concepts) and dense 
(intervals) hypotheses.

• If data supports mathematical rule (eg
X={16,8,2,64}), we rapidly learn a rule (“aha!”
moment), otherwise (eg X={6,23,19,20}) we 
learn by similarity, and need many examples 
to get sharp boundary.



36

Summary of the Bayesian approach

1. Constrained hypothesis space H
2. Prior p(h)
3. Likelihood p(X|h) 
4. Hypothesis (model) averaging:  
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MAP (maximum a posterior) learning

• Instead of Bayes model averaging, we can find the 
mode of the posterior, and use it as a plug-in.

• As N →∞, the posterior peaks around the mode, so 

MAP and BMA  converge

• Cannot explain transition from similarity-based (broad 
posterior) to rule-based (narrow posterior)
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Maximum likelihood learning

• ML = no prior, no averaging.

• Plug-in the MLE for prediction:

• X={16} ->   h= "powers of 4" X={16,8,2,64} -> 
h= "powers of 2".

• So predictive distribution gets broader as we 
get more data, in contrast to Bayes.

• ML is initially very conservative.
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Large sample size behavior

• As the amount of data goes to ∞, ML, MAP 

and BMA all converge to the same solution, 
since the likelihood overwhelms the prior, 
since p(X|h) grows with N, but p(h) is 
constant.

• If truth is in the hypothesis class, all methods 
will find it; thus they are consistent estimators.
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Beta-Bernoulli model

p(θ|D) ∝ p(D|θ)p(θ)

= p(D|θ)Beta(θ|α0, α1)

= [θN1(1− θ)N0 ][θα1−1(1− θ)α0−1]

= θN1+α1−1(1− θ)N0+α0−1

∝ Beta(θ|N1 + α1, N0 + α0)
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Sequential updating
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Prior predictive density

p(x) =

∫
p(x|θ)p(θ)dθ

=

∫ 1

0

Bin(x|θ,m)Beta(θ|α0, α1)dθ

def
= Bb(x|α0, α1,m) =

B(x+ α1,m− x+ α0)

B(α1, α0)

(
m
x

)
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Posterior predictive density

p(x|D) =

∫
p(x|θ)p(θ|D)dθ

=

∫ 1

0

Bin(x|θ,m)Beta(θ|α′0, α
′

1)dθ

def
= Bb(x|α′0, α

′

1,m) =
B(x+ α′1, n− x+ α

′

0)

B(α′1, α
′

0)

(
m
x

)

p(x|D) =

∫
p(x|θ)δ

θ̂
(θ)dθ = p(x|θ̂)

= Bin(x|θ̂, m)

Plugin approximation
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Posterior predictive

• If m=1, X in {0,1}, E[x|D] = p(x=1|D) = a1(a1+a0)

E [x] = m
α′1

α′0 + α
′

1

Var [x] =
mα′0α

′

1

(α′0 + α
′

1)
2

(α′0 + α
′

1 +m)

α′0 + α
′

1 + 1

p(x = 1|D) =

∫ 1

0

p(x = 1|θ)p(θ|D)dθ

=

∫ 1

0

θ Beta(θ|α′1, α
′

0)dθ = E[θ|D] =
α′1

α′0 + α
′

1

p(x = 1|D) =
N1 + 1

N1 +N0 + 2

Laplace’s rule of succession
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Summary of beta-Bernoulli model

• Prior
• Likelihood
• Posterior
• Posterior predictive

p(θ) = Beta(θ|α1, α0) =
1

B(α1, α0)
θα1−1(1− θ)α0−1

p(D|θ) = θN1(1− θ)N0

p(θ|D) = Beta(θ|α1 +N1, α0 +N0)

p(X = 1|D) =
α1 +N1

α1 + α0 +N
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Dirichlet-multinomial model

• Xi ∼ Mult(θ,1), p(Xi=k) = θk

• Prior
• Likelihood

• Posterior
• Posterior predictive

p(D|θ) =
K∏

k=1

θNk

k

p(X = k|D) =
αk +Nk∑
k′
αk′ +Nk′

p(θ|D) = Dir(θ|α1 +N1, . . . , αK +NK)

p(θ) = Dir(θ|α1, . . . , αK) ∝
K∏

k=1

θαk−1
k
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Dirichlet

(20,20,20) (2,2,2) (20,2,2)
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Summarizing the posterior

• If p(θ|D) is too complex to plot, we can compute 
various summary statistics, such as posterior 
mean, mode and median

θ̂mean = E[θ|D]

θ̂MAP = argmax
θ

p(θ|D)

θ̂median = t : p(θ > t|D) = 0.5
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Bayesian credible intervals

• We can represent our uncertainty using a posterior 
credible interval

• We set 
p(ℓ ≤ θ ≤ u|D) ≥ 1− α

ℓ = F−1(α/2), u = F−1(1− α/2)
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Example

• We see 47 heads out of 100 trials.

• Using a Beta(1,1) prior, what is the 95% credible 
interval for probability of heads?

S = 47; N = 100; a = S+1; b = (N-S)+1; alpha = 0.05;

l = betainv(alpha/2, a, b);

u = betainv(1-alpha/2, a, b);

CI = [l,u]

0.3749 0.5673


